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Noncommutative localization

e Given a ring A and a set > of elements,
matrices, morphisms, ..., it is possible to
construct a new ring 1A, the localiza-
tion of A inverting all the elements in 2.
In general, A and ~~1A are noncommuta-
tive.

e Original algebraic motivation: construction
of noncommutative analogues of the
classical localization
A = integral domain — >~~1A = fraction field
with > =A—- {0} C A .
Ore (1933), Cohn (1970), Bergman (1974),
Schofield (1985).

e Topological applications use the algebraic
K- and L-theory of A and 1A, with A a
group ring or a triangular matrix ring.
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Ore localization

The Ore localization 1A is defined for a
multiplicatively closed subset > C A with
1 € >, and such that for all a € A, s € >
there exist be A, t € > with ta = bs € A.

E.g. central, sa = as for all a € A, s € 2.

The Ore localization is the ring of fractions
S>7lA = (Zx A/~
(s,a) ~ (t,b) iff there exist u,v € A with
us = vteEX , ua = vbe A .

An element of 1A is a noncommutative
fraction

s~la = equivalence class of (s,a) e = 1A

with addition and multiplication more or
less as usual.



Ore localization is flat

An Ore localization 1A is a flat
A-module, i.e. the functor

{A-modules} — {X~1A-modules} ;
M—YXx 1AM = 1M
IS exact.

For an Ore localization 14 and any A-
module M

Tord (=7 1A, M) =0 (i>1).

For an Ore localization X~1A and any A-
module chain complex C

H. (= ') = =7 'H,(O) .



T he universal localization of P.M.Cohn

e A = ring, > = a set of morphisms
s. P— (@ of f.g. projective A-modules.

A ring morphism A — B is >-inverting if

each 1®s: B4 P —-B®4Q (s€X)is a
B-module isomorphism.

e The universal localization 14 is a ring
with a X-inverting morphism A — 14
such that any >-inverting morphism A — B
has a unique factorization A — >~14 — B.

e The universal localization 1A exists (and
it is unique); but it could be 0 — e.g if
0e2.

e In general, 1A is not a flat A-module.
>~1Aisaflat A-moduleifandonlyif=—14
is an Ore localization (Beachy, Teichner,
2003).



The normal form (I)

e (Gerasimov, Malcolmson, 1981) Assume X
consists of all the morphisms s : P — @ of
f.g. projective A-modules such that
1s: X 1p - 19 is a =1 A-module
isomorphism. (Can enlarge any > to have
this property). Then every element
r € X 1Aisofthe form z = fs—1g for some
(s:P—-Q)eX, f:P—A g:A—Q.

e For f.g. projective A-modules M, N every
>—1A-module morphismz : =1 - 1IN
is of the form =z = fs—1g for some
(s:P—-Q)e>X, f:P—N,g: M—Q.

M g S P f
Q N
Addition by
fslg+ s g =(fafsas) Hgad)

i) Mty VAN el .V
Similarly for composition.



The normal form (II)

e For f.g. projective M,N, a X~ 1A-module
morphism fs~1lg : =-1M — =-1N is such
that fs—1g = 0 if and only if there is a com-
mutative diagram of A-module morphisms

s O 0 g

0 s 0 O

O 0 s ¢go

JS /i 0 O
PepPiePoedM QEQILPQRPN

Pplpk/ﬂqgn

with s, s1, s2, p P1 pz q q1 qz Tex
(Exercise: diagram — fs 1y =0).

e [ he condition generalizes to express
fs_lg — f/sl—lg/ : Z_]'M N Z_]'N
in terms of A-module morphisms.



The Kp-K7 localization exact sequence

e Assume each (s: P — @) € X is injective
and A — Y~ 1Aisinjective. The torsion ex-
act category T'(A, X) has objects A-modules
T with ¥~17 =0, hom.dim.(T) = 1.

E.g., T'= coker(s) for s € 3.

e Theorem (Bass, 1968 for central, Schofield,
1985 for universal X1 A4). Exact sequence

K1(A) — K{(Z~14) 9.
Ko(T(A, X)) — Ko(A) — Ko(Z~1A4) with
8(7'(fs_lg 2D iy V/ N Z_lN))

S

— [coker((f 2) PO M — N@Q)}
—[coker(s P — Q)} (M, N based f.g. free).
e Theorem (Quillen, 1972, Grayson, 1980)

Higher K-theory localization exact sequence
for Ore localization 1A, by flatness.
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uUniversal localization is not flat

e In general, if M is an A-module and C is
an A-module chain complex

Tord(=—1A, M) #0 ,
H.(Z o) #="1H,(O) .

True for Ore localization 1A, by flat-
ness.

e Example The universal localization 14
of A = Z{xq1,xp) inverting ~ = {z1} is not
flat. The 1-dimensional f.g. free A-module
chain complex

do = (x120) : C1 = APA—-Cyg = A

is a resolution of Hy(C) = Z and

Hy(Z710) = Tord(=71A,Hp(C)) =14
+~ > 1p(c)=0.



The lifting problem for chain complexes

A lift of a f.g. free —1A-module chain
complex D is a f.g. projective A-module

chain complex C with a chain equivalence
>—1c ~ D.

For an Ore localization 14 one can lift
every n-dimensional f.g. free >—1A-module
chain complex D, for any n > 0.

For a universal localization ¥~ 1A one can
only lift for n < 2 in general.

For n > 3 there are lifting obstructions in
Tord(Z—1A,=—1A) for i > 2.

(Tor{(=—1A,=~1A) = 0 always).
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Chain complex lifting
— algebraic transversality

e [ypical example: the boundary map in the
Schofield exact sequence

0: K1(Z 1A = Ko(T(A,X));: 7(D) — [C]

sends the Whitehead torsion 7(D) of a con-
tractible based f.g. free =1 A-module chain
complex D to class [C] of any f.g. projec-
tive A-module chain complex C such that
>~ 1Cc~D.

e “‘Algebraic and combinatorial codimension
1 transversality” , e-print AT.0308111, Proc.
Cassonfest, Geometry and Topology Mono-
graphs (2004).
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Stable flatnhess

e A universal localization =14 is stably flat
it

Tord (= 1A, =74) =0 (i>2).

e For stably flat X—1A have stable exactness:

Ho(Z7'C) = Iim = 1H«(B)
B

with maps ¢ — Bsuchthat =1 ~>x"1B.

e Flat = stably flat. If Z—1A4 is flat (i.e. an
Ore localization) then

Tord (=" 1A, M) = 0 (i>1)

for every A-module M. The special case
M = >"1A gives that 1A is stably flat.
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A localization which is not stably flat

e Given a ring extension R C S and an S-
module M let K(M) = ker(S®pr M — M).

e Theorem (Neeman, R. and Schofield)
(i) The universal localization of the ring

R 0 O
A=|S R 0| =P ® P> P3 (columns)
S S R

inverting > = {P3 C P, P, C Py} is

1A = M5(S) .
(ii) If S is a flat R-module then
Tord_ (=714, =71A) = Mu(K™(S)) (n > 3).
(iii) If R is a field and dimg(S) = d then
K"(S) = K(K(...K(S)...)) = Rld-D)"d

If d > 2, eg. S = R[z]/(z%), then 14
is not stably flat. (e-print RA.0205034,
Math. Proc. Camb. Phil. Soc. 2004).
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Theorem of Neeman + R.

If A— >~"1A is injective and stably flat then :

e 'fibration sequence of exact categories’
T(A,Y) — P(A) —» P(=714)

with P(A) the category of f.g. projective
A-modules, and every finite f.g. free =1 A-
module chain complex can be lifted,

e there are long exact localization sequences

- — Kn(A) - Kn(Z714) - K,,_1(T(A, X)) — ...

o — Lp(A) - Lp(Z714) 5 Lo(T(A X)) — ...
e-print RA.0109118,
Geometry and Topology (2004)

e Quadratic L-theory Ly sequence obtained
by Vogel (1982) without stable flatness;
symmetric L-theory L* needs stable flat-
ness.
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Noncommutative localization in topology

e Applications to spaces X with infinite fun-
damental group w1(X), e.g. amalgamated
free products and HN N extensions.

e [ he surgery classification of high-dimensional
manifolds and Poincaré complexes, finite
domination, fibre bundles over S, open
books, circle-valued Morse theory, Morse
theory of closed 1-forms, rational Novikov
homology, codimension 1 and 2 splitting,
homology surgery, knots and links.

e Survey: e-print AT.0303046 (to appear in
the proceedings of the Edinburgh confer-
ence).
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T he splitting problem in topology

e A homotopy equivalence h : V — W splits
at a subspace X C W if the restriction
h|: h~1(X) — X is also a homotopy equiv-
alence. In general homotopy equivalences
do not split, not even up to homotopy.

e For a homotopy equivalence of n-dimensional
manifolds A : V — W and a codimension 1
submanifold X C W there are algebraic K-
and L-theory obstructions to splitting h at
X up to homotopy. For n > 6 splitting up
to homotopy is possible if and only if these
obstructions are zero.

e For connected X, W and injective m1(X) —
w1 (W) the splitting obstructions can be re-
covered from the algebraic K- and L-theory
exact sequences of appropriate universal lo-
calizations expressing Z[w1(W)] in terms of
Z|m1(X)] and Z[r1 (W — X)].
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Generalized free products

Seifert-van Kampen Theorem For any space

W = X X [O, 1] UXX{O,].}Y

such that W and X are connected the comple-
ment Y has either 1 or 2 components, and the
fundamental group 71 (W) is a generalized free
product :

1. If Y is connected then w1 (W) is an HNN
extension

(W) = m(Y) %4, {2}

= m1(Y) x{z}/{i1(z)z = zi2(z) [z € 71 (X)}
with i1,75 : m1(X) — m1(Y) induced by the two
inclusions i1, : X — Y.

2. Y is disconnected, Y = Y7 Ux Y5, then
w1 (W) is an amalgamated free product

T (W) = m (Y1) *,,(x) 71(¥Y2)
with i1 : m(X) — m1(Y7), 1o : m1(X) — 71(Y5)
induced by the inclusions iy : X — Y7, 10 : X —
Yo.
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Mayer-Vietoris in homology and K-theory

o Let W =X x[0,1]UY. Homology groups
fit into the Mayer-Vietoris exact sequence

C Hp(X) T2 gy
S Hy (W) 9 H, (X)) — ... .
e The algebraic K-groups of Z[r1(W)] for
W = X x[0,1]UY with 71(X) — w1 (W)

injective fit into almost-Mayer-Vietoris ex-
act sequence (Waldhausen, 1972)

- — Knp(Z[m1(X)]) =2 Kn(Z[m(Y)]) —

Kn(Zr1(W)]) 2 Nily_1 & Kp_1(Z[r1(X)]) — ...
Also L-theory: UNil-groups (Cappell, 1974).

e [ he almost-Mayer-Vietoris sequences are
the localization exact sequences for the “Mayer-
Vietoris localizations” ~~1A of triangular
matrix rings A.
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The Seifert-van Kampen localization (I)

o Let W = X x [0,1]UY. The expression
of m1(W') as generalized free product mo-
tivates an expression of the k x k matrix
ring of Z[m1(W)] as a universal localization

M (Z[mi(W)]) = =14 (k=2 or 3)
of a triangular matrix ring A.

e If Y is connected take kK = 2,

4 — ( Z[r1(X)] 0 )
LT (Y)]1 @ Z[m1(Y)]2 Z[r1(Y)]

(X defined in “HNN extensions” below).

o If Y =Y, UY5 is disconnected take k£ = 3,

Zmq1(X)] 0 0
A= |Z[r1(Y1)] Z[r1(Y71)] 0
Ll (Y2)] 0 Ll (Y2)]

(X defined in “Amalgamated free products”).
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The Seifert-van Kampen localization (II)

e Amap h: V" - W =X x [0,1]UY on an
n-manifold V is transverse at X Cc W if

™ l=hr"HX), U" = YY) V"
are submanifolds, so V=T x [0,1]UU.

e [ he localization functor
{A-modules} — {Z~"1A-modules}; M — =~ 1M

IS an algebraic analogue of the forgetful
functor

{transverse maps V — W} — {maps V — W}.

e For any map V. — W C(V) is a ~ 1A-
module chain complex, up to Morita equiv-
alence. For a transverse map h : V =
T x [0,1]UU — W the Mayer-Vietoris pre-
sentation of C(V) is an A-module chain
complex ™ with assembly =~ = C(V).
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Morita theory

e For any ring Rand k> 1 let M (R) be the
ring of k x kK matrices in R.

e Proposition The functors

{R-modules} — { M (R)-modules} ;
R
M — }? Qr M ,
R
{M;.(R)-modules} — { R-modules} ;
N—(RR ... )®y gy N

are inverse equivalences of categories.

e Proposition K«(M.(R)) = K«(R).
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Algebraic K-theory of triangular rings

Given rings Ay, A> and an (A», A1)-bimodule B
define the triangular matrix ring

_ (A1 O
A= (o)

with f.g. projectives Py = (121> P, = (f )
2

Proposition (i) The category of A-modules is
equivalent to the category of triples

M = (My,Mz,p: B®y, M1 — M>)

with M; A;-module, u A>-module morphism.
(i) Kx«(A) = Kx«(A1) © K«(A2).

(iii) If A — S is a ring morphism such that there
is an S-module isomorphism S® 4 P; = S®4 P>
then S = M>(R) with R=Endg(S®4 P1), and

{A-modules} — {S-modules} ~ { R-modules};
M— (RR)@q4 M
= COKGF(R®A2 B®A1 M1—>R®A1 Ml@R(X)AzMQ)
IS an assembly map, i.e. local-to-global.
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The stable flathess theorem

e [ heorem Let

B A,

with > a set of A-module morphisms

s Py = 91 2 P = A1) ith B = End(Z—1P)
As B

(¢=1,2). If B and R are flat A;-modules and

R is a flat Ao,-module then X~ 1A is stably flat.

A= <A1 0 ) — > 14 = Ms(R)

e Proof The A-module M = g has a 1-

dimensional flat A-module resolution

0
0— (B) ®a, R

A 0
—><Bl> ®A1R€B<A2> ®A2R—>M—>O

and hence so does >14A =M@ M.

e Remark TorA((o Ap), E) = ker(B®4, R — R),
SO in general 2~ 1 A is not flat.
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HNN extensions

The HNN extension of ring morphisms i1, %o :
R — S is the ring

Sxiyin 12y = S*Z/{i1(z)z = zix(x) |z € R} .
Let S; = S with (S, R)-bimodule structure

SxS;ixR—S;; (st,u)— stij(u) .

. H — R O
The S-vK localization of A = (Sl ® S2 S)

inverts the inclusions

0 R
> ={s1,82: (S) — (51 @SQ>}
with Z71A = Mo (S %4, 4, {2]).

Corollary 1. If 71,70 : R — S are split injections
and S, S, are flat R-modules then A — ¥~14
IS injective and stably flat. The algebraic K-
theory localization exact sequence has

Kn(A> — Kn(R)@Kn(S) 3

Kn(Z71A) = Kn(S iy 4, {2}) ,

Kn(T(A, X)) = Knp(R)® Kn(R) @ Nily .
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Amalgamated free products

The amalgamated free product 57 xp So is de-
fined for ring morphisms R — S, R — S». The

R 0 O
S-vK localization of A= |51 S; 0O | inverts
So 0 5o
the inclusions
0 R 0 R
> =A{s1:|S1|—=1|S1] ,80:| 0| —=|[51]}
0 So So So

with
s7la = M3(S1 xR Sp) .

Corollary 2. If R — §1, R — S» are split in-
jections with S1,55 flat R-modules then A —
>—1Aisinjective and stably flat. The algebraic
K-theory localization exact sequence has

Kn(A) — Kn(R) @Kn(sl) @Kn<52) )
Kn(X71A) = Kn(S1*Rr S2) ,
Kn(T(A, X)) = Kn(R)® Kn(R) @ Nilyp .
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T he algebraic L-theory of a triangular ring

o If A1, A5, B have involutions then A = A1 0
B As

may not have an involution.

e Involutions on A1, Ao and a symmetric iso-
morphism 8 : B — Homy,(B,Az) give a
""chain duality” involution on the derived
category of A-module chain complexes.

e The dual of an A-module M = (M1, M>, 1)
iIs the A-module chain complex

d=(0,8"1p*):
C1 =(0,M5,0) — Co = (M{,B®4, M{,1)

e T he quadratic L-groups of A are just the
relative L-groups in the sequence

<= Ln(A1) =855 Ly(A2) — Ln(A)
— L,_1(A1) — ....
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T he algebraic L-theory of a
noncommutative localization

e Theorem Let 1A be the localization of
A1 O
B Ao
duality inverting a set > of A-module mor-

: 0 A
phisms s : P} = (A2> — Py, = (Bl>’ SO
that

a triangular ring A = with chain

>~ 1A = My(D)

with D = End(X~1P;). If B and D are flat
A1-modules and D is a flat A>-module then
> 1A is stably flat,

Lo(=7YA) = L.«(D) (Morita)
and there is an exact sequence
+ — Lp(A) - Lp(D) — Lp(T(A, X))
— L, 1(A) — ... .
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The UNIil groups are the torsion groups of
a noncommutative localization

e Theorem Let D = 51 xp So be the amalga-
mated free product of split injections
R — S51, R — S» of rings with involution,
and let A — X714 = M3(D) be the S-vK
localization. If 571,55 are flat R-modules
then

Ln(z_lA) — Ln(D) — Ln(A) D Ln(T(A7 Z)) )
Ln(T(A, Z)) = UN”n(R; Sl, SQ) .

e Similarly for the UNil-groups of an HNN
extension D = S x;, ;, {z} of split injective
morphisms ¢1,i> : R — S of rings with invo-
lution with S; and S, flat R-modules, and
the S-vK localization 14 = M5 (D).
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A polynomial extension is a
noncommutative localization

e A particularly simple example!

e For any ring R define triangular matrix ring

. R O
4= (pin 1)

An A-module is a quadruple

M = (K, L, p,pup: K — L)

with K, L. R-modules and u1, uo R-module mor-
phisms. The localization of A inverting

2. = {0‘1,0'22 <2) — <R$R>}

IS a ring morphism

A—-3Y14 = My(S), S = R[z,271] such that
{A-modules} — {M5>(S)-modules} ~ {S-modules}
sends an A-module M to the assembly S-module

(S S)®a M

= coker(uy — zpuo : K[z,271] — L[z,271]) .

29



Manifolds over S1

e Given a map f: V" — S on an n-manifold
V which is transverse at {pt.} ¢ S cut V
along the codimension 1 submanifold
T"—1 = f=1({pt.}) C V to obtain

V = T x [O, 1] UTX{O,].} U .

The cobordism (U;Ty,T») is a fundamental
domain for the infinite cyclic cover V = f*R
of V, with T4y,T copies of T

o A = (zgz %), s—14 = Mo(Z[z, 2~ 1]).

The A-module chain complex

r = (M), CW0),u1,pu2 : C(T) — CWU))
induces the assembly Z[z, z—1]-module chain
complex

(Z]z,2z7 1] Zlz,z7 ) @4 T

= coker(uy — zup : C(T)[z,271] = C(U)[z,21])
= CO(V) .

30



