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Abstract

Let F be a field with 2 = 0, W(F) the Witt ring of symmetric bilinear
forms over F' and W, (F) the W (F)-module of quadratic forms over F'.
Let Ir C W(F) be the maximal ideal. We compute explicitly in Iz and
I™Wg4(F) the annihilators of n-fold bilinear and quadratic Pfister forms,
thereby answering positively, in the case 2 = 0, certain conjectures stated
by Kriiskemper in [Kr].

1 Introduction

Let F be a field with 2 = 0. We denote by W (F') the Witt ring of symmetric
non singular bilinear forms over F' and by Wy(F) the W(F)-module of non
singular quadratic forms over F (see [Sal, [Ba-1], [Ba-2]).

For a; € F* = F —{0} ,1 < i < n, we denote by (a1,...,a,) the
bilinear form with diagonal Gramm matrix and entries a; on the diagonal.
The quadratic form x? +zy+ay?, a € F , is denoted by [1,a]. The maximal
ideal Ir of W(F) is additively generated by the forms (1,a) =< a >,
a € F* , so that the powers I, n > 1, are additively generated by the
n-fold bilinear forms < ai,...,a, >= (1l,a1) ---(1,a,), a; € F*. The
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submodules I"W,(F), n > 1, are generated by the n-fold quadratic Pfister
forms < ai,...,an;a0l] =< ay,...,a, > [l,a], a; € F*, a € F.
We have the filtrations W(F) D Ip D 12 D -+ and Wy (F) D IW,(F) D
--. The graded objects I%/Imt! and I"W,(F)/I"*'W,(F) are denoted by
Ty resp. Tan(F).
In this paper we will study annihilators of n-fold Pfister forms. Let x =<
ai,...,a, > be an n-fold bilinear Pfister form. For any m > 0 we set

annb,, () ={y € Iz’ | zy = 0}
anng,, (z) = {y € I"W,(F) | zy = 0}
annb,, () = {y € I | 2y = 0}

amnq,, (v) = {y € " Wy(F) | 27 = 0}.
If x=<ay,...,an;al] is a quadratic n-fold Pfister form, we set

annb,,(z) = {y € I | yx = 0}

ammib,, () = {7 € Ty | 7z = 0}.
The main results of this paper are contained in the following two theorems.

(1.1) Theorem. (i) Let z =< ai,...,a, > be a bilinear n-fold Pfister
form over F with z #0 in W(F). Then for any m >1

by, () = &by (2) T

-m—1

annq,, (r) = I - annqy(z) 4+ ammby (z)1 " W,(F)

(ii) Let =< ay,...,a,;0a|] be a quadratic n-fold Pfister form over F
with 2 #0 in Wy(F). Thenfor m>1

aftiib,, (¢) = &by ()T

and the much stronger

(1.2) Theorem. (i) Let x =< aj,...,a, > be a bilinear n-fold Pfister
form over F with  #0 in W(F). Then for any m > 1

annb,, (z) = annby (z) I~

anng,, (z) = I - annqgy(x) + annby ()™ W, (F)



(i) Let = =< ay,...,an;al] be a quadratic n-fold Pfister form over F
with ¢ #0 in W,(F). Then for m > 1

annb,, (z) = annby (z) I~

These results were conjectured by M. Kriiskemper in [Kr] for fields of char-
acteristic different from 2. The proof of theorem (1.1) will be given in section
4 and it is based on Kato’s correspondence between quadratic or symmetric
bilinear forms and differential forms over F. We will shortly explain this corre-
spondence en section 3 (see [Ka|, [Ba-2]) and prove there some technical results
needed in the proof of (1.1). In section 2 we show that theorem (1.2) follows
from theorem (1.1).

The terminology used in this paper is standard and we refer to [Ba-2], [Mi]
and [Sa] for details on basic facts needed in the paper. In any case let us
mention that for ai,...,a, € F* the form <« ai,...,a, > is anisotropic
over F if and only if ai,...,a, are part of a 2-basis of F and the
subfield F?(ai,...,a,) of F consists of all elements of F represented by
the form < ai,...,a, >. The elements of F represented by the pure
part < ai,...,a, >’ of < ai,...,a, > form a subgroup denoted by
F?(ai,...,a,)". Recall that < ay,...,a, > is defined by < ay,...,a, >=<
1>1l<ay,... a, >,

2 Proof of theorem (1.2)

We will assume theorem (1.1) and derive from it theorem (1.2). Recall that a
2-basis of a field F of characteristic 2 is a set B={b; | i € I} C F such that
the elements [] 65", &; € {0,1} and only finitely many e; # 0, form a basis

iel
of F over F?2. An n-fold bilinear Pfister form < aq,...,a, > over F is
#0 in W(F) if and only if {ai,...,a,} are part of a 2-basis of F (i.e.
2-independent). Moreover if F has a finite 2-basis {b1,...,bx} then I =0
forall m > N +1 (see [Mi]).

We will need the following

(2.1) Lemma. (i) Let z be an n-fold bilinear Pfister form, z # 0, and
z € Ir such that zz € I;i“, i.e. z € anmby(x). Then

Z=2zpt+w
with 20 € I, 2oz =0 and w € I%.
(ii) Let x be an n-fold bilinear Pfister form, x # 0, and z € W (F')
with zz € I""'W,(F). Then

Z=2zpt+w

with zg € Wy(F), 220 =0 and w € IW,(F).



Proof: (i) For any z € Ir we can write z =< 1,d > +w with d = det(z)
and w € I%. Then zz € I}ﬁ“ implies < 1,d > z € I;H'Q, and since < 1,d > x is
(n + 1)-fold Pfister form, it follows < 1,d > x =0 in W (F').

(ii) Any z € W,(F) can be written as

z=[1,d+w

with d = Arf(z) € F and w € IW,(F) (see[Sa]). From zz, zw € "MW, (F),
it follows z[1,d] € I""'W,(F) and hence z[1,d]=0. O

Let us now prove (1.2). We assume first that F has a finite 2-basis, i.e.
INTY =0 for some integer N. Let x#0 (in W(F)) be an n-fold bilinear
Pfister form. The contentions O in (i) (and (ii)) are obvious. Let y €
annb,,(z), ie. y € IP, yr =0. Hence § € anmb,,(x) and (1.1) implies
y =Y ZY;o with Z; € amnby(z), wio € It Then y— >z € It
Using (2.1) (i) we can write z; = 2;0+w; with 2;9 € annby(x) and w; € I%.
Then y1 =y —Y zi¥yio € I}"H and moreover y;x = 0. The same argument
implies y1 — > zi1yi1 € I},”+2 with elements z;; € annbs(x), yi1 € IF.
Iterating this process we obtain, for any &k > 0, elements z;; € annb;(x)
and y;; € I}?Hfa 0 <1<k suchthat y— ZZ—J ZiaYil € I}’;‘Jrk. Choosing
k> N+1—m weobtain y= Ei’l Zi1Yi,1 € annby (36)]};"717 since IVt =.

Let now y € anng,,(z), i.e. y € I"™W,(F) with zy =0. Theorem (1.1)
implies 7 = Y%z + Y. w;0; with 7 € I, % € annqo(r), w; € anab, (z),
T; € TmflVVq(F). Hence y— Y yizi — > ujvj; € I™MW,(F). Using lemma
(2.1) we can find z 0 € annqgg(x), ujo € annby(x) such that z, = 2,0 + w;,
w; € IWq(F) and u; = Uj.0 +tj, tj S IIQ; ‘We obtain

Yy =Yy — Zyizi’o — Z'U/j,ovj € Ierqu(F)

with y1x = 0. Iterating this procedure we obtain after k> N 4+ 1 —m steps
that
y € Iannqq(z) + annby (2)I™ W, (F).

The proof of part (i) of (1.2) is similar and we omit the details. Thus
we have proved (1.2) in the case IV*! =0 for some N. Let us now consider
the general case.

Let B be a 2-basis of F', z a bilinear n-fold Pfister form over F, x # 0
in W(F). Take y € annb,,(x), ie. y € I¥ with yx = 0. This relation
involves only finitely many elements {a1,...,any} C B of the 2-basis. We
define Fy = F%(ay,...,anx) C F. Then there exist an n-fold bilinear Pfister
form zy over Fy and yg € I;’% such that * =20 ® F, y =yo® F and
yoro =0 in W(Fp). From the first part of the proof of (1.2) we obtain gy €
annbl(aso)lgé_l and hence y € annb; (z)I~". The same argument applies for
the other assertions in (1.2) and this concludes the proof of theorem (1.2). O



(2.2) Remark. If z is a bilinear n-fold Pfister form over F, then one can
describe explicitely the annihilators annb,(x) C W(F) and annqo(z) C Wy (F)
as follows

(2.3) annby(2) = 3 4ep ) W) (1,d)
(2.4) anndy(z) = 34 p,. ) WE)[L, d].

Here Dp(z) denotes the set in F of elements represented by the form z.
The result (2.3) is shown in [Ho] and (2.4) in [Ba-Kn]. If z denotes now a
quadratic n-fold Pfister form over F, z# 0 in W,(F), then (see [Kn])

(2.5) annby () = X ye py (o W(F) (1,d).

In section 4 we will give an independent proof of these facts based on Kato’s
correspondence (see 3.3) and on the arguments used in this section.

3 Quadratic, symmetric bilinear and differential
forms

In this section we will briefly describe Kato’s correspondence between quadratic,
bilinear and differential forms over a field F' with 2 = 0 and prove a technical
result needed in the proof of theorem (1.1) (see [Kal, [Ba-2], [A-Bal]).

Let QL = FdF bethe F-space of 1-differential forms generated over F
by the symbols da, a € F, with d(a+b) =da+db, d(ab) =adb+bda.

For any n > 1 set Q% = AQL andlet d:Qp — Q%M be the differential
operator d(xdxzy A---Adz,) =dzAdxy A--- Adx,, where A denotes
exterior multiplication.

Let o : Qp — Q/dQ% " be the Artin-Schreier operator defined on
generators by

d dz, d dz, _
p(wﬂ/\-"/\ x):<x2—x)i/\--~/\ z moddQ}?l

Z1 Lp Z1 Tn

and denote by vp(n) its kernel and by H"™™'(F) its cokernel (see loc. cit.).
In [Ka] it is shown that there are natural isomorphisms o : vgp(n) ~ 1 " and
B : H"WY(F) ~ T'W,(F) given on generators by a(% A A %) =<

T1yeen s Ty > modI;},+1 and B(m%/\n-/\%) =<K Z1,...,Tp;x|] mod

I"P'W,(F). The fact that vg(n) is additively generated by the pure loga-
rithmic forms % AR % follows from a result of Kato which we explain
now. Let us fix a 2-basis B of F, B = {b;|i € I}, and endow I with a total
ordering. For any j € I, let Fj, resp. Fj, be the subfields of F generated
over F? by b;, i <j, resp. b;, i <j. Forany n>1 let ¥, be the set




of maps a:{1,...,n} — I such that a(i) < a(j) whenever 1<i < j<n,
and endow X, Wlth the lexicographic ordering.

We obtain a filtration of Q7 given by the subspaces QF% ,, resp. Q% _,,

b :
which are generated by the elements %2 = 4tsm A A 400 ity g < o
bs bs) bsn)

resp. f < a. An important result of Kato named here as Kato’s lemma, asserts
that for any a € 3, ye F, if ¢ ( ) €%, —|—dQ?§1, then there exist
v e QL _, and a,EF(),1<i<n such that ybiaa:v+%/\ /\da"

(see [Ka]). This implies that any u € Q% , satisfying p(a) € dQy ! can be
written as

_ day@w Ao A daym)
(3.1) U*nyga aj(l) Ao N —2

Ay (n)

with a,) € Fy)\F<qy@). Then the following result will be used in section 4
during the proof of theorem (1.1).

(3.2) Lemma. Let B={b;|i €I} bea 2-basisof F with a given ordering

on I. Let a€X, and } ., ¢y dbb be a differential form with ¢, # 0

such that Z’y<o¢ Cy dbb” € dQ’Iffl . Then there exist elements M; € F.q),
1 <i<mn, such that

Ca = ba(l)Ml +oo ba(n)Mn

Proof: Let k €I be the index with ¢, € Fi\F<i. We claim that k= a(i)
for some 1 < ¢ < n. Otherwise we have k > a(n) or k < a(l) or
a(j) <k < a(j+1) for some 1 < j <n. From the choice of k we have
Ca =bpyA+ B with A/B€ F.r, A#0. Then

db

dt = (byA+ B) —+Z ey

<o
and applying the differential operator to this form, we get

db, dby db, dA db, dB db do;
bpA—2 N —2 4 bkA—/\—+B—/\—+ZZbD P b

ba b ba A =0

y<a el

where D;(c,) is the derivative of ¢, with respect to b; (see [A-Ba]). Looking
at the coefficient of 9ba A % we obtain

ba
bkA = Z bi Di (ny)
(a,k)=(:,2)

where (a, k) resp. (7;,4) denotes the unique A € 3,11 with Im(\) =Im(a)U
{k} resp. Im(A\) =Im(y;) U{i}. Since for those i we have i >k, A€ Fey
and D;(D;(cy,)) =0, we conclude A =0, which is a contradiction. Thus
k= a(i) for some 1<i<n.



Let ¢, = ba(z)M7 + B with M,;, B € F<a(i)~ Then

db db
y<a '7
But
dba dbo‘ dba i dba n
ba(i)Mi—— = ba(i) M W A A 2@ A A ()
ba ba(l) ba(z) ba(n)
dba dba-1) , dbags dban
= d(ba(i)M;) A W AA (=1 A D) A p =22
ba(l) ba(ifl) ba(iJrl) ba(n)
dbaq) d M; dban)
+b(¥’LM’L Nee o AN——— A A
D baq) M, Deri)
/ a(l) dba(b 1) A dbagit1) dba(n)
so that replacing ¢ by = t+b0‘(1)M1 b ANA ba(i-1) A ba(i+1) A ba(n)

and since ba(z)Ml dPaq) p LA A2 A /\ dba) ~ n

we get
ba(n) ba(n) <a? &

dt =B

y<a

with certain C{Y € F' and B € F,(;). We proceed again as before with B

instead of ¢, and the lemma follows by induction. [J
An immediate generalization of (3.2) is

(3.3) Proposition. Let

ch = d(t) + p(w)

y<a

with ¢q # 0, where B = {b;|i € I} is a given 2-basis of F' (and a fixed
ordering in I ) and t € Q’Iffl, w € Q%. Then there exist elements u € F,
M; € Fequy, 1<1i<mn, such that

Ca = U+ boyM1 + -+ + ba(n) M,

4 Annihilators of differential forms in vp(m) and
Hm+1 (F)
The groups vg(m) act on the groups H"T(F) through exterior multiplication

A:vp(m) x H"WH(F) — H™H(F)

A:vep(m) X vp(n) — vep(m+n)



and we can define for any z € vp(n) the annihilators

annb,,(z) ={y € vp(m) |2y =0 in vp(m+n)}

annq,,(z) = {y € H™"(F)|zy =0 in H"tT™(F)}.
Also if € H"M(F), we define
annb,,(z) = {y €vp(m)|yz =0 in H"TTH(F)}L

Through Kato’s isomorphisms (see § 3) these annihilators are isomorphic to
the corresponding graded annihilators of bilinear and quadratic forms, namely,
if xevp(n)

« : annb,, (z) ~ annb,, (a(z))

B : anng,, (z) ~ amq,, (a(z))
and if z € H""L(F),

a : annb,, (z) ~ annb,, (3(z)).
Thus, theorem (1.1) is equivalent to the following

(4.1) Theorem. (i) Let z = % AR % € vrp(n) be a pure logarithmic
differential form, z # 0. Then for any m > 1

annb,, (z) = annby () A vp(m — 1)

anng,, (z) = vp(m) A annqy(x) + annby (z) A H™(F).

(i) If x:a%/\uo/\%;éo in H""(F), then in vp(m)

annb,, (z) = annby () A vp(m — 1).

Proof: Let B ={b;|i € I} bea 2-basis of F' such that ay,...,a, € B are
the first elements in some ordering of I. Let y €annb,,(z). Using Kato’s
lemma we can write

y=3 ¢ doyw ) d8ym)
" ay Gry(m)
~ES, ¥ y(m

with ay;y € Fyi)\F<qy), €4 € {0,1}. Let a € ¥, be maximal with e, # 0.

Then
dag

y= mod QF _,.

(42



The assumption zy =0 means
da da da da da da
(—1/\--~/\ ”)A “+( — A /\—”)AE e —2L = 0.
ai Qp Aq a a a

Assume first «(1) > n and define § = (1,...,n,a(1),...,a(m)) € Xpim. It
follows 6 > (1,...,n,7) forall v € X,, with v < «. From the last relation
we conclude

day A---ANday Adagay A+ Adagm) =0

which is a contradiction to the fact that ai,...,an,a001), -, 0a@m) are 2-
independent Thus we have «(1) <n, and this implies x A daa‘:s) =0, ie.
2o ¢ annby (z). Hence y— da“ € annb,, (z) and moreover y— da" €ENF o

Ga (1)
Proceeding by induction on « we get the first assertion in (i ).

Take now ¥ € anng,,(z) C HmH(F). Then

Y= Z 07 mod pQF +dQp~!
YEX m

with z Ay € pQ}”” + dQ’}””*l, ie.

da1 da,  db, man mn—1
(42 > e— NN M € pQET dQptrT
YEXm

(Here the elements b,y belong to B). Let a € X,, be maximal with

db, db, db,
ca #0. If (1) <n, then u“) € annby (z) and cadbl;“ = ﬁ/\caﬁ/\
db

A G € annby (z) A H™(F), and y — ca 92> € QF _,. Hence we may

a(m)

proceed by induction on «. Thus we can assume «(1) > n and we define
0=(1,...,n,a(l),...,a(m)) € Zp1m. Weseein (4.2) that ¢ is the maximal
multi-index with coefficient ¢, # 0. Using now proposition (3.3), we conclude
from (4.2) that

Co = p(u) + Eq
with Eo = Y0 aiM; + 30 ba(j)Ma(j) and My, € Fcp.  Here we have
chosen the ordering of B such that aq,...,a, are the first elements.

Inserting c, in y we get

d b,
Y=cap— mod pQF +d Q! +QF

[0

I n m dba

y= o)+ aiMi+ Y baGyMag) | 5
L i=1 j=1 «
db

Yy = Zaz i Zba(J b—aa




Since My € F.j, we have aiMi% € vrp(m)A annqo(x) because aiMi% A
i
N % =d aiMi% Acee Ao A %) e dQ;é_1 implies a;M; € annqo(x)

(Flve have used d M;Az = 0). The same argument shows, since M, ;) € Fcqa(j),
that

dbaj) d M,
ba( Mt 5~ = d (ba)Ma() + bat)y Ma( 7
a(j)

e dF + Q%
a(j)

and hence
e d b, .
Zba(])Ma(]) b EdQ 1 +QF<&
j=1
Thus we have
y=vy +2z mod pQF +dQp !

with 3 € QR _,, ¥’ € annqm( ) and z € vp(m)A annqo(x). Applying now
the above procedure to 3’ we get our second assertion by induction on a.
This proves (1 ).

(ii) Let = = ad"1 ARERWA da" € H""(F) be a pure element, = # 0.
We fix as before a 2-basis B = {b |i € I} of F suchthat ay,...,a, are
the first elements in B in some ordering of I. Let y € annb,,(z) C vp(m).

From Kato’s lemma we have y = Zvezm En/daﬂ with e, € {0,1} and
ayi) € Fyi)\Feyy, 1 <0< m. We write

da, dav
=D 5 e T D e

YEXmM YESIm
y(1)<n Yy(1)>n

For v € ¥, with ~(1) < n we have dai” € annb;(z) since a,q) €
F, = F%(ay,...,a,) and hence the first summand in this decomposition is in

annby (z) A vp(m — 1).  Thus the second summand is in annb,,(z) and we
can assume y = > v £y daa” with all 4 such that ~(1) > n. Let «
be maximal in this sum with e, # 0. We can replace B by a new 2-basis
B' = {c;|i € I} such that c,() = an@), 1 <j<m and ¢; = b; for all
i ¢ {a(l),...,a(m)}. Let 6 =(1,...,n,a(1),...,a(m)) € E,tm. Hence

d
0=yAr=a" mod O +AF + O
s

Then proposition (3.3) implies

+ Y M+ Y cagyMag
i=1 j=1

10



with My € Fep. Let s € {1,...,m} be maximal with M, # 0 and
set Q = a+put I M ie Q=3 cayMay. Then cq) =

Moj(ls) (Q + Zj;i ca(j)Ma(j)). Inserting in y we get modulo vg <o(m)

dOt dOéS dam
_deq o deay o dam

mod Vg <q(m)

Ca(1) Ca(s) Ca(m)

—1 s—1
de d My (Q + 2_j=1 Cal '>Ma<'>) dcoim
_deq o, _1<> IO g Lot
Ca(1) M (Q +2051 Cao)Ma(j)) Co(m)

s—1 :
(Ca(yMaq)) Q + Y2521 CatyMags) Ca(m)

Here we have inserted M, ;) whenever it is # 0, without altering the con-

s—1
_ d (Ca(l)Ma(l)) A d (Q + ijl Ca(j)Ma(j)) Aen d ca(m)

gruence modulo Vg <o(m). Use now the relation 92 A 4P = d(aabb) A d(aa_:;b) to
conclude
s—1
d (o M, d<Q+Z»:1 Ca(‘)Ma(')) deoyim
y= ( 1) (1))/\'”/\ Sj_l ! ! Ao A —2m) mod vp <q(m)
() Maq)) Q+ X521 caty Mag) Ca(m)
d d de
Ei/\.../\_Q/\.../\ a(m)
fl Q Ca(m)
with certain fi,..., fs_1 € F. Since % € annby (z) (we can assume a € F?
without restriction), we get %/M A %/\- A % € annby () Ave(m—1).

Thus we have shown y € annby(z) Ave(m — 1) + vp<o(m). We apply now
induction on « to conclude the proof of (ii). O

Let us briefly compute the annihilators annb;(z) and annqg(z) for x =
da—T/\~-~/\da;‘L" € vp(n) and annb;(z) for x:a% ARERWA % € H"Y(F).

(4.3) Proposition. (i) Let 2= 9% A... A % € vp(n), = #0. Then

ai

annby (z) = {% |z € Fz(al,...,an)*}

annqy(z) = {Z € F/pF |z € F*(ay,...,a,)'}

' are the pure elements in F2(ay,...,a,) (notice that

where F2(ay,...,an,)
HY(F) = F/pF).

(ii) Let x:a%/w-#\%eH"*l(F), x # 0. Then

dz

annby (z) = {z |2 € Dp(< ay,...,an; H)*}

11



where Dp(q) denotes the elements represented in F' by the quadratic form g.

P;lroof: (i) Let = dﬂ—?/&--/\% #0 in vp(n). If 42 € annby (z) C vp(1),
then

da1 A dan A % _ 0
ay an z
in vp(n + 1), which means that aq,...,a,,2z are 2-dependent, and since
ai,...,a, are 2-independent, this means z € F?(ay,...,a,)* (which is the
set in F* of elements represented by the n-fold Pfister form < aq,...,a, >).
Let now y € HY(F) = F/pF bein annqg(z). Then yd‘“ - A ‘%1" =0
in H""1(F), and this means
da da
Y— A - /\—e PO+ d Ot
ai an
Taking a 2-basis of F' so that aj,...,a, are the first elements of it (in some

ordering), we conclude from proposition (3.3)
y=pu+b

with u € F and b€ F?(a,...,a,)". This proves (i).
(i) Let = a%@tn-nds ¢ gril(F) 2 # 0 and take 92 €

a

annb; () C vp(1). This means

da da dz
a— A N2 A= € O 4 d Q.
a1 an z
If da—‘il AN NS A dz—z = 0, then we get as before z € F?(ay,...,a,)* C
Dp(< ai,...,an;[])*.  Assume 49 A... A d% Adz o200 Then we can
assume that aq,...,a,,z are the ﬁrst elements of some 2-basis of F (in

some ordering), and applying now proposition (3.3) we obtain a = pu + b
with b€ F?(ay,...,a,,2)", ie. b=z-h+g with he Fz(al,...,an)* and
g€ F?(ay,...,a,)".

Thus 2 = h™! (pu+a+g) € Dp(<K ay,...,an;|])*. This proves (ii ). O

The isomorphisms vg(m) ~ Tp and H™TY(F) ~T W,(F) enable us to
translate this result into the language of bilinear and quadratic forms.

Let x =< ay,...,a, > be a bilinear anisotropic n-fold Pfister form. Then
we have

annby (x {<<Z>>|Z€DF()}

annq (z {ZEF/@F‘ZEDF( )}

where we identify TOWQ(F ) with F/pF through the Arf-invariant.
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If © =< ay,...,a,;al|] is a quadratic anisotropic n-fold Pfister form, then
annby (z) = {<z >z € Dp (z)"}

Now the technique used in section 2 enables us to compute the full an-
nihilators annbs(x), annqo(z) if =z =< a1,...,a, > and annb;(z) if
r =< ai,...,an;al], thereby obtaining the results (2.3), (2.4) and (2.5).
Let us prove for example (2.3) (the others cases are left as exercises). Let
x =<K ay,...,a, > and take y € annbj(x) C Ir. Then y € annb;(x)
and hence J = € z> for some 2z € Dp(z)". Thus y— < z >€ I?
and (y— < z>)r =0 le. y— < z>€ annby(x) = annby(z) - Ir. Write
y— < z>= > yv; with y; € annby(z), v; € Ip. Then y,— < 2; >€ I%
for some z; € Dp ()" and hence

Y- <z> =Y <Lz >v; € If.
Iterating this procedure and assuming I ' =0 for some N, we get (2.3).
The general case can be reduced to the assumption g 1 =0 using the trick
of section 2. This proves (2.3). The same argument applies for (2.4) and (2.5).

Thus we have a complete description of the annihilators of Pfister forms over a
field F with 2=0.
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