A CRITERION FOR A CENTRAL SIMPLE ALGEBRA TO BE SPLIT

GIORDANO FAVI, EMMANUEL LEQUEU

1 september 2004

ABSTRACT. In these notes we give a criterion for a central simple algebra A to be split in terms of the essential dimension of the algebraic group $\mathbf{SL}_1(A)$. This criterion also provides an example of an algebraic group G with $\mathrm{ed}(G)=n$ which does not possess any non-trivial cohomological invariant.

2000 Mathematics Subject Classification: 11E72, 16K20.

Keywords and Phrases: Essential dimension, central simple algebras, Galois cohomology, cohomological invariants.

1. Introduction

Let A be a central simple algebra over a field k. For every field extension K/k we will denote by A_K the algebra $A \otimes_k K$. We consider the algebraic group $\mathbf{SL}_1(A)$, defined over k, of elements of reduced norm equal to 1. This group is defined by the exact sequence of algebraic groups

$$1 \longrightarrow \mathbf{SL}_1(A) \longrightarrow \mathbf{GL}_1(A) \xrightarrow{\operatorname{Nrd}} \mathbb{G}_m \longrightarrow 1$$
 (1)

where $\mathbf{GL}_1(A)$ stands for the algebraic group defined by $\mathbf{GL}_1(A)(K) = A_K^{\times}$ and Nrd: $A_K^{\times} \to K^{\times}$ is the reduced norm homomorphism.

Applying Galois cohomology to the exact sequence (1), one finds, for every field extension K/k, the exact sequence of pointed sets

$$\mathbf{GL}_1(A)(K) \xrightarrow{\operatorname{Nrd}} \mathbb{G}_m(K) \xrightarrow{\partial} H^1(K, \mathbf{SL}_1(A)) \longrightarrow H^1(K, \mathbf{GL}_1(A))$$
.

Since $H^1(K,\mathbf{GL}_1(A))=1$ for all K/k (see [4], pp. 392-393), one obtains a surjection

$$\partial: \mathbb{G}_m(K) \longrightarrow H^1(K, \mathbf{SL}_1(A))$$
 (2)

and, much more precisely, an isomorphism

$$H^1(K, \mathbf{SL}_1(A)) \simeq K^{\times}/\mathrm{Nrd}(A_K^{\times})$$
 (3)

which is functorial in K/k (see [4], Corollary 28.2, p.385 for details).

We will give a criterion for A to be split in terms of the triviality of the functor $K \mapsto H^1(K, \mathbf{SL}_1(A))$.

2. Essential dimension

Let k be a field. We denote by \mathfrak{C}_k the category of field extensions of k, i.e. the category whose objects are field extensions K over k and whose morphisms are field homomorphisms which fix k. We will consider *covariant* functors $\mathbf{F}:\mathfrak{C}_k\to\mathbf{Sets}$ from \mathfrak{C}_k to the category of sets. For such a functor \mathbf{F} and for a field extension K/k, we will write $\mathbf{F}(K)$ instead of $\mathbf{F}(K/k)$. We shall say that a morphism $\mathbf{F}\to\mathbf{G}$ between functors is a **surjection** if, for any field extension K/k, the corresponding map $\mathbf{F}(K)\to\mathbf{G}(K)$ is a surjection of sets.

DEFINITION 2.1. Let $\mathbf{F}: \mathfrak{C}_k \to \mathbf{Sets}$ be a covariant functor, K/k a field extension and $a \in \mathbf{F}(K)$. For $n \in \mathbb{N}$, we say that the **essential dimension of** a is $\leq n$ (and we write $\operatorname{ed}(a) \leq n$) if there exists a subextension E/k of K/k such that:

- i) the transcendence degree of E/k is $\leq n$,
- ii) the element a is in the image of the map $\mathbf{F}(E) \longrightarrow \mathbf{F}(K)$.

We say that ed(a) = n if $ed(a) \le n$ and $ed(a) \le n - 1$. The essential dimension of \mathbf{F} is the supremum of ed(a) for all $a \in \mathbf{F}(K)$ and for all K/k. The essential dimension of \mathbf{F} will be denoted by $ed_k(\mathbf{F})$.

Examples 2.2.

- i) Consider the trivial functor $*: \mathfrak{C}_k \to \mathbf{Sets}$ which sends each K/k to a one-element set *. Clearly one has $\mathrm{ed}_k(*) = 0$.
- ii) The functor \mathbb{G}_m , which assigns to each K the set K^{\times} , satisfies $\operatorname{ed}_k(\mathbb{G}_m) = 1$.
- iii) Let $\mathbf{F} \longrightarrow \mathbf{G}$ be a surjection. Then $\operatorname{ed}_k(\mathbf{G}) \leq \operatorname{ed}_k(\mathbf{F})$.

These facts are easy consequences of the definition. See [1] or [6] for example.

DEFINITION 2.3. For an algebraic group G defined over k, the essential dimension of the Galois cohomology functor $K \mapsto H^1(K,G)$ is denoted by $\operatorname{ed}_k(G)$.

For an account on the notion of essential dimension of algebraic groups see for instance [1, 2, 6] or [7].

It follows from surjection (2) and from Examples 2.2 ii) and iii) above that $\operatorname{ed}_k(\operatorname{\mathbf{SL}}_1(A)) \leq 1$. The question is to know when this number is equal to 0

or 1. If A is split, say $A \simeq M_n(k)$, then $\mathbf{SL}_1(A) \simeq \mathbf{SL}_n$ and the reduced norm homomorphism is clearly surjective. Hence the functor $K \mapsto K^{\times}/\mathrm{Nrd}(A_K^{\times})$ is trivial and thus $\mathrm{ed}_k(\mathbf{SL}_1(A)) = 0$. We will see that the converse is true.

3. Statement of the result

Let t be an indeterminate and denote by [t] the class of t in $k(t)^{\times}/\mathrm{Nrd}(A_{k(t)}^{\times})$.

Theorem 3.1. Let A be a central simple algebra over k. The following conditions are equivalent:

- 1) A is split,
- 2) the functor $K \mapsto K^{\times}/\mathrm{Nrd}(A_K^{\times})$ is trivial,
- 3) $\operatorname{ed}_k(\mathbf{SL}_1(A)) = 0$,
- 4) ed([t]) = 0.

Proof. The implications $1) \Rightarrow 2) \Rightarrow 3) \Rightarrow 4)$ are trivial and follow easily from the definitions. It remains to show that $4) \Rightarrow 1$). It will be a consequence of the following fact.

Proposition 3.2. Let A be a central simple algebra over k. Denote by $\operatorname{ind}(A)$ its index and consider the group homomorphism

$$\theta_A: (A \otimes_k k(t))^{\times} \xrightarrow{\operatorname{Nrd}} k(t)^{\times} \xrightarrow{\operatorname{deg}} \mathbb{Z}$$

where deg stands for the degree in t. Then $\operatorname{im}(\theta_A) = \operatorname{ind}(A) \mathbb{Z}$.

To prove this fact, we use the following lemma.

LEMMA 3.3. Let K be a commutative field and A and B two simple central algebras over K. If A and B are Brauer equivalent, then $Nrd(A^{\times}) = Nrd(B^{\times})$.

Proof. Let D be a central division algebra over K such that $A \simeq M_r(D)$ and $B \simeq M_s(D)$. We show that $\operatorname{Nrd}(A^{\times}) = \operatorname{Nrd}(D^{\times})$. We have that $A^{\times} \simeq \operatorname{GL}_r(D)$. Now for invertible matrices over a division algebra there is the notion of Dieudonné determinant $\det_D : \operatorname{GL}_r(D) \to D^{\times}/[D^{\times}, D^{\times}]$ (see [3], Definition 3, p. 135). One has the following commutative diagram

$$\begin{array}{c|c}
\mathbf{GL}_r(D) & \xrightarrow{\operatorname{Nrd}} & K^{\times} \\
 & & \downarrow & \\
 & & & \downarrow & \\
 & & & \downarrow & \\
 & & & & \downarrow & \\
 & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & \downarrow & \downarrow & \\
 & & \downarrow & \downarrow & \\
 & & \downarrow & \downarrow & \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow$$

which shows that $\operatorname{Nrd}(A^{\times}) = \operatorname{Nrd}(D^{\times})$ since \det_D is surjective (see [3], Theorem 1, p. 146). Similarly $\operatorname{Nrd}(B^{\times}) = \operatorname{Nrd}(D^{\times})$ which finishes the proof.

Remark 3.4. It follows from the above lemma and the functor isomorphism (3) that, if A and B are two simple central algebras over k which are Brauer equivalent, then the functors $K \to H^1(K, \mathbf{SL}_1(A))$ and $K \to H^1(K, \mathbf{SL}_1(B))$ are isomorphic.

Proof of Proposition 3.2. By Lemma 3.3, we can suppose that A is a division algebra. In this case, the index of A and the degree of A are equal.

Consider now the element $1 \otimes t \in (A \otimes_k k(t))^{\times}$. We have that $Nrd(1 \otimes t) = t^{ind(A)}$ and thus $\operatorname{ind}(A) \in \operatorname{im}(\theta_A)$. It follows that $\operatorname{ind}(A) \mathbb{Z} \subseteq \operatorname{im}(\theta_A)$.

To show the converse inclusion take $a \in (A \otimes_k k(t))^{\times}$ and write it $a = \frac{b}{c}$ where $c \in k[t]$ and $b \in A \otimes_k k[t]$. Since $c \in k[t]$ we have that $Nrd(c) = c^{ind(A)}$ and thus it suffices to show that ind(A) divides the degree of Nrd(b). We then write

$$b = b_0 \otimes 1 + b_1 \otimes t + \dots + b_n \otimes t^n$$

where $b_i \in A$ and $b_n \neq 0$. An easy computation shows that

$$\operatorname{Nrd}(b) = \operatorname{Nrd}(b_n) t^{n \cdot \operatorname{ind}(A)} + \cdots$$

Since A is a division algebra $Nrd(b_n) \neq 0$ whence the result.

Proposition 3.2 enables us to establish the implication $4) \Rightarrow 1$) of Theorem 3.1.

Proof of Theorem 3.1. Suppose that ed([t]) = 0. This means that there exist an element $\lambda \in k^{\times}$ and an element $x \in (A \otimes_k k(t))^{\times}$ such that $t = \lambda \operatorname{Nrd}(x)$. But this implies that $1 \in \text{im}(\theta_A)$. By the preceding Proposition, this means that ind(A) = 1, saying that A is split.

Actually Theorem 3.1 can be sharpened in order to give a more precise result:

COROLLARY 3.5. Let A be a central simple algebra over k. Let $r \in \mathbb{N}$, then

- i) one has $ed([t^r]) = 0$ if and only if ind(A) divides r;
- ii) one has $\operatorname{ind}(A) = r$ if and only if $\operatorname{ed}([t^r]) = 0$ and $\operatorname{ed}([t^m]) \neq 0$ for all $m \neq r$ with $m \mid r$.

Proof. By Lemma 3.3 one can suppose A to be a division algebra.

i) Suppose that $\operatorname{ind}(A)$ divides r, say $r = \operatorname{ind}(A)m$. One has $t^r = \operatorname{Nrd}(1 \otimes t^m)$ saying that $\operatorname{ed}([t^r]) = 0$. Conversely, if $\operatorname{ed}([t^r]) = 0$ then there exists $u \in k$ and $x \in (A \otimes_k k(t))^{\times}$ such that $t^r = u \operatorname{Nrd}(x)$. This shows that $r \in \operatorname{im}(\theta_A)$. By Proposition 3.2, it follows that ind(A) divides r.

ii) It follows easily from i).

4. A SLIGHT GENERALIZATION

For two algebraic groups G and H very little is known about the behaviour of $\operatorname{ed}(G \times H)$ (see [1, 2] or [7] for partial results). Even when G = H the computation of the essential dimension is not well understood. The preceding discussion and the interpretation of the essential dimension of $\operatorname{SL}_1(A)$ in terms of the algebra A allows to give a precise description in this case. Our aim is to prove the following result for a product of copies of $\operatorname{SL}_1(A)$.

THEOREM 4.1. Let A be a central simple algebra defined over a field k and let $\mathbf{SL}_1(A) \times \cdots \times \mathbf{SL}_1(A)$ the product of n copies of $\mathbf{SL}_1(A)$. Then

$$\operatorname{ed}_k(\operatorname{\mathbf{SL}}_1(A) \times \cdots \times \operatorname{\mathbf{SL}}_1(A)) = n \operatorname{ed}_k(\operatorname{\mathbf{SL}}_1(A)).$$

Proof. It is enough to prove that if A is a non-split algebra then we have $\operatorname{ed}_k(\operatorname{\mathbf{SL}}_1(A) \times \cdots \times \operatorname{\mathbf{SL}}_1(A)) = n$. Notice that, since there is no non-split central simple algebra over a finite field, we may suppose that the ground field k is infinite. For simplicity we will denote the functor $H^1(_-, \operatorname{\mathbf{SL}}_1(A) \times \cdots \times \operatorname{\mathbf{SL}}_1(A))$, with n copies of $\operatorname{\mathbf{SL}}_1(A)$, by $\operatorname{\mathbf{F}}_n$.

Let t_1, \ldots, t_n be algebraically independent variables over k. In the sequel we will denote by K_n the field $k(t_1, \ldots, t_n)$. Consider the element $a = (\bar{t}_1, \ldots, \bar{t}_n) \in \mathbf{F}_n(K_n)$ where \bar{t}_i denotes the class of t_i in the quotient $K_n^*/\mathrm{Nrd}(A_{K_n}^*)$. We will show, by induction on n, that $\mathrm{ed}(a) = n$.

Suppose that $n \geq 2$ and that there is a subextension $L/k \subset K_n/k$ and an element $b \in \mathbf{F}_n(L)$ such that b maps to a under the map

$$\mathbf{F}_n(L) \to \mathbf{F}_n(k(t_1,\ldots,t_n)).$$

Suppose moreover that $\operatorname{trdeg}(L:k) < n$. We write $b = (\bar{b}_1, \dots, \bar{b}_n)$ for some elements $b_i \in L^{\times}$. Saying that b maps to a means that there exist elements $x_i \in (A \otimes_k K_n)^{\times}$ such that

$$\begin{cases} t_1 &= b_1 \operatorname{Nrd}(x_1) \\ t_2 &= b_2 \operatorname{Nrd}(x_2) \\ &\vdots \\ t_n &= b_n \operatorname{Nrd}(x_n) \end{cases}$$

Recall that for a field extension K/k a k-valuation on K is a valuation v on K which is trivial on k, that is v(x) = 0 for all $x \in k$. We denote by $\mathcal{O}_v = \{x \in K \mid v(x) \geq 0\}$ the ring of the valuation, by $\mathfrak{m}_v = \{x \in K \mid v(x) > 0\}$ its unique maximal ideal and by κ_v the residue field, that is the quotient $\mathcal{O}_v/\mathfrak{m}_v$. Since v is trivial on k it follows that \mathcal{O}_v is a k-algebra and that κ_v is again a field extension of k. It is well known that

$$\operatorname{trdeg}(\kappa_v:k) \leq \operatorname{trdeg}(K:k)$$

and that the equality holds if and only if v is trivial on K.

We consider now on K_n the $(t_n - \lambda)$ -valuation where $\lambda \in k$. We denote it by v and its restriction to L by v'. Since the field k is infinite, we can find a λ such that the b_i 's, the x_i 's and their inverses y_i are unramified at v. That means that $b_i \in \mathcal{O}_v$ and that $x_i, y_i \in A \otimes_k \mathcal{O}_v$. Thus we may specialise the above equations at $t_n = \lambda$ and find

$$\begin{cases} t_1 &= b_1(\lambda) \operatorname{Nrd}(x_1(\lambda)) \\ t_2 &= b_2(\lambda) \operatorname{Nrd}(x_2(\lambda)) \\ &\vdots \\ \lambda &= b_n(\lambda) \operatorname{Nrd}(x_n(\lambda)) \end{cases}$$

where $b_i(\lambda)$ denotes the image of b_i in the residue field $\kappa_{v'}$ and $x_i(\lambda)$ denote the image of x_i in $(A \otimes_k \kappa_v)^{\times} = (A \otimes_k K_{n-1})^{\times}$.

Hence $b' = (\bar{b}_1, \dots, \bar{b}_{n-1}) \in \mathbf{F}_{n-1}(\kappa_{v'})$ maps to $(\bar{t}_1, \dots, \bar{t}_{n-1}) \in \mathbf{F}_{n-1}(K_{n-1})$ under the induced map $\mathbf{F}_{n-1}(\kappa_{v'}) \to \mathbf{F}_{n-1}(\kappa_v)$. Since by induction hypothesis $\operatorname{ed}((\bar{t}_1, \dots, \bar{t}_{n-1})) = n-1$ and since $\operatorname{trdeg}(L:k) < n$ it follows that the valuation v' has to be trivial over L. Consequently $b_n(\lambda) = b_n \in L$ and the equation $\lambda = b_n(\lambda) \operatorname{Nrd}(x_n(\lambda))$ actually shows that $b_n \in K_{n-1}$. Coming back to the equation $t_n = b_n \operatorname{Nrd}(x_n)$ this contradicts Theorem 3.1 for the central simple algebra $A' = A \otimes_k K_{n-1}$.

5. A SIDE REMARK

Let $\mathbf{F}: \mathfrak{C}_k \to \mathbf{Sets}$ be a covariant functor and let M be any torsion Γ_k -module. A **degree** d **cohomological invariant for \mathbf{F} with values in** M is, by definition, a morphism of functors $\eta: \mathbf{F} \to H^d(_, M)$. An invariant η is said to be non-trivial if, for every field extension K/k, there exists a field extension L/K and an element $a \in \mathbf{F}(L)$ such that $\eta_L(a) \neq 0 \in H^d(L, M)$. It is shown in [1, 6, 7] that if η is a non-trivial degree d cohomological invariant then $\mathrm{ed}_k(\mathbf{F}) > d$.

Now, since the algebra A splits over some field extension K/k, it follows that for any L/K the cohomology set $H^1(L, \mathbf{SL}_1(A))$ is reduced to one element. Thus one sees that $H^1(_, \mathbf{SL}_1(A))$ cannot have any non-trivial cohomological invariant of degree ≥ 1 . Hence, when A is non-split, $\mathbf{SL}_1(A) \times \cdots \times \mathbf{SL}_1(A)$ gives an easy example of a group without any non-trivial cohomological invariant which has essential dimension n.

6. Description of $H^1(k(t), \mathbf{SL}_1(A))$

For completeness we give a detailed study of $H^1(k(t), \mathbf{SL}_1(A))$ inspired by [8]. Let X denote the set of irreducible monic polynomials in k[t].

PROPOSITION 6.1. Let A be a central simple algebra over k and $x \in X$. Consider the group homomorphism

$$\eta_x: (A \otimes_k k(t))^{\times} \xrightarrow{\operatorname{Nrd}} k(t)^{\times} \xrightarrow{v_x} \mathbb{Z}$$

where v_x denotes the x-adic valuation on k(t). Then $\operatorname{im}(\eta_x) = \operatorname{ind}(A)\mathbb{Z}$.

Proof. As in Lemma 3.3 we can suppose that A is a division algebra. One has $\operatorname{Nrd}(1 \otimes x) = x^{\operatorname{ind}(A)}$, thus $\operatorname{ind}(A)\mathbb{Z} \subseteq \operatorname{im}(\eta_x)$. Conversely, let $a \in (A \otimes_k k(t))^{\times}$ and write it $a = \frac{b}{c}$ where $c \in k[t]$ and $b \in A \otimes_k k[t]$. Since $\operatorname{Nrd}(c) = c^{\operatorname{ind}(A)}$ it suffices to prove that $\operatorname{ind}(A) \mid v_x(\operatorname{Nrd}(b))$. To do this, write

$$b = \sum_{r \le i \le s} b_i \otimes x^i f_i$$

where $deg(f_i) < deg(x)$ and $b_r \neq 0$. An easy computation shows then that

$$\operatorname{Nrd}(b) = \operatorname{Nrd}(b_r) x^{r \cdot \operatorname{ind}(A)} f_r^{\operatorname{ind}(A)} + x^{r \cdot \operatorname{ind}(A) + 1} g$$

where $g \in k[t]$. Since $\operatorname{Nrd}(b_r) \neq 0$ this shows that $v_x(\operatorname{Nrd}(b)) = r \cdot \operatorname{ind}(A)$. Hence $\operatorname{im}(\eta_x) \subseteq \operatorname{ind}(A)\mathbb{Z}$. This concludes the proof.

Definition 6.2. For each $x \in X$, let

$$\partial_x: H^1(k(t), \mathbf{SL}_1(A)) \to \mathbb{Z}/\mathrm{ind}(A)\mathbb{Z}$$

be the group homomorphism induced by the valuation v_x .

Theorem 6.3. Let A be a central simple algebra over k. Then there is a split exact sequence

$$1 \to H^1(k, \mathbf{SL}_1(A)) \to H^1(k(t), \mathbf{SL}_1(A)) \to \bigoplus_{x \in X} \mathbb{Z}/\mathrm{ind}(A)\mathbb{Z} \to 0$$

where the first map is induced by $k \to k(t)$ and the second is $\oplus \partial_x$.

Proof. Though it is well known that the natural map

$$\iota: H^1(k,G) \to H^1(k(t),G)$$

is injective (see [5]), we show injectivity in this particular case. As above we may suppose that A is a division algebra. So let $\lambda \in k^{\times}$ and $x \in (A \otimes k(t))^{\times}$ such that $\lambda = \operatorname{Nrd}(x)$. Write x as x = (1/p(t))y, where p(t) is a unitary polynomial and $y \in A \otimes k[t]$. One has

$$\operatorname{Nrd}(x) = (1/p(t)^{\operatorname{deg}(A \otimes k(t))})\operatorname{Nrd}(y),$$

and hence $\lambda p(t)^{\operatorname{ind}(A)} = \operatorname{Nrd}(y)$. Write $y = a_r \otimes t^r + \cdots + a_0 \otimes 1$, where $a_i \in A$ and $a_r \neq 0$. Then $\operatorname{Nrd}(y)$ is a polynomial of degree $\operatorname{ind}(A)r$ and its leading coefficient is $\operatorname{Nrd}(a_r)$. Comparing the leading terms in the equality $\lambda p(t)^{\operatorname{ind}(A)} = \operatorname{Nrd}(y)$, one gets $\lambda = \operatorname{Nrd}(a_r)$. This proves the injectivity.

The composition

$$k^{\times}/\mathrm{Nrd}(A) \to k(t)^{\times}/\mathrm{Nrd}(A_{k(t)}^{\times}) \to \bigoplus_{x \in X} \mathbb{Z}/\mathrm{ind}(A)\mathbb{Z}$$

is clearly zero. We show that $\ker(\oplus \delta_x) \subseteq \operatorname{im}(\iota)$. Let $f \in k(t)^{\times}$ and write it $f = \lambda \prod_{x \in X} x^{v_x(f)}$ with $\lambda \in k^{\times}$. Since $\partial_x(f) = 0$ one has that $\operatorname{ind}(A)$ divides

$$v_x(f)$$
 for all $x \in X$. Hence $\prod_{x \in X} x^{v_x(f)} \in \operatorname{Nrd}(A_{k(t)}^{\times})$. Thus $f \in \operatorname{im}(\iota)$.

To end the proof, we give a section to $\oplus \partial_x$. This will show surjectivity as well. We let $s: \bigoplus_{x \in X} \mathbb{Z}/\mathrm{ind}(A)\mathbb{Z} \longrightarrow H^1(k(t), \mathbf{SL}_1(A))$ defined by sending the element

$$([n_x])_{x\in X}$$
 to the class of $\prod_{x\in X} x^{n_x}$ in $k(t)^{\times}/\mathrm{Nrd}(A_{k(t)}^{\times})$. This clearly gives the desired section.

COROLLARY 6.4. The following conditions are equivalent:

- i) the algebra A is split,
- ii) the group $H^1(k(t), \mathbf{SL}_1(A))$ is trivial,
- iii) the group $H^1(k(t), \mathbf{SL}_1(A))$ is finite.

ACKNOWLEDGEMENTS

The authors would warmly like to thank Grégory Berhuy and Mohammad Mahmoudi for helpful remarks.

References

- G. Berhuy, G. Favi, Essential dimension: a functorial point of view (after A. Merkurjev). Doc. Math. 8 (2003), 279–330
- [2] J. Buhler, Z. Reichstein, On the essential dimension of a finite group. Comp. Math. ${\bf 106}~(1997),\,159-179$
- [3] P. K. Draxl, Skew Fields. LMS Lecture Note Series $\bf 81$ (1983)
- [4] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions. AMS Coll. Pub. 44 (1998)
- [5] A. Merkurjev, A norm principle for algebraic groups. St. Petersburg Math. J. 7 (1996), No. 2
- [6] A. Merkurjev, Essential dimension. Private notes (1999), Lecture notes (2000)
- [7] Z. Reichstein, On the notion of essential dimension for algebraic groups. Transformation Groups 5, no. 3 (2000), 265–304
- [8] J.-P. Serre, Cohomologie Galoisienne. Cinquième éd. Lecture Notes 5, Springer-Verlag (1997)

Emmanuel Lequeu École Polytéchnique de Lausanne CH-1015 Lausanne, Switzerland emmanuel.lequeu@epfl.ch Giordano Favi University of Basel CH-4051 Basel, Switzerland giordano.favi@unibas.ch