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Noncommutative localization

• Given a ring A and a set Σ of elements,
matrices, morphisms, . . . , it is possible to
construct a new ring Σ−1A, the localiza-
tion of A inverting all the elements in Σ.
In general, A and Σ−1A are noncommuta-
tive.

• Original algebraic motivation: construction
of noncommutative analogues of the
classical localization

A = integral domain ↪→ Σ−1A = fraction field

with Σ = A− {0} ⊂ A .

Ore (1933), Cohn (1970), Bergman (1974),
Schofield (1985).

• Topological applications use the algebraic
K- and L-theory of A and Σ−1A, with A a
group ring or a triangular matrix ring.
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Ore localization

• The Ore localization Σ−1A is defined for a
multiplicatively closed subset Σ ⊂ A with
1 ∈ Σ, and such that for all a ∈ A, s ∈ Σ
there exist b ∈ A, t ∈ Σ with ta = bs ∈ A.

• E.g. central, sa = as for all a ∈ A, s ∈ Σ.

• The Ore localization is the ring of fractions

Σ−1A = (Σ×A)/∼ ,

(s, a) ∼ (t, b) iff there exist u, v ∈ A with

us = vt ∈ Σ , ua = vb ∈ A .

• An element of Σ−1A is a noncommutative
fraction

s−1a = equivalence class of (s, a) ∈ Σ−1A

with addition and multiplication more or
less as usual.
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Ore localization is flat

• An Ore localization Σ−1A is a flat

A-module, i.e. the functor

{A-modules} −→ {Σ−1A-modules} ;

M 7→ Σ−1A⊗A M = Σ−1M

is exact.

• For an Ore localization Σ−1A and any A-

module M

TorAi (Σ−1A, M) = 0 (i > 1) .

• For an Ore localization Σ−1A and any A-

module chain complex C

H∗(Σ−1C) = Σ−1H∗(C) .

4



The universal localization of P.M.Cohn

• A = ring, Σ = a set of morphisms
s : P → Q of f.g. projective A-modules.
A ring morphism A → B is Σ-inverting if
each 1⊗ s : B ⊗A P → B ⊗A Q (s ∈ Σ) is a
B-module isomorphism.

• The universal localization Σ−1A is a ring
with a Σ-inverting morphism A → Σ−1A
such that any Σ-inverting morphism A → B
has a unique factorization A → Σ−1A → B.

• The universal localization Σ−1A exists (and
it is unique); but it could be 0 – e.g if
0 ∈ Σ.

• In general, Σ−1A is not a flat A-module.
Σ−1A is a flat A-module if and only if Σ−1A
is an Ore localization (Beachy, Teichner,
2003).
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The normal form (I)

• (Gerasimov, Malcolmson, 1981) Assume Σ
consists of all the morphisms s : P → Q of
f.g. projective A-modules such that
1 ⊗ s : Σ−1P → Σ−1Q is a Σ−1A-module
isomorphism. (Can enlarge any Σ to have
this property). Then every element
x ∈ Σ−1A is of the form x = fs−1g for some
(s : P → Q) ∈ Σ, f : P → A, g : A → Q.

• For f.g. projective A-modules M, N every
Σ−1A-module morphism x : Σ−1M → Σ−1N
is of the form x = fs−1g for some
(s : P → Q) ∈ Σ, f : P → N , g : M → Q.

M
g

%%JJJJJJJJJJJ P
s

zzuuuuuuuuuuu f
$$IIIIIIIIIII

Q N
Addition by

fs−1g + f ′s′−1g′ = (f ⊕ f ′)(s⊕ s′)−1(g ⊕ g′)

: Σ−1M → Σ−1N
Similarly for composition.
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The normal form (II)

• For f.g. projective M, N, a Σ−1A-module
morphism fs−1g : Σ−1M → Σ−1N is such
that fs−1g = 0 if and only if there is a com-
mutative diagram of A-module morphisms

P ⊕ P1 ⊕ P2 ⊕M




s 0 0 g
0 s1 0 0
0 0 s2 g2
f f1 0 0




//

(
p p1 p2 m

)
$$HHHHHHHHHHHHHHHHHHHHHHHHH

Q⊕Q1 ⊕Q2 ⊕N

L

(
q q1 q2 n

)T

::vvvvvvvvvvvvvvvvvvvvvvvvv

with s, s1, s2,
(
p p1 p2

)
,
(
q q1 q2

)T ∈ Σ.

(Exercise: diagram =⇒ fs−1g = 0).

• The condition generalizes to express

fs−1g = f ′s′−1g′ : Σ−1M → Σ−1N

in terms of A-module morphisms.
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The K0-K1 localization exact sequence

• Assume each (s : P → Q) ∈ Σ is injective
and A → Σ−1A is injective. The torsion ex-
act category T (A,Σ) has objects A-modules
T with Σ−1T = 0, hom.dim. (T ) = 1.
E.g., T = coker(s) for s ∈ Σ.

• Theorem (Bass, 1968 for central, Schofield,
1985 for universal Σ−1A). Exact sequence

K1(A) → K1(Σ
−1A) ∂ //

K0(T (A,Σ)) → K0(A) → K0(Σ
−1A) with

∂
(
τ(fs−1g : Σ−1M → Σ−1N)

)

=
[
coker(

(
f 0
s g

)
: P ⊕M → N ⊕Q)

]

−
[
coker(s : P → Q)

]
(M, N based f.g. free).

• Theorem (Quillen, 1972, Grayson, 1980)
Higher K-theory localization exact sequence
for Ore localization Σ−1A, by flatness.
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Universal localization is not flat

• In general, if M is an A-module and C is

an A-module chain complex

TorA∗ (Σ−1A, M) 6= 0 ,

H∗(Σ−1C) 6= Σ−1H∗(C) .

True for Ore localization Σ−1A, by flat-

ness.

• Example The universal localization Σ−1A

of A = Z〈x1, x2〉 inverting Σ = {x1} is not

flat. The 1-dimensional f.g. free A-module

chain complex

dC = (x1 x2) : C1 = A⊕A −→ C0 = A

is a resolution of H0(C) = Z and

H1(Σ
−1C) = TorA1 (Σ−1A, H0(C)) = Σ−1A

6= Σ−1H1(C) = 0 .
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The lifting problem for chain complexes

• A lift of a f.g. free Σ−1A-module chain

complex D is a f.g. projective A-module

chain complex C with a chain equivalence

Σ−1C ' D.

• For an Ore localization Σ−1A one can lift

every n-dimensional f.g. free Σ−1A-module

chain complex D, for any n > 0.

• For a universal localization Σ−1A one can

only lift for n 6 2 in general.

• For n > 3 there are lifting obstructions in

TorAi (Σ−1A,Σ−1A) for i > 2.

(TorA1 (Σ−1A,Σ−1A) = 0 always).
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Chain complex lifting

= algebraic transversality

• Typical example: the boundary map in the

Schofield exact sequence

∂ : K1(Σ
−1A) → K0(T (A,Σ)); τ(D) 7→ [C]

sends the Whitehead torsion τ(D) of a con-

tractible based f.g. free Σ−1A-module chain

complex D to class [C] of any f.g. projec-

tive A-module chain complex C such that

Σ−1C ' D.

• “Algebraic and combinatorial codimension

1 transversality”, e-print AT.0308111, Proc.

Cassonfest, Geometry and Topology Mono-

graphs (2004).
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Stable flatness

• A universal localization Σ−1A is stably flat

if

TorAi (Σ−1A,Σ−1A) = 0 (i > 2) .

• For stably flat Σ−1A have stable exactness:

H∗(Σ−1C) = lim−→
B

Σ−1H∗(B)

with maps C → B such that Σ−1C ' Σ−1B.

• Flat =⇒ stably flat. If Σ−1A is flat (i.e. an

Ore localization) then

TorAi (Σ−1A, M) = 0 (i > 1)

for every A-module M . The special case

M = Σ−1A gives that Σ−1A is stably flat.
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A localization which is not stably flat

• Given a ring extension R ⊂ S and an S-
module M let K(M) = ker(S ⊗R M → M).

• Theorem (Neeman, R. and Schofield)
(i) The universal localization of the ring

A =




R 0 0
S R 0
S S R


 = P1 ⊕ P2 ⊕ P3 (columns)

inverting Σ = {P3 ⊂ P2, P2 ⊂ P1} is

Σ−1A = M3(S) .

(ii) If S is a flat R-module then

TorAn−1(Σ
−1A,Σ−1A) = Mn(K

n(S)) (n > 3).

(iii) If R is a field and dimR(S) = d then

Kn(S) = K(K(. . . K(S) . . . )) = R(d−1)nd .

If d > 2, e.g. S = R[x]/(xd), then Σ−1A
is not stably flat. (e-print RA.0205034,
Math. Proc. Camb. Phil. Soc. 2004).
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Theorem of Neeman + R.

If A → Σ−1A is injective and stably flat then :

• ’fibration sequence of exact categories’

T (A,Σ) → P (A) → P (Σ−1A)

with P (A) the category of f.g. projective
A-modules, and every finite f.g. free Σ−1A-
module chain complex can be lifted,

• there are long exact localization sequences

· · · → Kn(A) → Kn(Σ−1A) → Kn−1(T (A,Σ)) → . . .

· · · → Ln(A) → Ln(Σ−1A) → Ln(T (A,Σ)) → . . .

e-print RA.0109118,
Geometry and Topology (2004)

• Quadratic L-theory L∗ sequence obtained
by Vogel (1982) without stable flatness;
symmetric L-theory L∗ needs stable flat-
ness.
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Noncommutative localization in topology

• Applications to spaces X with infinite fun-

damental group π1(X), e.g. amalgamated

free products and HNN extensions.

• The surgery classification of high-dimensional

manifolds and Poincaré complexes, finite

domination, fibre bundles over S1, open

books, circle-valued Morse theory, Morse

theory of closed 1-forms, rational Novikov

homology, codimension 1 and 2 splitting,

homology surgery, knots and links.

• Survey: e-print AT.0303046 (to appear in

the proceedings of the Edinburgh confer-

ence).
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The splitting problem in topology

• A homotopy equivalence h : V → W splits
at a subspace X ⊂ W if the restriction
h| : h−1(X) → X is also a homotopy equiv-
alence. In general homotopy equivalences
do not split, not even up to homotopy.

• For a homotopy equivalence of n-dimensional
manifolds h : V → W and a codimension 1
submanifold X ⊂ W there are algebraic K-
and L-theory obstructions to splitting h at
X up to homotopy. For n > 6 splitting up
to homotopy is possible if and only if these
obstructions are zero.

• For connected X, W and injective π1(X) →
π1(W ) the splitting obstructions can be re-
covered from the algebraic K- and L-theory
exact sequences of appropriate universal lo-
calizations expressing Z[π1(W )] in terms of
Z[π1(X)] and Z[π1(W −X)].
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Generalized free products

Seifert-van Kampen Theorem For any space

W = X × [0,1] ∪X×{0,1} Y

such that W and X are connected the comple-
ment Y has either 1 or 2 components, and the
fundamental group π1(W ) is a generalized free
product :

1. If Y is connected then π1(W ) is an HNN
extension

π1(W ) = π1(Y ) ∗i1,i2 {z}
= π1(Y ) ∗ {z}/{i1(x)z = zi2(x) |x ∈ π1(X)}

with i1, i2 : π1(X) → π1(Y ) induced by the two
inclusions i1, i2 : X → Y .

2. Y is disconnected, Y = Y1 ∪X Y2, then
π1(W ) is an amalgamated free product

π1(W ) = π1(Y1) ∗π1(X) π1(Y2)

with i1 : π1(X) → π1(Y1), i2 : π1(X) → π1(Y2)
induced by the inclusions i1 : X → Y1, i2 : X →
Y2.
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Mayer-Vietoris in homology and K-theory

• Let W = X × [0,1] ∪ Y . Homology groups
fit into the Mayer-Vietoris exact sequence

· · · → Hn(X)
i1 − i2 // Hn(Y )

→ Hn(W ) ∂ // Hn−1(X) → . . . .

• The algebraic K-groups of Z[π1(W )] for
W = X × [0,1] ∪ Y with π1(X) → π1(W )
injective fit into almost-Mayer-Vietoris ex-
act sequence (Waldhausen, 1972)

· · · → Kn(Z[π1(X)])
i1 − i2 // Kn(Z[π1(Y )]) →

Kn(Z[π1(W )]) ∂ // Ñiln−1 ⊕Kn−1(Z[π1(X)]) → . . .

Also L-theory: UNil-groups (Cappell, 1974).

• The almost-Mayer-Vietoris sequences are
the localization exact sequences for the “Mayer-
Vietoris localizations” Σ−1A of triangular
matrix rings A.
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The Seifert-van Kampen localization (I)

• Let W = X × [0,1] ∪ Y . The expression
of π1(W ) as generalized free product mo-
tivates an expression of the k × k matrix
ring of Z[π1(W )] as a universal localization

Mk(Z[π1(W )]) = Σ−1A (k = 2 or 3)

of a triangular matrix ring A.

• If Y is connected take k = 2,

A =

(
Z[π1(X)] 0

Z[π1(Y )]1 ⊕ Z[π1(Y )]2 Z[π1(Y )]

)

(Σ defined in “HNN extensions” below).

• If Y = Y1 ∪ Y2 is disconnected take k = 3,

A =



Z[π1(X)] 0 0
Z[π1(Y1)] Z[π1(Y1)] 0
Z[π1(Y2)] 0 Z[π1(Y2)]




(Σ defined in “Amalgamated free products”).
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The Seifert-van Kampen localization (II)

• A map h : V n → W = X × [0,1] ∪ Y on an
n-manifold V is transverse at X ⊂ W if

Tn−1 = h−1(X) , Un = h−1(Y ) ⊂ V n

are submanifolds, so V = T × [0,1] ∪ U .

• The localization functor

{A-modules} → {Σ−1A-modules} ; M 7→ Σ−1M

is an algebraic analogue of the forgetful
functor

{transverse maps V → W} → {maps V → W} .

• For any map V → W C(Ṽ ) is a Σ−1A-
module chain complex, up to Morita equiv-
alence. For a transverse map h : V =
T × [0,1] ∪ U → W the Mayer-Vietoris pre-
sentation of C(Ṽ ) is an A-module chain
complex Γ with assembly Σ−1Γ = C(Ṽ ).
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Morita theory

• For any ring R and k > 1 let Mk(R) be the

ring of k × k matrices in R.

• Proposition The functors

{R-modules} → {Mk(R)-modules} ;

M 7→




R
R
...
R


⊗R M ,

{Mk(R)-modules} → {R-modules} ;

N 7→ (R R . . . R)⊗Mk(R) N

are inverse equivalences of categories.

• Proposition K∗(Mk(R)) = K∗(R).
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Algebraic K-theory of triangular rings

Given rings A1, A2 and an (A2, A1)-bimodule B
define the triangular matrix ring

A =

(
A1 0
B A2

)

with f.g. projectives P1 =

(
A1
B

)
, P2 =

(
0

A2

)
.

Proposition (i) The category of A-modules is
equivalent to the category of triples

M = (M1, M2, µ : B ⊗A1
M1 → M2)

with Mi Ai-module, µ A2-module morphism.
(ii) K∗(A) = K∗(A1)⊕K∗(A2).
(iii) If A → S is a ring morphism such that there
is an S-module isomorphism S⊗A P1

∼= S⊗A P2
then S = M2(R) with R = EndS(S⊗A P1), and

{A-modules} → {S-modules} ≈ {R-modules};
M 7→ (R R)⊗A M

= coker(R⊗A2
B⊗A1

M1→R⊗A1
M1⊕R⊗A2

M2)

is an assembly map, i.e. local-to-global.
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The stable flatness theorem

• Theorem Let

A =

(
A1 0
B A2

)
→ Σ−1A = M2(R)

with Σ a set of A-module morphisms

s : P2 =

(
0

A2

)
→ P1 =

(
A1
B

)
with R = End(Σ−1Pi)

(i = 1,2). If B and R are flat A1-modules and
R is a flat A2-module then Σ−1A is stably flat.

• Proof The A-module M =

(
R
R

)
has a 1-

dimensional flat A-module resolution

0 →
(
0
B

)
⊗A1

R

→
(

A1
B

)
⊗A1

R⊕
(

0
A2

)
⊗A2

R → M → 0

and hence so does Σ−1A = M ⊕M .

• Remark TorA1 ((0 A2), E) = ker(B⊗A1
R → R),

so in general Σ−1A is not flat.
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HNN extensions

The HNN extension of ring morphisms i1, i2 :
R → S is the ring

S ∗i1,i2 {z} = S ∗ Z/{i1(x)z = zi2(x) |x ∈ R} .

Let Sj = S with (S, R)-bimodule structure

S × Sj ×R → Sj ; (s, t, u) 7→ stij(u) .

The S-vK localization of A =

(
R 0

S1 ⊕ S2 S

)

inverts the inclusions

Σ = {s1, s2 :

(
0
S

)
→

(
R

S1 ⊕ S2

)
}

with Σ−1A = M2(S ∗i1,i2 {z}).

Corollary 1. If i1, i2 : R → S are split injections
and S1, S2 are flat R-modules then A → Σ−1A
is injective and stably flat. The algebraic K-
theory localization exact sequence has

Kn(A) = Kn(R)⊕Kn(S) ,

Kn(Σ−1A) = Kn(S ∗i1,i2 {z}) ,

Kn(T (A,Σ)) = Kn(R)⊕Kn(R)⊕ Ñiln .
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Amalgamated free products

The amalgamated free product S1 ∗R S2 is de-
fined for ring morphisms R → S1, R → S2. The

S-vK localization of A =




R 0 0
S1 S1 0
S2 0 S2


 inverts

the inclusions

Σ = {s1 :




0
S1
0


 →




R
S1
S2


 , s2 :




0
0
S2


 →




R
S1
S2


}

with

Σ−1A = M3(S1 ∗R S2) .

Corollary 2. If R → S1, R → S2 are split in-
jections with S1, S2 flat R-modules then A →
Σ−1A is injective and stably flat. The algebraic
K-theory localization exact sequence has

Kn(A) = Kn(R)⊕Kn(S1)⊕Kn(S2) ,

Kn(Σ−1A) = Kn(S1 ∗R S2) ,

Kn(T (A,Σ)) = Kn(R)⊕Kn(R)⊕ Ñiln .
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The algebraic L-theory of a triangular ring

• If A1, A2, B have involutions then A =

(
A1 0
B A2

)

may not have an involution.

• Involutions on A1, A2 and a symmetric iso-
morphism β : B → HomA2

(B, A2) give a
”chain duality” involution on the derived
category of A-module chain complexes.

• The dual of an A-module M = (M1, M2, µ)
is the A-module chain complex

d = (0, β−1µ∗) :

C1 = (0, M∗
2,0) → C0 = (M∗

1, B ⊗A1
M∗

1,1)

• The quadratic L-groups of A are just the
relative L-groups in the sequence

· · · → Ln(A1) →⊗(B,β) Ln(A2) → Ln(A)

→ Ln−1(A1) → . . . .
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The algebraic L-theory of a

noncommutative localization

• Theorem Let Σ−1A be the localization of

a triangular ring A =

(
A1 0
B A2

)
with chain

duality inverting a set Σ of A-module mor-

phisms s : P1 =

(
0

A2

)
→ P2 =

(
A1
B

)
, so

that

Σ−1A = M2(D)

with D = End(Σ−1P1). If B and D are flat

A1-modules and D is a flat A2-module then

Σ−1A is stably flat,

L∗(Σ−1A) = L∗(D) (Morita)

and there is an exact sequence

· · · → Ln(A) → Ln(D) → Ln(T (A,Σ))

→ Ln−1(A) → . . . .
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The UNil groups are the torsion groups of

a noncommutative localization

• Theorem Let D = S1 ∗R S2 be the amalga-

mated free product of split injections

R → S1, R → S2 of rings with involution,

and let A → Σ−1A = M3(D) be the S-vK

localization. If S1, S2 are flat R-modules

then

Ln(Σ−1A) = Ln(D) = Ln(A)⊕ Ln(T (A,Σ)) ,

Ln(T (A,Σ)) = UNiln(R;S1, S2) .

• Similarly for the UNil-groups of an HNN

extension D = S ∗i1,i2 {z} of split injective

morphisms i1, i2 : R → S of rings with invo-

lution with S1 and S2 flat R-modules, and

the S-vK localization Σ−1A = M2(D).
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A polynomial extension is a
noncommutative localization

• A particularly simple example!

• For any ring R define triangular matrix ring

A =

(
R 0

R⊕R R

)
.

An A-module is a quadruple

M = ( K , L , µ1, µ2 : K → L )

with K, L R-modules and µ1, µ2 R-module mor-
phisms. The localization of A inverting

Σ = {σ1, σ2 :

(
0
R

)
→

(
R

R⊕R

)
}

is a ring morphism

A → Σ−1A = M2(S) , S = R[z, z−1] such that

{A-modules} → {M2(S)-modules} ≈ {S-modules}
sends an A-module M to the assembly S-module

(S S)⊗A M

= coker(µ1 − zµ2 : K[z, z−1] → L[z, z−1]) .
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Manifolds over S1

• Given a map f : V n → S1 on an n-manifold
V which is transverse at {pt.} ⊂ S1 cut V
along the codimension 1 submanifold
Tn−1 = f−1({pt.}) ⊂ V to obtain

V = T × [0,1] ∪T×{0,1} U .

The cobordism (U ;T1, T2) is a fundamental
domain for the infinite cyclic cover V = f∗R
of V , with T1, T2 copies of T .

• A =

(
Z 0

Z⊕ Z Z

)
, Σ−1A = M2(Z[z, z−1]).

The A-module chain complex

Γ = (C(T ), C(U), µ1, µ2 : C(T ) → C(U))

induces the assembly Z[z, z−1]-module chain
complex

(Z[z, z−1] Z[z, z−1])⊗A Γ

= coker(µ1 − zµ2 : C(T )[z, z−1] → C(U)[z, z−1])

= C(V ) .
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