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ABSTRACT. In these notes we give a criterion for a central simple algebra A
to be split in terms of the essential dimension of the algebraic group SL;(A).
This criterion also provides an example of an algebraic group G with ed(G) =n
which does not possess any non-trivial cohomological invariant.
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1. INTRODUCTION

Let A be a central simple algebra over a field k. For every field extension K/k
we will denote by Ak the algebra A ®; K. We consider the algebraic group
SL;(A), defined over k, of elements of reduced norm equal to 1. This group is
defined by the exact sequence of algebraic groups

] — SLy(4) — GL;(4) 24 G, —=1 (1)

where GL1(A) stands for the algebraic group defined by GL(A)(K) = A}
and Nrd : A, — K™ is the reduced norm homomorphism.

Applying Galois cohomology to the exact sequence (1), one finds, for every field
extension K /k, the exact sequence of pointed sets

Nrd 3]
_—

GL1(A)(K) G (K) —— H'(K,SLyi(A)) — H'(K,GL1(4)) .

Since H'(K,GL1(A)) = 1 for all K/k (see [4], pp. 392-393), one obtains a

surjection

9: Gp(K) — H'(K,SL;(4)) (2)
and, much more precisely, an isomorphism
H(K,SLi(A)) ~ K* /Nrd(A}) (3)

which is functorial in K/k (see [4], Corollary 28.2, p.385 for details).



We will give a criterion for A to be split in terms of the triviality of the functor
K — HY(K,SLy(A)).

2. ESSENTIAL DIMENSION

Let k be a field. We denote by & the category of field extensions of k, i.e.
the category whose objects are field extensions K over k and whose morphisms
are field homomorphisms which fix k. We will consider covariant functors
F : €, — Sets from &, to the category of sets. For such a functor F and
for a field extension K/k, we will write F(K) instead of F(K/k). We shall say
that a morphism F — G between functors is a surjection if, for any field
extension K/k, the corresponding map F(K) — G(K) is a surjection of sets.

DEFINITION 2.1. Let F : &, — Sets be a covariant functor, K/k a field
extension and a € F(K). Forn € N, we say that the essential dimension of
a is < n (and we write ed(a) < n) if there exists a subextension E/k of K/k
such that:

i) the transcendence degree of E/k is < n,
ii) the element a is in the image of the map F(F) — F(K).

We say that ed(a) = n if ed(a) < n and ed(a) € n — 1. The essential
dimension of F is the supremum of ed(a) for all a € F(K) and for all K/k.
The essential dimension of F will be denoted by edy(F).

Ezamples 2.2.

i) Consider the trivial functor * : €, — Sets which sends each K/k to a
one-element set *. Clearly one has ed(x) = 0.
ii) The functor G,,, which assigns to each K the set K>, satisfies
edy(G,) = 1.
iii) Let F——= G be a surjection. Then ed;(G) < edy(F).

These facts are easy consequences of the definition. See [1] or [6] for example.

DEFINITION 2.3. For an algebraic group G defined over k, the essential dimen-
sion of the Galois cohomology functor K — H'(K,G) is denoted by edy(G).

For an account on the notion of essential dimension of algebraic groups see for
instance [1, 2, 6] or [7].

It follows from surjection (2) and from Examples 2.2 ii) and iii) above that
edx(SL1(A)) < 1. The question is to know when this number is equal to 0
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or 1. If A is split, say A ~ M, (k), then SL;(A) ~ SL,, and the reduced norm
homomorphism is clearly surjective. Hence the functor K — K*/Nrd(Ay) is
trivial and thus ed;(SLi(A)) = 0. We will see that the converse is true.

3. STATEMENT OF THE RESULT

Let ¢t be an indeterminate and denote by [t] the class of ¢ in k:(t)x/Nrd(A:(t)).

THEOREM 3.1. Let A be a central simple algebra over k. The following condi-
tions are equivalent:

1) A is split,

2) the functor K — K> /Nrd(Ajy) is trivial,

3) edi(SLy(A)) =0,

4) ed([t]) = 0.

Proof. The implications 1) = 2) = 3) = 4) are trivial and follow easily from
the definitions. It remains to show that 4) = 1). It will be a consequence of
the following fact. O

PROPOSITION 3.2. Let A be a central simple algebra over k. Denote by ind(A)
its index and consider the group homomorphism

04 (Ao k(1)< 24 k) 2 7

where deg stands for the degree in t. Then im(64) = ind(A) Z.
To prove this fact, we use the following lemma.

LEMMA 3.3. Let K be a commutative field and A and B two simple central
algebras over K. If A and B are Brauer equivalent, then Nrd(A*) = Nrd(B*).

Proof. Let D be a central division algebra over K such that A ~ M, (D)
and B ~ My(D). We show that Nrd(A*) = Nrd(D*). We have that
A* ~ GL,.(D). Now for invertible matrices over a division algebra there is
the notion of Dieudonné determinant detp : GL,.(D) — D*/[D*, D*] (see
[3], Definition 3, p. 135). One has the following commutative diagram

GL, (D) M4 5 gx

dCtDl
Nrd
D> /|D*, D]

which shows that Nrd(A*) = Nrd(D*) since detp is surjective (see [3], Theo-
rem 1, p. 146). Similarly Nrd(B*) = Nrd(D*) which finishes the proof. O



Remark 3.4. It follows from the above lemma and the functor isomorphism
(3) that, if A and B are two simple central algebras over k which are Brauer
equivalent, then the functors K — H'(K,SLj(A)) and K — H'(K,SL;(B))

are isomorphic.

Proof of Proposition 3.2. By Lemma 3.3, we can suppose that A is a division
algebra. In this case, the index of A and the degree of A are equal.

Consider now the element 1@t € (A®yk(t))*. We have that Nrd(1®t) = ¢0d(4)
and thus ind(A) € im(64). It follows that ind(A)Z C im(f4).

To show the converse inclusion take a € (A®y, k(t))* and write it a = 2 where
c € k[t] and b € A®yk[t]. Since ¢ € k[t] we have that Nrd(c) = ¢4 and thus
it suffices to show that ind(A) divides the degree of Nrd(b). We then write

b=by@14+b Qt+--+b, @t"
where b, € A and b,, # 0. An easy computation shows that
Nrd(b) = Nrd(b,,) "4 4 ...

Since A is a division algebra Nrd(b,) # 0 whence the result. O
Proposition 3.2 enables us to establish the implication 4) = 1) of Theorem 3.1.

Proof of Theorem 3.1. Suppose that ed([t]) = 0. This means that there exist
an element A € £ and an element z € (A ®;, k(t))* such that t = ANrd(z).
But this implies that 1 € im(f4). By the preceeding Proposition, this means
that ind(A) = 1, saying that A is split. O

Actually Theorem 3.1 can be sharpened in order to give a more precise result:

COROLLARY 3.5. Let A be a central simple algebra over k. Let r € N, then
i) one has ed([t"]) = 0 if and only if ind(A) divides r;
ii) one has ind(A) = r if and only if ed([t"]) = 0 and ed([t™]) # 0 for allm # r

with m | r.

Proof. By Lemma 3.3 one can suppose A to be a division algebra.

i) Suppose that ind(A) divides r, say r = ind(A)m. One has t" = Nrd(1 ® t™)
saying that ed([t"]) = 0. Conversely, if ed([t"]) = 0 then there exists u € k and
x € (A ®g k(t))* such that ¢" = uNrd(x). This shows that » € im(64). By
Proposition 3.2, it follows that ind(A) divides r.

ii) It follows easily from i). O



4. A SLIGHT GENERALIZATION

For two algebraic groups G and H very little is known about the behaviour
of ed(G x H) (see [1, 2] or [7] for partial results). Even when G = H the
computation of the essential dimension is not well understood. The preceeding
discussion and the interpretation of the essential dimension of SL;(A) in terms
of the algebra A allows to give a precise description in this case. Our aim is to
prove the following result for a product of copies of SL; (A).

THEOREM 4.1. Let A be a central simple algebra defined over a field k and let
SLi(A) x --- x SLy(A) the product of n copies of SLi(A). Then

edj(SLy(A) x - -+ x SLy(A)) = nedy(SLi(A)).

Proof. It is enough to prove that if A is a non-split algebra then we have
edx(SLi(A)x---xSLi(A)) = n. Notice that, since there is no non-split central
simple algebra over a finite field, we may suppose that the ground field & is
infinite. For simplicity we will denote the functor H'(_, SLy(A)x---xSL;(A)),
with n copies of SL;(A4), by F,,.

Let t1,...,t, be algebraically independent variables over k. In the se-
quel we will denote by K, the field k(t1,...,¢,). Consider the element
a = (t,...,t,) € Fp(K,) where t; denotes the class of ¢; in the quotient
K, /Nrd(Ag ). We will show, by induction on n, that ed(a) = n.

Suppose that n > 2 and that there is a subextension L/k C K,/k and an
element b € F,, (L) such that b maps to a under the map

Fo(L) — Fo(k(ti,. .. tn)).

Suppose moreover that trdeg(L : k) < n. We write b = (by,...,b,) for some
elements b; € L*. Saying that b maps to a means that there exist elements
x; € (A®y K,,)™ such that

tl = b1 Nrd(ml)
tg = bg NI‘d(l’Q)
tn, = b, Nrd(z,)

Recall that for a field extension K/k a k-valuation on K is a valuation v
on K which is trivial on k, that is v(z) = 0 for all z € k. We denote by
O, = {z € K | v(z) > 0} the ring of the valuation, by m, = {x € K | v(x) > 0}
its unique maximal ideal and by &, the residue field, that is the quotient O, /m,,.
Since v is trivial on k it follows that O, is a k-algebra and that k, is again a
field extension of k. It is well known that

trdeg(k, : k) < trdeg(K : k)
and that the equality holds if and only if v is trivial on K.
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We consider now on K, the (¢, — A)-valuation where A € k. We denote it by v
and its restriction to L by v’. Since the field k is infinite, we can find a A such
that the b;’s, the x;’s and their inverses y; are unramified at v. That means
that b; € O, and that z;,y; € A ®, O,. Thus we may specialise the above
equations at ¢, = A and find

t1 = bl(
t2 = bg(A) Nrd(:lig()\))

A= ba(A) Ned(@a(N)

where b;(A) denotes the image of b; in the residue field ,s and x;(\) denote
the image of z; in (A ® ky)* = (A Kp1)™.

Hence b’ = (by,...,bp_1) € Fp_1(ky) maps to (f1,...,0,_1) € Fru_1(K,_1)
under the induced map F,,_1(k, ) — Fp—1(ky). Since by induction hypothesis
ed((t1,...,tn—1)) = n — 1 and since trdeg(L : k) < n it follows that the
valuation v’ has to be trivial over L. Consequently b,(\) = b, € L and the
equation A = b, (M) Nrd(z,())) actually shows that b, € K,_;. Coming back
to the equation t¢,, = b, Nrd(x,) this contradicts Theorem 3.1 for the central
simple algebra A’ = A®; K,,_1. |

5. A SIDE REMARK

Let F : €, — Sets be a covariant functor and let M be any torsion I'j-
module. A degree d cohomological invariant for F with values in M
is, by definition, a morphism of functors n : F — H?%(_, M). An invariant 7
is said to be non-trivial if, for every field extension K/k, there exists a field
extension L/K and an element a € F(L) such that n(a) # 0 € HY(L, M). Tt
is shown in [1, 6, 7] that if 5 is a non-trivial degree d cohomological invariant
then edy(F) > d.

Now, since the algebra A splits over some field extension K/k, it follows that
for any L/K the cohomology set H'(L,SLi(A)) is reduced to one element.
Thus one sees that H'(_,SL;(A)) cannot have any non-trivial cohomological
invariant of degree > 1. Hence, when A is non-split, SLy(A)x---xSLj (A) gives
an easy example of a group without any non-trivial cohomological invariant
which has essential dimension n.

6. DESCRIPTION OF H'(k(t),SL1(A))

For completeness we give a detailed study of H!(k(t),SL1(A)) inspired by [8].
Let X denote the set of irreducible monic polynomials in k[t].



PROPOSITION 6.1. Let A be a central simple algebra over k and x € X. Con-
sider the group homomorphism

Nrd Vg
—_—

Mo o (A®yk(t)~ k() ——12

where v, denotes the x-adic valuation on k(t). Then im(n,) = ind(A)Z.

Proof. Asin Lemma 3.3 we can suppose that A is a division algebra. One has
Nrd(1 ®z) = 24| thus ind(A)Z C im(n,). Conversely, let a € (A®y, k(t))*
and write it a = 2 where ¢ € k[t] and b € A ®y, k[t]. Since Nrd(c) = ¢4 it
suffices to prove that ind(A) | v, (Nrd(d)). To do this, write

b= Y bheaf
r<i<s
where deg(f;) < deg(x) and b, # 0. An easy computation shows then that
Nrd(b) — Nrd(br)xr'ind(A)fTind(A) + xr~ind(A)+1g

where g € k[t]. Since Nrd(b,) # 0 this shows that v,;(Nrd(b)) = r - ind(A).
Hence im(7,) C ind(A)Z. This concludes the proof. O

DEFINITION 6.2. For each x € X, let
Oy« H(k(t),SL1(A)) — Z/ind(A)Z

be the group homomorphism induced by the valuation v,,.

THEOREM 6.3. Let A be a central simple algebra over k. Then there is a split
exact sequence
1 — H'(k,SLy(A)) — H'(k(t),SLi(A)) — P Z/ind(A)Z — 0
reX

where the first map is induced by k — k(t) and the second is ®0,,.

Proof. Though it is well known that the natural map
v: HY(k,G) — H'(k(t), Q)

is injective (see [5]), we show injectivity in this particular case. As above we
may suppose that A is a division algebra. So let A € k* and z € (A ® k(t))*
such that A = Nrd(z). Write  as ¢ = (1/p(¢))y, where p(t) is a unitary
polynomial and y € A ® k[t]. One has

Nrd(z) = (1/p(t) A0 Nrd(y),

and hence Ap(t)"44) = Nrd(y). Write y = a, @ t" + --- + ap ® 1, where
a; € A and a, # 0. Then Nrd(y) is a polynomial of degree ind(A)r and its
leading coefficient is Nrd(a,). Comparing the leading terms in the equality
Ap(t)"4(4) = Nrd(y), one gets A = Nrd(a,.). This proves the injectivity.



The composition
kX /Nrd(A) — k(1) /Nrd(A} ) — €D Z/ind(A)Z
zeX
is clearly zero. We show that ker(®d,) C im(¢). Let f € k(t)* and write it
f=X]] =" with X € k*. Since 0:(f) = 0 one has that ind(A) divides
zeX

vg(f) for all x € X. Hence H zv=(F) ¢ Nrd(A;(t)). Thus f € im().

reX
To end the proof, we give a section to &0,,. This will show surjectivity as well.

We let s : @ 7./ind(A)Z — H'(k(t),SL;(A)) defined by sending the element

zeX
([nz])zex to the class of H 2™ in k(t)X/Nrd(A,f(t)). This clearly gives the
zeX
desired section. |

COROLLARY 6.4. The following conditions are equivalent:
i) the algebra A is split,
ii) the group H*(k(t),SLi(A)) is trivial,
iii) the group H'(k(t),SL1(A)) is finite.
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