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Abstract. Let D be an F -central division algebra of index n.
Here we investigate a conjecture posed in [4] that if D is not a
quaternion algebra, then the group G0(D) = D∗/F ∗D′ is non-
trivial. Assume that either D is cyclic or F contains a primitive
p-th root of unity for some prime p|n. Using Merkurjev-Suslin The-
orem, it is essentially shown that if none of the primary components
of D is a quaternion algebra, then G(D) = D∗/RND/F (D∗)D′ 6= 1.
In this direction, we also study a conjecture posed in [1] or also
[7] on the existence of maximal subgroups of D∗. It is shown that
if D is not a quaternion algebra with i(D) = pe, then D∗ has a
maximal subgroup if either of the following conditions holds: (i)
F has characteristic zero, or (ii) F has characteristic p, or (iii) F
contains a primitive p-th root of unity.

Let D be an F -central division algebra of index n. Denote by D′

the commutator subgroup of the multiplicative group D∗. Given a
subgroup G of D∗, we shall say that G is maximal in D∗ if for any
subgroup H of D∗ with G ⊂ H, one concludes that H = D∗. We know,
by Corollary 1 of [8], that G(D) := D∗/RN(D∗)D′, where RN(D∗) is
the image of D∗ under the reduced norm of D to F , is an abelian
torsion group of a bounded exponent dividing the index of D over
F . This group is not trivial in general. For instance, if D is the
algebra of real quaternions, then G(D) is trivial whereas for rational
quaternions G(D) is isomorphic to a direct product of copies of Z2, as
it is easily checked. Assume that G(D) is not trivial, then by Prũfer-
Baer Theorem (cf. [14], p. 105), we conclude that G(D) is isomorphic
to a direct product of Zri

, where ri divides the index of D over F . In
this way, one may obtain normal maximal subgroups of finite index in
D∗. So, if G(D) is not trivial, then D∗ contains maximal subgroups.
For some examples of non-normal maximal subgroups of D∗, see [9].
It is shown in [9] that even for the case G(D) = 1, we may obtain
maximal subgroups in D∗. But, the question of whether D∗ contains

1991 Mathematics Subject Classification. 16K20.
Key words and phrases. division ring, maximal subgroup, splitting field.

1



2 T. KESHAVARZIPOUR & M. MAHDAVI-HEZAVEHI

a maximal subgroup for any noncommutative division ring D, is still
open. In this note, we concentrate on the case where D is of finite
dimension over its centre such that G(D) is trivial. When i(D) = pe,
p a prime, and G(D) = 1, it is shown in Theorem 1 and Theorem 3
that if either D is an F -central cyclic division algebra or F contains a
primitive p-th root of unity, then D is a quaternion algebra. Also, in
Proposition 1, it is proved that if one of the primary components of D
is a p-algebra for some prime p|n, then G(D) 6= 1. We then proceed
to explore suitable conditions on D such that D∗ contains a maximal
subgroup for an arbitrary division algebra of index n. It is essentially
shown that when D is not a quaternion algebra with i(D) = pe, then
D∗ contains a maximal subgroup if either of the following conditions
holds: (i) F has characteristic zero, or (ii) F has characteristic p, or (iii)
F has a primitive p-th root of unity. We shall use the conventions and
notations of [2] throughout. We begin our study with the following:

Lemma 1. Let A be an F -central cyclic algebra of odd index n such
that the skew field component of A is noncommutative. Then G0(A) :=
A∗/F ∗A′ 6= 1, where A′ is the commutator subgroup of A∗.

Proof. We know that A ≃ ⊕n−1
i=0 Kai, where K/F is cyclic of degree n

with an = α ∈ F . Thus, a is a root of the minimal polynomial xn − α.
Now, we have RNA/F (a) = (−1)n+1α. Assume on the contrary that
G0(A) = 1. Then there exist f ∈ F ∗ and c ∈ A′ such that a = fc.
Hence, RNA/F (a) = fn and therefore, fn = (−1)n+1α. Since n is odd,
we obtain fn = α and hence α ∈ NK/F (K∗). But this, by Theorem
14.7 of [6], contradicts the assumption A 6≃ Mr(F ) for any r, and so
the result follows. ¤

The next result deals with F -central cyclic division algebras of degree
a power of 2 such that G0(D) is trivial. It is shown that in this case
our cyclic division algebra takes a particular simple form.

Lemma 2. Let D be an F -central cyclic division algebra of index n =
2m such that G0(D) = 1. Then we have the following:

(i) There is an element a ∈ D∗ and a maximal subfield K such that
D ≃ ⊕n−1

i=0 Kai with an = −1; where K/F is cyclic, Gal(K/F ) =<
σ >, and ax = σ(x)a, for all x ∈ K.

(ii) The left K-space D1 generated by even powers of a, i.e., D1 :=

⊕n/2−1
i=0 Ka2i is a cyclic division algebra with maximal subfield K

and center E such that [E : F ] = 2.

Furthermore, (i) is valid for any F -central cyclic algebra A with index
n = 2m and G0(A) = 1.
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Proof. (i) Since D is cyclic we have the representation D ≃ ⊕n−1
i=0 Kai

for some a ∈ D∗ with an = α ∈ F . To end the proof, we claim that
it is possible to take α = −1. It is clearly seen that a is a root of
the minimal polynomial xn − α. Therefore, RND/F (a) = (−1)n+1α.
Since G0(D) = 1 we have a = fc for some f ∈ F ∗ and c ∈ D′. Thus
RND/F (a) = fn and hence fn = (−1)n+1α. Since n is even we conclude
that fn = −α and so an = −fn, i.e, (af−1)n = −1. Therefore, we may
replace a by af−1 to obtain the result.
(ii) It is easily seen that the left K-space D1 is closed under addition
and multiplication and so D1 is a ring. We claim that D1 is a division
algebra. To see this, let x ∈ D1. Then x−1 as an element of D, has
the form x−1 = y + z where y ∈ D1 and the powers of a occurring
in z are all odd. Therefore, xx−1 = x(y + z) = xy + xz = 1. Since
xz = 1 − xy ∈ D1, and the powers of a occurring in xz are odd, we
conclude that xz = 0. i.e., x−1 ∈ D1 and the claim is established. It is
now clear that K is a maximal subfield of D1. For dimensional reasons
we conclude that Z(D1) = E ⊂ K such that [E : F ] = 2. Therefore,
we obtain D1 ≃ (−1, K/E, σ2). Note that our Galois group here is
Γ = {σ2, σ4, · · · }. ¤

In the next lemma, we show that for any F -central cyclic division
algebra D of index a power of 2, the condition G0(D) = 1 implies that
D is a quaternion algebra.

Lemma 3. Let D be an F -central cyclic division algebra of index n =
2m. If G0(D) = 1, then D is a quaternion algebra.

Proof. By Lemma 2, we may assume that D ≃ ⊕n−1
i=0 Kai with an = −1,

where K/F is cyclic of degree n and for all x ∈ K, ax = σ(x)a with
Gal(K/F ) =< σ >. Thus, the characteristic of F is different from
2. Let D1 be the division subalgebra generated by the even powers of
a. By Lemma 2, D1 is a cyclic division algebra with center E such
that [E : F ] = 2. It is clear that we have D = D1 ⊕ D1a. If D1 is
commutative, then we obtain Z(D1) = D1 = K = E and so m = 1,
which means that D is a quaternion division algebra. We now claim
that D1 = E. i.e., n > 2 leads to a contradiction. To see this, set
k = n/2 6= 1. Therefore, ak ∈ D1 \ E, and so E and consequently F
contains no square root of −1. Now, since G0(D) = 1, for any x ∈ D∗

we have x = fc, for some f ∈ F ∗ and c ∈ D′. By Skolem-Noether
Theorem, we know that σ is inner. Thus, σ(x) = fσ(c) = fdcd−1 for
some d ∈ D∗. Hence, xσ(x) ∈ F ∗2D′ for all x ∈ K∗. Since CharF 6= 2
and E/F is Galois of degree 2, we have NE/F (−1) = 1. Therefore, by
Hilbert’s ”Satz90”, there is an element b ∈ E such that bσ|E(b)−1 = −1,
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where σ|E is the restriction of σ to E. We also have bσ(b) ∈ F ∗2D′.
Hence b2 ∈ −F ∗2D′, i.e., there is an element c ∈ D′ and a1 ∈ F ∗ such
that b2 = −a2

1c. This implies that −a−2
1 b2 = c ∈ Z(D′) = F ∗∩D′ since

b2 ∈ F ∗. Now, since F contains no square root of −1 and, by a result of
[11], Z(D′) is a finite group of order dividing i(D) = 2m, we conclude
that Z(D′) = {−1, 1}. Therefore, we have either c = 1 or c = −1.
If c = −1, then b2 = a2

1 and so b ∈ F . Now, from bσ(b)−1 = −1 we
conclude that charF = 2 which is a contradiction. Thus, c = 1 and we
obtain b2 = −a2

1, i.e., (ba−1
1 )2 = −1. This implies that E has a square

root of -1, that is a contradiction. So we have k = 1, i.e, D1 = K = E
and so the result follows. ¤

We are now able to prove one of our main results in the form of

Theorem 1. Let D be an F -central cyclic division algebra such that
G0(D) = 1, then D is a quaternion algebra.

Proof. By Corollary 15.3 of [13], we know that a central division algebra
is cyclic if and only if its primary components are cyclic. Thus, if
D ≃ ⊗k

i=1Di is the primary decomposition of D, then Di is cyclic
division algebra for each i. Now, by a result of [3], we know that
G0(D) ≃ G0(D1)× · · · ×G0(Dk). Hence, G0(Di) = 1 for all 1 ≤ i ≤ k.
Finally, use Lemma 1 and Lemma 3 to obtain the result. ¤

To prove our next theorem we shall need the following:

Lemma 4. Let D be an F -central p-division algebra of index pe, p
a prime. Then D has a cyclic splitting field of degree pte, for some
positive integer t.

Proof. By Theorem 15.4 of [2], there are cyclic extensions L1, . . . , Lr of
degrees pei over F and also elements a1, . . . , ar ∈ F ∗ such that [D] =
Σr

i=1[ai, Li/F, σi], where Gal(Li/F ) =< σi >. Set Ai := (ai, Li/F, σi).
By Theorem 4.5.1 of [5], since the tensor product of Ai’s is also a cyclic
p-algebra, we have ⊗r

i=1(ai, Li/F, σi) = (a, L/F, σ) for some cyclic ex-
tension L/F . Hence, [L : F ] = ps for some integer s. Therefore, L is a
cyclic splitting field for D of degree a power of p. Now, by a repeated
use of Lemma 15.2 of [2], L can be chosen as a cyclic splitting field for
D of degree pte for some positive integer t. ¤

The next result essentially says that the multiplicative group of every
F -central division p-algebra contains a normal maximal subgroup.

Theorem 2.Let D be an F -central division p-algebra of index pe. Then
we have G(D) 6= 1.
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Proof. Assume on the contrary that G(D) = 1. By Lemma 4, we may
choose a cyclic splitting field E for D such that [E : F ] = pte for
some integer t. By Theorem 9.7 of [2], we can find an F -central cyclic
algebra A such that E is a maximal subfield in A and also [A] = [D].
Consequently, A = Mm(D), where m = p(t−1)e. Now, we claim that
G(A) = 1. To prove this, by a theorem in [10], we know that G(A) =
D∗/RN(D)mD′. Now, since G(D) = 1 we have D∗ = RN(D∗)D′.
By taking reduced norm of both sides of the last relation we obtain
RN(D∗) = RN(D∗)pe

and hence RN(D∗) = RN(D∗)m, i.e., G(A) =
G(D) = 1, which establishes our claim. Thus, G0(A) = 1. Now, by
Lemma 1, we conclude that p = 2. Therefore, by Lemma 2, A can be
written in the form A = (a,E/F,−1). Since −1 = 1, by Theorem 14.7
of [6], we will obtain the contradiction A ≃ Ms(F ) and so the result
follows. ¤

We shall need the following two lemmas to prove our next theorem.

Lemma 5. Let D be an F -central division algebra of index pe such
that F contains a primitive p-th root of unity and D has no non-cyclic
Galois splitting field of degree a power of p over F . Then we have:

(i) If p = 2, then either D has a cyclic splitting field E of degree 2te

for some integer t such that −1 ∈ NE/F (E∗) or D has a cyclic
splitting field E such that E is the splitting field of a minimal
polynomial of the form x[E:F ] + 1 and F ⊆ E[E:F ].

(ii) If p 6= 2, then D has a cyclic splitting field of degree pte for
some positive integer t.

Proof. Since F has a primitive p-th root of unity we have (p, charF ) =
1. Set L := F (ξ), where ξ is a primitive pe-th root of unity and consider
the L-algebra D ⊗F L. By Theorem 17.1 of [2] which is a consequence
of the Merkurjev-Suslin Theorem, D⊗F L has an abelian splitting field
of the form K0 := L( pe√a1, . . . , pe√at), for some ai ∈ L. View L as a
maximal subfield in Mm(F ), where m := [L : F ]. If σi ∈ Gal(L/F ), by
Skolem-Noether Theorem, there is an element Ai ∈ GLm(F ) such that

σi(x) = AixA−1
i for all x ∈ L. Now, put E := L( pe

√

AiajA
−1
i 1 : 1 ≤ j ≤

t, 1 ≤ i ≤ m). Since K0 ⊆ E, we conclude that E is a splitting field for
D, and by Theorem 11.4 of [12], E/L is an abelian extension. We claim
that |Gal(E/F )| = [E : F ], i.e., E/F is also a Galois extension. To
see this, for each i we may extend σi to E by the rule σ̄i(x) = AixA−1

i ,
for each x ∈ E, where Ai‘s and E may be viewed in M[E:F ](F ). We
first show that σ̄i(E) ⊆ E, which proves that σ̄i is well defined. To see
this, let α be a root of the polynomial xpe − Ai′ajA

−1
i′ in L[x]. Then,
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σ̄i(α) = AiαAi
−1 is also a root of xpe − AiAi′ajA

−1
i′ A−1

i . Now, we have

AiAi′ajA
−1
i′ A−1

i = σiσi′(aj) = σk(aj) = AkajA
−1
k ,

for some Ak ∈ GLm(F ). This shows that σ̄i(α) ∈ E, and hence σ̄i ∈
Aut(E). Now, set G = {σ̄iτj : σi ∈ Gal(L/F ), τj ∈ Gal(E/L)}. It is
clear that σ̄iτj ∈ Gal(E/F ) for all i, j. We claim that | G |= [E : F ].
To see this, if for some i, i′, j, j′ we have σ̄iτj = σ̄i′τj′ , then σ̄i |L= σ̄i′ |L
since τj |L= τj′ |L. Hence, by Theorem 7.3 of [2], we obtain AiA

−1
i′ ∈

ZMm(F )(L) = L. Therefore, σ̄i = σ̄i′ and hence τj = τj′ , i.e, every
two elements of G are distinct, and so the claim is established. Thus,
E/F is a Galois extension of degree a power of p which is also cyclic
by our assumption. We now show that F ⊆ E[E:F ]. To see this, we
first claim that F ⊆ Ep. If b ∈ F \ Ep, since F contains a primitive
p-th root of unity, then K = F (b1/p) is a cyclic extension of degree p
such that K 6⊆ E. Therefore, E ⊗F K is a non-cyclic Galois splitting
field of degree a power of p over F that contradicts our assumption. So
the claim is established. Now, consider the unique chain of all cyclic
subfields in E: E0 = F ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ek = E. Because
F ⊆ Ep, for each x ∈ F there exists y ∈ E such that x = yp. From
the uniqueness of the above chain we obtain F (y) = E1 or F (y) = F .
This implies that F ⊆ Ep

1 . Again, consider the skew field component
of the E1-central simple algebra D ⊗F E1 with the same splitting field
E. By taking b ∈ E1 \ Ep and using the same argument as above, we
obtain E1 ⊆ Ep and hence E1 ⊆ Ep

2 . Therefore, the repeated use of the
argument implies that Ei ⊆ Ep

i+1 and hence F ⊆ E[E:F ], as required.
Now, set Ω = {λ ∈ F : λpr

= 1, r ∈ N}. We have τ ∈ Ω, where τ is a
primitive p-th root of unity. Hence, Ω is a nontrivial group. If Ω is an
infinite group, then τ ∈ NE/F (E). Hence, by repeated use of Exercise
15.3 in [2], E can be extended to a cyclic extension of degree pte for
some t ∈ N such that τ ∈ NE/F (E) and the result follows. So assume
that Ω is a finite cyclic group and consider ζ 6= 1 as a generator of
Ω. Since F ⊆ E[E:F ], there exists η ∈ E such that η[E:F ] = ζ. If ps

is the minimum positive integer such that ηps[E:F ] = ζps

= τ , then η
is a primitive ps+1[E : F ]-th root of unity. If not, we conclude that
τ = 1, a contradiction. Now, we prove that E is a splitting field of
the minimal polynomial x[E:F ] − ζ over F . To see this, take η0 = ζ
and assume, by induction on i, that ηi, as a primitive ps+1+i-th root of
unity, be chosen such that Ei = Ei−1(ηi). Since Ei ⊆ Ep

i+1, there exists
ηi+1 ∈ Ei+1 such that ηp

i+1 = ηi. Hence, Ei+1 = Ei(ηi+1), where ηi+1

is a primitive ps+i+2-th root of unity. Therefore, from our construction
η, as a primitive ps+1[E : F ]-th root of unity, is not contained in Ek−1,
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i.e, F (η) = E. So, E is a splitting field of the minimal polynomial
x[E:F ] − ζ over F . Now consider the following cases:

(i) If p 6= 2, then NE/F (η) = ζ and hence τ ∈ NE/F (E). By
Exercise 15.3 in [2], E can be extended to a cyclic extension E ′

of degree p[E : F ]. Now, by the repeated use of the construction
above for E ′ in place of E and using the fact that D has no non-
cyclic Galois splitting field of degree a power of p, we obtain a
cyclic extension E of degree pte for some integer t such that
F ⊆ E[E:F ].

(ii) If p = 2, suppose that ζ 6= −1. Since −ζ = NE/F (η) we have
−1 ∈ NE/F (E), and this is reduced to the above case. But,
if ζ = −1, then we have a cyclic extension which is also the
splitting field of the minimal polynomial x[E:F ] + 1 = 0, and
also F ⊆ E[E:F ].

¤

Lemma 6. Let G be a finite non-cyclic p-group. Then G has at least
two distinct normal subgroups of index p.

Proof. If G is an abelian group, then the conclusion is clear. So assume
that G 6= Z(G) and consider the group G/Z(G). From group theory
we know that G/Z(G) is also a non-cyclic p-group. Now, use induction
on the order of G to obtain the result. ¤

Now, we are able to prove the following interesting result.

Theorem 3. Let D be an F -central division algebra of index pe such
that F contains a primitive p-th root of unity and G(D) = 1. Then D
is a quaternion algebra.

Proof. First assume that D has a non-cyclic Galois splitting field E of
degree a power of p. Since G(D) = 1, by corollary 4.19 of [10], we have

N(D∗) = RN(D∗), i.e., F ∗pe

= F ∗p2e

. By Lemma 6, G := Gal(E/F )
has at least 2 distinct normal subgroups H1, H2 of index p in G. If
M1,M2 are the fixed fields of H1, H2 in E , respectively, then from
Galois theory both M1,M2 are cyclic extensions of degree p in E over
F . Therefore, by Hilbert’s ”Satz90”, for i = 1, 2 there is bi ∈ Mi

such that b−1
i σi(bi) = τ , where Gal(Mi/F ) =< σi >, and τ here is a

primitive p-th root of unity in F . From the relation F ∗pe

= F ∗p2e

, since

bp
i ∈ F ∗, there are also c1, c2 ∈ F ∗ such that (bp

i )
pe

= cp2e

i , and hence
(bp

i (c
−1
i )pe

)pe

= 1. Let Ω denote the group of pe-th roots of unity in F .
Since bi 6∈ F , then bp

i (c
−1
i )pe

for i = 1, 2 are generators of Ω. But, this
is not possible since M1 6= M2, and both M1,M2 lie in E. Thus, we
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may assume that D has no non-cyclic Galois splitting field of degree a
power of p. Now, by Lemma 5, we consider two following cases:

(i) If p 6= 2, by Lemma 5, D has a cyclic splitting field E of degree
pte for some integer t. From the proof of Theorem 2 with m =
p(t−1)e, E can be embedded in the cyclic algebra A = Mm(D) as
a maximal subfield such that G(A) = 1. But, by Lemma 1, we
obtain Mm(D) = Mr(F ) for some r ∈ N, which is not possible.

(ii) If p = 2, by Lemma 5, suppose that D has a cyclic split-
ting field E of degree 2te such that −1 ∈ NE/F (E), then the
cyclic algebra defined in (i), by Lemma 2, can be written in

the form Mm(D) = ⊕[E:F ]−1
i=0 Eai such that a[E:F ] = −1. But,

−1 ∈ NE/F (E). Therefore, by the proof of Lemma 14.7 of [6],
we obtain Mm(D) = Mr(F ) for some r ∈ N, that contradicts
our assumption. So, D has a cyclic splitting field E in which
the minimal polynomial x[E:F ] + 1 splits. If η is an element in
E such that its minimal polynomial over F is x[E:F ] + 1, then
−η2k

= NE/F (η) = 1, where [E : F ] = 2k. On the other hand,

since 1 + NE/F (η) = NE/F (η + 1) = RNMm(D)/F (η + 1) ∈ F 2k

,

it follows that
√

2 ∈ F . Thus, if k > 1, then η2k

+ 1 =
(η2k−1

+ 1)2 − 2η2k−1

can be decomposed further which leads
to a contradiction that the minimal polynomial of η has degree
less than [E : F ]. Therefore, we have k = 1 which means that
D is a quaternion algebra.

¤

Finally, we shall need the following lemmas to prove our last result.

Lemma 7. Let D be an F -central division algebra of index pe1

1 · · · pek

k .
Suppose that D = D1 ⊗F . . .⊗F Dk is the primary decomposition of D
with i(Di) = pei

i . If G(D) = 1, then G(Di) = 1 for all 1 ≤ i ≤ k.

Proof. It is enough to prove the result for the case D = A⊗F B, where
A,B are two division algebras such that (i(A), i(B)) = 1 and also
G(A ⊗F B) = 1. Consider the following embeddings:

A
i→ A ⊗F B

i1→ A ⊗F B ⊗F Bop i2→ A ⊗F Mm(F )
j→ Mm(A),

where m = i(B), and set ϕ = j ◦ i2 ◦ i1. Thanks to Dieudonne deter-
minent, we then obtain the following homomorphisms

A→ A ⊗F B

(A ⊗F B)′
det◦ϕ→ A

RNA/F (A∗)A′
= G(A).

By Corollary 2.4 of [3], since the exponent of G(A) divides i(A) and
(i(A), i(B)) = 1, we conclude that the image of A under det ◦ ϕ is
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G(A). Now, we claim that for each y ∈ RNA⊗F B/F (A ⊗F B), we have
det◦ϕ(y) = 1. By the Reduced Tower formula [2], for each x ∈ A⊗F B
we have

RNA/F (det(x)) = RNMm(A)/F (x) = RNA⊗F B/F (x)m.

If y = RNA⊗F B/F (x) ∈ F , then

det◦ϕ(y) = det◦ϕ(RNA⊗F B/F (x)) = RNA⊗F B/F (x)m = RNA/F (det(x)),

i.e, the image of det ◦ ϕ(y) in G(A) is identity, and so the claim is
established. Hence, we obtain the following embeddings

A→G(A ⊗F B)
det◦ϕ→ G(A).

Therefore, since the domain of det ◦ϕ is identity, and also det ◦ ϕ is
surjective, we obtain G(A) = 1, and similarly G(B) = 1. ¤

Proposition 1.Let D be an F -central division algebra of index pe1

1 · · · pek

k .
If either of the following conditions holds, then we have G(D) 6= 1.

(i) One of the primary components of D is a pi-algebra.
(ii) F contains a primitive pi-th root of unity for at least one i, and

none of the primary components of D is a quaternion algebra.

Proof. Assume on the contrary that G(D) = 1. If Di is an i-th primary
component of D that satisfies (i) or (ii), then by Lemma 7, we have
G(Di) = 1. By Theorem 2, Di is not a pi-algebra, i.e., Di does not sat-
isfy (i). Therefore, by Theorem 3, we conclude that Di is a quaternion
division algebra which contradicts our assumption. ¤

Corollary 1. Let D be an F -central division algebra that satisfies the
conditions of Proposition 1. Then D∗ has a maximal subgroup.

Proof. Since G(D) 6= 1 the result follows. ¤

Corollary 2. Let D be an F -central division algebra of index pe such
that D is not a quaternion algebra. Then D∗ has a maximal subgroup
if either of the following conditions holds.

(i) F has characteristic zero.
(ii) F has characteristic p.
(iii) F has a primitive p-th root of unity.

Proof. (i) Assume that F has characteristic zero. If G(D) 6= 1,
then the result follows. So, assume that G(D) = 1. If Z(D′) 6=
1, then D′ contains a primitive p-th root of unity. Therefore, the
proof is reduced to (iii). But, when Z(D′) = 1 we have D∗ =
F ∗×D′. Hence, by Theorem 6 of [1], F ∗ has a normal maximal
subgroup. So, D∗ has also a normal maximal subgroup.
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(ii) If F has characteristic p, then by Theorem 2, we have G(D) 6= 1
and so the result follows.

(iii) Assume that F has a primitive p-th root of unity. If G(D) 6= 1,
the result follows. So, assume that G(D) = 1. By Theorem 3,
D is a quaternion algebra that is a contradiction.

¤
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