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Abstract

We study the notion of hermitian u-invariant. We give some estimates
of the u-invariant of a division algebra with involution in terms of the
u-invariant of some subalgebras stable under the involution. We also find
some finiteness results for comparing the u-invariant of a division algebra
with involution and that of its centre. Some results about the values of
this invariant are also given. A description of the Tits index of some al-
gebraic groups of classical type over Qp(t), p # 2 is given as an application.
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1 Introduction

The u-invariant is one of the most interesting invariants in the algebraic theory of
quadratic forms. This invariant was introduced by Kaplansky over non formally
real fields and by Elman and Lam [2] over formally real fields. (In this work we
always assume that characteristic # 2).

Determination of this invariant for a given field, has been of great importance
in the literature. For a wide class of fields, the values of this invariant are not
known and sometimes it is not clear if the u-invariant of such fields is finite.
Obtaining lower and upper bounds for this invariant and comparing the u-
invariant of a given field K with the u-invariant of its subfields or the fields
containing K are good approaches to the problem.

Systems of quadratic forms and exact sequences of Witt groups are two
powerful tools used in the literature to obtain good lower and upper bounds
for the u-invariant. For example, systems of quadratic forms have been used in
[8] by Leep to obtain the bound u(L) < 24 u(K) for a field extension L/K of
degree n.

Using exact sequences of Witt groups is however less common than using
systems of quadratic forms, but one can mention an exact triangle of Witt
groups used by Elman and Lam (cf. [2], [3]) to compare the u-invariant of a
field with the u-invariant of a quadratic extension of this field.

In this work, we try to adapt these tools in the context of hermitian forms
over a division algebra with involution. To our best knowledge, the notion of
the u-invariant of a division algebra with involution appears, for the first time,



in Pfister’s paper [13] in connection with systems of quadratic forms over a
formally real field and with exception of [13], this notion has not been further
studied in the literature.

Our initial motivation for studying this notion was to describe the Tits index
of some classical groups over Q,(t), p # 2 for which we would have need to
obtain some information about the maximal dimension of anisotropic hermitian
forms over some division algebras with involution over Q,(t), p # 2. The results
concerning Tits indices are given in the last section of this paper as applications
of our main results. We later come back to this subject.

Let D be a division algebra with an involution ¢ and let € be an element
of the centre of D with o(¢)e = 1. The u-invariant with respect to ¢, is by
definition the supremum over the dimension of anisotropic e-hermitian forms
over (D, o). This number is denoted by u(D,o,¢) (value oo is admitted also).
Let E be a subdivision algebra of D stable under . We are interested in the
following questions:

Question 1.1. (Going up)
Under which conditions does the finiteness of u(F,o|g,e) imply that of
u(D, 0, ¢) and can one obtain an upper bound for u(D, o, €) in terms of u(F, o|g,€)?

Question 1.2. (Going down)
Under which conditions does the finiteness of u(D, o, €) imply that of u(F, o|g, €)
and can one obtain a lower bound for u(D, o,¢) in terms of W(E, o|g,e)?

A substantial part of this work is devoted to these questions. In certain
situations, we are able to give precise answers. We will especially deal with the
following cases:

e D/FE is a quadratic extension of fields (cf. Remark 3.5, Proposition 5.1,
Proposition 5.10).

e D is a quaternion algebra and E is a maximal subfield of D (cf. Corol-
lary 3.4, Remark 3.5, Corollary 5.8).

e more generally if there exist two invertible elements A and g in D such
that Ay = —pA, o(A\) = =X, () = —p and K (A) is a quadratic extension
of K where K is the centre of D. Let E be the centralizer of K(\) in D
(cf. Proposition 3.1, Remark 3.2, Proposition 5.7).

e F is the fixed field of the restriction of o to the centre of D (cf. Proposi-
tion 3.6).

e D is the tensor product E ®; L where k is the fixed field of o|x, K is
the centre of D and L/k is a field extension (cf. Proposition 3.8, Propo-
sition 3.10, Remark 3.11).



In particular the Question 1.1 has an affirmative answer when FE is the fixed
field of 0| where K is the centre of D. By contrast, the finiteness of u(D, o, ¢)
does not imply, in general, that of u(k), for example if D = (—1,—1)g is the
algebra of Hamiltonian quaternions and o is its canonical involution we have
u(D,o,—1) = 1 and u(R) = oo. In fact we prove that if dimg D is a power
of 2, and if both u(D,0,¢) and u(D, o, —¢) are finite then u(K,o|x) < oo (cf.
Theorem 6.2). In particular if o is of the first kind, then u(K) is finite if and
only if u(D,o,1) and u(D, o, —1) are finite.

The principal ideas to prove these results are to use some exact sequences of
Witt groups, mainly the exact sequence of Milnor-Husemoller [19, Ch.10, 1.2],
Lewis [9] and Parimala-Sridharan-Suresh |1, Appendix 2] and to use the results
of Leep [8] and Pfister [13] on systems of quadratic and hermitian forms. We also
use a variation of the exact sequence of Parimala-Sridharan-Suresh discussed in
[4].

On one occasion, we need to compare the hermitian u-invariant of a field
with that of some of its subfields. We do this by using an exact sequence of
Witt groups of biquadratic extensions. We present this exact sequence in §4,
(see Theorem 4.3). This exact sequence may be regarded as a particular case of
a general exact sequence of L-groups and projective Witt groups due to Ranicki,
see [16] and [17, p.242].

Another natural question is to ask about possible values for the u-invariant
for some particular type of division algebra with involution. We consider the
case of a quadratic extension L/K together with the nontrivial automorphism
~ and we prove that u(L,”) # 3,5, 7 (cf. Proposition 7.3).

This result is a hermitian analogue of a classical theorem in the theory of
quadratic forms which states that the u-invariant cannot be equal to 3, 5 and 7
(cf. [19, Ch.2, 16.2]). Our proof is of course similar to the proof of this theorem.

One could also define the notion of u-invariant for central simple algebras
with involution. But thanks to Morita theory, the problem can be translated to
division algebras with involution, so we are only interested in this situation.

As David Lewis pointed out to me, one can also define the notion of the
u-invariant for G-equivariant forms, i.e., the forms stable under the action of a
finite group G and with the same ideas one can obtain some results that are
similar to those stated here.

Patrick Morandi pointed out to me that by using a version of a theorem of
Springer for hermitian forms obtained by Larmour [7], one can calculate the
u-invariant of a valued division algebra over a henselian valued field, in terms
of the u-invariant of its residue division algebra.

Finally in section §8, we give some applications of these results to describe
the Tits index of some classical groups over Q,(t) with p # 2. We recall that
according to a generalized Witt decomposition theorem (|21]), semisimple alge-
braic groups defined over an arbitrary field K are determined up to isomorphism
by their K*¢ class, their anisotropic kernel and their Tits index, see Tits [21]
or Springer [20, Ch. 17] for these notions. Describing the Tits index is therefore
important. For the groups of classical type, these indices can be described in
terms of algebras with involution. For finite fields, the field of real numbers,



number fields and p-adic fields, all possible indices are known (see [21]). We try
to describe these indices over Q,(t), p # 2 (cf. §8).

In consequence of the results due to Saltman [18] on the structure of the
group Bry(Q,(¢)), the only division algebras over Q,(¢t) with an involution of
the first kind are split ones, quaternions and biquaternions. For split case, by
a result due to Parimala and Suresh [12] we have 8 < u(Q,(¢)) < 10 (an earlier
result due to Hoffmann and Van Geel [5] states that 8 < u(Qp(t)) < 22). By
using these results and by examining anisotropic hermitian and skew hermitian
forms over quaternion algebras and biquaternions algebras over Q,(¢) we obtain
some information about possible indices.

2 The u-invariant of a division algebra with in-
volution

Let K be a field of characteristic different from 2. For a division algebra D over
K, a K/k-involution o on D is an involution where k is the fixed field of o|g.

Let us denote by S¢(D, o) the semigroup of isometry classes of e-hermitian
forms over (D,o) and by W¢(D, o) the Witt group of e-hermitian forms over
(D, o).

We refer to [19] and [6] for basic notions about quadratic and hermitian
forms and algebras with involution.

Every division algebra over a field K considered in this paper is implicitly
assumed to be K-central.

Let D be a division algebra over a field K with an involution o. Let ¢ € K
with eo(e) = 1. A system h = (hy, -+ ,h,) : VXV — D" of r, e-hermitian
forms over a right D-vector space V is called anisotropic if x € V, h(x,z) =0
implies that = = 0.

We consider the u-invariant in the sense of Kaplansky:

Definition 2.1. ([14, Ch. 9, Definition 2.4])
u,(D,0,e) = sup{dimp V; there exists an anisotropic e-hermitian map
h:VxV — D'}
Let us simplify the notation by writing u(D, o, ¢) instead of uy (D, 0,¢) and
by u(D, o) instead of u(D,o,1).

We recall that according to a result due to Leep [8], the system u-invariant
u, = u(k) satisfies u, < ru; +u,_; and u, < T(TQH) u; . This result has been
generalized by Pfister [13] to the system u-invariant of e-hermitian forms over
a division algebra with involution and also over skew fields with involution not
necessarily finite-dimensional over their centres.

As a first observation, we have:

Proposition 2.2. Let D be a division algebra over a field K. Let o and 7 be
two involutions on D with the same restriction to K: o|x = 7|x. Lete € K
with eo(e) = 1.



(1) If o and T are of the second kind and ¢’ € K with ¢'7(¢') = 1 then
u(D,o,¢) and u(D,7,e") do not depend on the choice of ¢ and €’'; moreover
u(D,o,e) =u(D,r,¢e).

(2) If o and T are of the first kind then we have: u(D,o,e) = u(D,1,¢) if ¢
and T have the same type, otherwise we have u(D,o,e) = u(D, T, —¢).

Proof. For (1), there exists an element b € D* such that ¢ = Int(b) o 7. We
have br(b)~! = A € K*. We obtain then A\7(\) = 1. Let N = A\~le’e=t. We
have A'7(\') = 1. It follows from Hilbert 90 that there exists u € K* such that
pr(p=t) = N.

If we take ¢ = pub, then o0 = Int(b) o 7 = Int(c) o 7. Now the correspondence
¢ — ¢ Ly gives a bijection between the semigroups S¢(D,o) and S¢ (D, 7).
This bijection preserves isometry, orthogonal sum and dimension. So we con-
clude that u(D,o,¢) = u(D,1,¢’).

For (2), we use the same argument. There exists b € D* such that o =
Int (b) o 7. We have \ := br(b)~! € K*. Moreover A = 1 if o and 7 are of the
same type and A\ = —1 if ¢ and 7 are of different type. The correspondence
@+ b~y from S%(D, o) to S*(D, 1) gives u(D,0,¢e) = u(D, T, \e). O

Remark 2.3. As pointed out to me by the Referee, the preceding proposition
actually says that for a given division algebra D, there are three possible u-
invariants, let us say a unitary, an orthogonal and a symplectic one; namely for
any o and e, the u-invariant of (D, 0,¢) coincides with one of them, depending
on the type of o and the value of €. Note that for unitary case, the preceding
proposition states that for a given D, u(D, o,¢) depends only to the restriction
of o to the centre of D. This leads us to introduce the notation u* (D) for
the orthogonal u-invariant, u™ (D) for the symplectic u-invariant (this was also
suggested to me by Karim Becher). In this way, if 7; is a symplectic involution
and 75 is an orthogonal involution on D we have ut(D) = u(D, 7, —1) =
u(D,79,1) and u= (D) = u(D,7,1) = u(D, 9, —1). This point of view might
lead to some simplification in the presentation of some parts of this paper, cf.
for instance Corollary 3.4 and Proposition 3.6 or Theorem 6.2.

3 Going up results

Let D be a division algebra over a field K with an involution ¢. We suppose
that there exist two invertible elements A and p in D such that Ay = —pA,
o(A) ==X\, o(u) = —p and K(A) is a quadratic extension of K.

Let D be the centralizer of L = K()) in D. According to [1, Appendix 2|,
we have uDp=' =D, 2 € D, 2 € D and D = D @ uD. On 5~we have two
natural involutions o; = o|p and oo = Int(~!)ooy. We have deg D = % deg D.
The involution o7 is always of the second kind. The involution o9 is of the same
kind as o but of different type if o is of the first kind. See [1, §3.1] for more
details.



Let m; : D — D be the L-linear projections my (a-+p3) = a and m(a+pB) =
B. f h:V xV — D is a e-hermitian space over (D,o), then h; : V xV —
D is defined by hi(z,y) = m(h(z,y)). It is easily verified that hy is an e-
hermitian space over (D, o) and hy is an —e-hermitian space over (D, o3). See
[1, Appendix 2| for more details.

We prove the following proposition which plays an important role in this
paper.

Proposition 3.1. Let D be a division algebra over a field K with a K/k-
involution o. Suppose that there exist \, p € D* such that o(A) = =\,
o(u) = —p, Ap = —pX and L = K(\) is a quadratic extension of K. Let
D be the centralizer of L in D, o1 = olp and o3 = Int(p™) ooy and e € K
with eo(e) = 1. Then we have:

u(D,o,e) < =u(D, 09, —¢) +u(D, 0y, ¢).

N | =

Proof. Let m and 7y be the projections from D to D induced by the de-
composition D = D @ uD, i.e, m;(dy + pds) = d;, for i = 1,2. Let (V,h) be
a nondegenerate e-hermitian space over (D,o) and h; = wih, hg = meh. We
have dimp(hy) = dimp(he) = 2dimp(h). If dimz(hg) > u(D, oy, —€) 4 2m —1
for some positive integer m > 1, then hy contains an orthogonal sum of m
hyperbolic planes. Consequently hg is totally isotropic over a D-vector sub-
space W of V of dimension m. If moreover m > u(D,o01,¢) + 1 then hg is
isotropic over W. 1In this way, in order that h be isotropic, it is sufficient to
have 2n = dimp(h2) = (D, 02, —¢) +2u(D,01,¢) + 1. This is equivalent to
u(D,o,¢e) < %u(f),ag, —&)+u(D,oy,e). O

Remark 3.2. In the proof of the previous proposition, one may interchange
the role of hy et ho, in this way we obtain:

~ 1~
u(D,o,e) <u(D,oq,—¢) + 5 u(D,oq,¢).

Remark 3.3. One may also give an alternative proof of the previous result
by using an exact sequence of Parimala-Sridharan-Suresh. See the proof of
Proposition 5.7 which uses this idea.

Corollary 3.4. Let Q = (a,b)x be a quaternion division algebra over a field
K. Let ™ be the canonical involution of Q and "~ an orthogonal involution of Q
and let L = K(y/a) C Q which is stable under ~, then we have:

min{1 u(L) + u(L,”),u(L) + $u(L,)},

1

2

Remark 3.5. Let L/K be a quadratic extension and let ~ be its nontrivial au-

tomorphism. We have the bound u(L,”) < 1u(K) because to every anisotropic
hermitian form over (L,”) of dimension n, one can associate an anisotropic



quadratic form over K of dimension 2n. In the same way, if () is a quaternion
algebra over a field K with the canonical involution -, we have u(Q,”) < 1 u(K).
See also Proposition 3.6 which states a more general result.

Proposition 3.6. Let D be a division algebra of degree m over its centre K
with a K/k-involution o and let € € K with eo(¢) = 1. Then :

u(D,o,¢e) < r(r+1)

S WK - K u(k) (1)

where r is the dimension of k-vector space of e-hermitian elements of D. In
particular, if u(k) is finite then so is u(D,o0,¢).

Proof. Let (V,h) be an anisotropic e-hermitian space over (D, o) of dimension
n. Take D* the k-vector space of e-hermitian elements of D, in other words:
Df ={zeD:o(x)=cex}.

It is well known that D = DT @ D~ and dimy (D ') = dimg(D~!) = m? when
o is of the second kind and dimy (D) = 2m(m +1) or m(m — 1) when o is
of the first kind. Let {e1,--- ,e.} be a k-basis of D® and {f1, -, fs} a k-basis
of D™¢. One can write h in the form:

h(z,y) = ei(@yler+ -+ on(z,yer
+ 7[}1(:C,y)fl++'l/)g(l‘,y)fg
where @1, -, @, are symmetric bilinear forms and y,--- 19 are skew sym-

metric bilinear forms over k (the forms ¢; (1 < i < r) and ¢; (1 < i < s) are
possibly degenerate). So ¢;(z,z) = 0 for all x € V. We deduce that

Wz, x) = pr(z, x)er + -+ pr(z, x)er.

As h is anisotropic, 1, - , - have no common isotropic vector. Now by using
a result due to Leep (cf. [14, Ch 9, 2.1] or [19, Ch.2, 16.5]) we obtain:

r(r+1)

m?[K : kn = dimg(V) < u,.(k) < 5 u(k).
Therefore n < 2;5;[}%] u(k) which implies the claimed inequality (1). d

Remark 3.7. The previous result is a finiteness statement. For many situa-
tions, one may have better estimates for u(D,o,¢). For example for quadratic
extensions and quaternion algebras, see Proposition 3.1, Remark 3.2, Corollary
3.4, Proposition 5.1, Proposition 3.8, Proposition 3.10, Remark 3.11. Neverthe-
less this bound is optimal for m = 1 or (m = 2 and o symplectic).

Proposition 3.8. Let D be a division algebra over a field K with a K/k-

involution o. Let L/k be an extension of degree n and suppose that D ®y L is

also a division algebra. Then

n+1
2

In particular the finiteness of u(D,o,¢e) implies that of u(D ®y, L,o ®1id, ).

u(D g Lo ®id,e) < u(D,o,¢). (2)



Proof. Let (V,¢) be an e-hermitian space over (D ®j, L,o ® id). We choose
a k-basis {e1, - ,e,} of L. We can write ¢(z,y) = (¢1(z,y) @ €1)) + -+ +
(on(z,y) ® e,) where @y, , @, are e-hermitian forms (possibly degenerate)
over (D,o). If ¢ is anisotropic and dim(¢) = m, then ¢5,---, ¢, have no
common isotropic vector, therefore mn = dim(p;) < u,(D,0,¢) so:

1
uW(D®, L,o®id,e) < ﬁun(D,a, €).

According to a result due to Pfister (cf. [14, Ch.9, 2.5] or [13]) we have:
u,(D,o,e) < WU(D,O, e). This implies (2). O

Remark 3.9. If in the previous statement we take D = k, then we retrieve
Leep’s estimate u(L) < % u(k).

Proposition 3.10. Let D be a division algebra over a field K with a K/k-
involution o. Let L/k be a quadratic extension and let = : L — L be the
nontrivial k-automorphism of L. Suppose that D ®j L is a division algebra.
Then we have:

WD e, Lo® )< -uD,o,—¢)+u(D,o,e).

DN | =

Proof. Let L = k(¢) with €2 € k and € = —¢. Let (V,¢) be an e-hermitian
space over (D ®;, L,o0 ® 7). We can write ¢ in the form

@(x’y) = Sol(x?y) @1+ @2(3773/) ®¢E,

where ¢ is an e-hermitian form and 9 is a —e-hermitian form over (D, o). By
repeating the argument given in the proof of Proposition 3.1 we conclude the
result. O

Remark 3.11. In the proof of Proposition 3.10, one can interchange the role
of 1 and (o, in this way we obtain:

1
u(D R L,o® ,e) <ulD,o,—¢)+ 3 u(D,o,¢).

4 An exact sequence of Witt groups for biquadratic
extensions

Let L = K; ®; Ka/k be a field extension of degree 4 where K;/k and Ks/k
are two quadratic extensions with nontrivial automorphisms 71 et 7o (resp.).
Suppose that Ky = k()\) with A € K, A2 € k and 12(\) = —\. Every element
a of L can be uniquely written in the form a; ® 1 + as ® A where ay, as € K;.
We consider two projections:

m:L—K; m:L— K
a— o a— Qg



For every nondegenerate hermitian space (V,h) over (K ®k Ko, 71 ® 72) (resp.
over (K1 ® Ko,71 ® id)), we associate the hermitian space (V,m1h) (resp.
(V,mah)) over (Ki,7) defined by

(mih)(z,y) = mi(h(z,y)), =, yeV
(7T2h)(aj7y) = 7T2(h(m>y))’ z, yev

It is easy to check that m1h and moh are nondegenerate hermitian forms over
(}(17 Tl).

For every nondegenerate hermitian space (W, f) over (K1, 1), we associate
the hermitian spaces (W ®y, Ka, p1 f) over (K1 ®j Ko, 71 ®id) and (W ®y Ka, p2f)
over (K1 @y Ko, 71 ® 72) by

(o1 f)(x@a,y®p) = flz,y) ® af, z, yeW; o, B€ K>
(p2/)(z@a,y®B) = f(z,y) @m2(x)B, z, yeW; «, B K>

Proposition 4.1. (1) Let (V,h) be a nondegenerate hermitian form of di-
mension 1 over (K; Q Ko, 71 ® T2) with h ~ (d) where d € K; ® Ko and
(11 ® 12)(d) = d. Then mih is isometric to

di daA\?
—daA?  —di N2
where di = m1(d) and do = m2(d).

(2) Let (V,h) be a nondegenerate hermitian space of dimension 1 over (K; ®j
Ko, 71 ®1d) with h ~ (d) where d € K1 @ Ko and (1 ®id)(d) = d. Then mah

18 1sometric to
do dj
dy  da)?

where di = m1(d) and ds = 7o(d).

(3) For the one dimensional form f = (a) over (Ky,71) we have

pi(f) =(a@1), paf) = {a@1).

Proof. (1) Let 0 # z € V with h(z,z) = d. We have a basis {z,zA} for the
K-vector space V. In this basis we have:

(mh)(x,x) = d17 (Flh)(x,.%‘)\) = d2)\2
(mh)(zX, ) = —daA?  (m1h) (2, 2)) = —d1\?

These relations imply the isometry we are looking for. The proof of (2) is similar
and (3) is obvious. O

Proposition 4.2. (1) Let f be an anisotropic hermitian form over (K1,71) such
that p1 f is isotropic. Then [ contains a subform isometric to w1 ((d)) where (d)
is a one dimensional form over (K; ® Ko, 71 ® T2).

(2) Let h be an anisotropic hermitian form over (K Qi Ko, 71 ® id) such that
moh is isotropic , then there exists a one dimensional form {(a) over (Ki, 1)



such that f contains a subform isometric to p1({a)).

(3) Let f be an isotropic hermitian form over (K1, 71) such that psf is isotropic.
Then f contains a subform isometric to mo((d)) where (d) is a one dimensional
hermitian form over (K; ®) Ko, 7 ® id).

Proof. (1) Let v =1 ® 1 + 31 ® A # 0 be an isotropic vector for pi(f), i.e.,
p1(f)(v,v) = 0. This relation implies that

f(w1,x1)+f(y1,y1)>\2=0 (3)
f(l'l,yl) + f(ylvxl) =0

The vectors x1 and y; are linearly independent over K. In fact if 1 = ay; for

some a € K7, the previous system gives

ar(a)+ A2 =0

T1(a)+a=0
which implies that a? = A\? so K; ~ Ko, contradiction because K; Q@ K is
a field. Now consider the Ki-vector space W generated by z; and y;. For
di = f(y1,71) and d2 = f(y1,71)\ "2, the representing matrix of f|y in the

basis {y1, 21} is
di da\?
—doX?  —d\?

According to Proposition 4.1, for a hermitian element d = d; ® 1 + dy ® A with
respect to (11 ® 72) we have

d da)\?
m(a=( _ghe )

so f contains a subform isometric to m ((d)).

(2) Let 2 # 0 be an isotropic vector for mah, i.e., (mah)(z, x) = 0. This relation
implies that h(z,z) = a®1 € K; ® K for some a € K. Since h is anisotropic,
we have a # 0. We deduce then that h contains a subform isometric to p1({a)).
(3) The argument is similar to that of (1). Let v =23 ® 1 + 31 ® A # 0 be an
anisotropic vector for poh, i.e., (p2h)(v,v) = 0. This relation implies that

{ flrr,x1) = fy,y1)A* =0
f(z1,y1) = flyr,21) =0

The vectors z; and y; are linearly independent over K;. Let W be the K;-
vector space generated by x; and y;. The matrix of the form f|y with respect

to the basis {y1,z1} is
do dy
di  da)\?

According to Proposition 4.1, for the one dimensional hermitian form (d) over
(K1 ®k K2, ®1d) where d = d; ® 1 + da2 ® A we have:

m=( 2 )

which completes the proof. O
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Theorem 4.3. We have the following ezxact sequence of Witt groups:
W (K1 @ Ko,m1 ® 73) ™ W(K1,11) 5 W (K @) K, 71 ®id)

BW(EKL,m) B WK, @ Koy @713)

Proof. Thanks to the previous proposition, it is enough to verify that this
sequence is a complex. Let (d) be a one dimensional hermitian form over (K; ®j
Ko, 71 ® 7o) where d = d; ® 1 + da ® A where dy, dy € K;. According to
Proposition 4.1 we have

d da)?
mla=( _gha ).

We obtain then

di®1 daX? ® 1
@)= (_350, )

A simple calculation shows that

| 1®1
"Tlieat
is an isotropic vector for p;m({(d)). Consequently we have p;m = 0.

In order to show that mop; = 0, we consider a one dimensional form (a) over
(K7,71). We have p1({a)) ~ (a®1). So

0 a
mamn((a)=( ) 5 )
which is a hyperbolic form.

In order to show that pame = 0, we consider a one dimensional form (d) over
(K7 ®; K2, 71 ®id) where d = dy ® 1 +d; ® A is a hermitian element with respect
to (’7’1 (39 ld) with dy, dy € K1. We have:

dy®1 di®1
pmti) = (251 A5 ).

This form is hyperbolic because

| 1I®1
T 1@t
is an isotropic vector. O

5 Going down results

Proposition 5.1. Let L/K be a quadratic extension and let ~ be its nontrivial
automorphism. Then u(L) and u(L,”) are finite if and only if u(K) is finite,
moreover we have u(K) < 2u(L,”) + u(L) and w(K) < u(L,”) + 2u(L).
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Proof. We write L = K(y/a) where a € K*. Let ¢ be an anisotropic form of
dimension n over K. Consider the following exact sequence of Witt groups due
to Milnor-Husemoller [19, Ch.10, 1.2]:

0— W(L,) S W(E) S W(L)

In this exact sequence, 7 is the transfer map induced by the projection 7 : L —
K, z + yy/a — z and r* is the restriction map. If r*(q) is anisotropic, then ¢
contains a subform isometric to (b, —ab) for some b € K. We can then write (by
induction)

q=((1,—a)®q) D g

where ¢1, g2 are two nondegenerate quadratic forms over K so that r*(gq) is
anisotropic. Let ¢ be the hermitian form over (L,”) induced by ¢;. We have
w(p) ~ (1,—a) ® q1. Therefore we have a Witt r*-decomposition, i.e., there
exists an orthogonal decomposition ¢ ~ ¢ L ¢” where ¢’ ~ w(p) for some
nondegenerate hermitian form ¢ over (L,”) (in particular 7*(¢’) is hyperbolic)
and r*(¢") is anisotropic. We may suppose that ¢ is anisotropic, therefore:
dim(q) = dim(7(p)) + dim(¢”) = 2dim(p) + dim(q”) < 2u(L,”) + u(L) which
implies the result. If we use the same argument with the following exact sequence
of Witt groups due to Lewis [9]:

W(L) 3 W(K) S W(L,),

we obtain u(K) < u(L,”) 4+ 2u(L). In this exact sequence, s, is the Scharlau
transfer map and r* is the restriction map.

Now suppose that we have u(K) < oo. According to a result due to Elman
and Lam (cf. [2, theorem 4.3]) we have u(L) < $u(K) < oo. The finiteness
of u(L,”) is easy to check. In fact if ¢ = (a1, -+ ,ay) is a form over (L,7)
where a; € K, its trace form is isometric to ¥ = (a1, ,an, —aay, -, —aay,).
Isotropy of ¢ and ) are equivalent. The finiteness of u(K) implies therefore
that of u(L,”). O

Remark 5.2. One can regard the estimates of Proposition 5.1 as an improve-
ment, in some situations, of the estimate u(KX) < 4u(L) for a non formally real
field K due to Elman [3, Theorem 3.1(iii)], because one can find many examples
where

min{2u(L,”) +u(L) , w(L,”) +2u(L)} < 4u(L).

For example if K is a p-adic field then u(K) = u(L) = 4 and u(L,”) < 2.
Our bound is independent of the formally real nature of L or K. To our best
knowledge, the going down result of Elman, is the best one for arbitrary fields.

In the sequel, we need the following lemma which is an immediate conse-
quence of a theorem of Springer.

Lemma 5.3. Let L/K be a quadratic extension and let T be its nontrivial auto-
morphism. Let M /K be an extension of odd degree and let ¢ be an anisotropic
hermitian form over (L,T). Then ¢ remains anisotropic over (L®x M, T ®id).
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Proof. For a hermitian space (V, ) over (L,7), we denote its trace form
by tr(yp), defined by tr(p)(z,y) = tri/k(p(x,y)) for every z, y € V. We have
tr(@l(Lex ) = tr()|a- I | (Lem) is isotropic, then tr ()| is also isotropic.
The strong version of Springer’s theorem implies that ¢r(y) is isotropic. Conse-
quently ¢ is isotropic. O

Corollary 5.4. With the notation of the previous lemma we have:
u(L,7) < u(lL®xg M,7®id).

Let D be a division algebra over a field K with an involution o. Suppose
that there exist A, u € D* such that o(\) = =X, o(p) = —p, Ap = —pA
and L = K()) is a quadratic extension of K. In this situation, we have the
following exact sequence of Witt groups due to Parimala, Sridharan and Suresh
[1, Appendix 2]:

We(D,o) B We(D,01) 2 W2(D,0) "= Wo(D, o) (4)

In this sequence, the map #{ and m; © are transfers induced by the projections

71 and 7y defined in §3. The map pf is a restriction map defined by the multi-
plication by A and the usual restriction map r*:

We(D, o) ” W=(D, o)

W~=¢(D,0y)

See [1, Appendix 2] for more details. These maps also induce homomorphisms
between semigroups of isometry classes of hermitian forms:

S°(D.0) 2 §7(D,00) 2 S74(D.0) % §%(D,02) (5)
Now we can reformulate the exact sequence of (4) in the following way:

Proposition 5.5. Let p € SE(IND, o1) be an anisotropic form. Then ¢ has a Witt
pi-decomposition, i.e., there exists an orthogonal decomposition ¢ ~ p1 & g
such that p5 (1) is hyperbolic and p5(p2) is anisotropic. Moreover there exists
¢ € S(D, o) such that @1 ~ 75(1).

Proof. If p5(p) is anisotropic, we take 3 = ¢. If p5(¢) is isotropic then ¢

contains a subform ¢y which comes from S°(D,0), i.e., po =~ 7§(¢)y) for some

o € S°(D,o); see the proof of (4) in |1, Appendix 2] where this has been

implicitly proved, see also [4, 4.4]. We have then an orthogonal decomposition

© =~ Yoy’ for some ¢’ € Se(f), o1). As p5(po) is hyperbolic and dim ¢’ < dim ¢

we can use induction on dim ¢ to finish the proof. O
We have also the following exact sequence of Witt groups:

W=(D,0) = WD, o) 2 W(D, ) (6)
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which is a variation of the exact sequence of Parimala, Sridharan and Suresh,
see [4]. In this sequence, p§ is the composition of the multiplication by —\ and
the usual restriction map r* and the multiplication by —p:

WE(B, 0’2) L WﬁE(Dv U)

S

Ws(ﬁ’ 3) —;WE(D, Int(p=1)oo)

We state a Witt-decomposition-like result for the exact sequence of (6):

Proposition 5.6. Let ¢ € SE(E, o2) be an anisotropic form. Then ¢ has a Witt
p5-decomposition, i.e., there exists an orthogonal decomposition ¢ ~ p1 @ 2

such that p5(p1) is hyperbolic and p5(p2) is anisotropic. Moreover there exists
€ S7(D, o) such that ¢ ~ 75 ().

Proof. We use the same argument as in Proposition 5.5. If p5(y) is isotropic
then ¢ contains a subform ¢y which comes from S~¢(D, o), i.e., po =~ 75(t)o)
for some g € S7¢(D, 0); see [4, 4.4]. O

Proposition 5.7. Let D, IND, 01, 0 and oy be as in Proposition 3.1, then we
have:

(1) u(D,01,¢)
(2) u(D, 05,¢)

u(D,o,—¢) +2u(D,o,e¢).
3u(D, o, —¢).

IN N

Proof. (1) Let ¢ be an anisotropic e-hermitian form over (D,o;). Ac-
cording to Proposition 5.5, there exists an e-hermitian form 1 over (D, o)
such that ¢ ~ 7,(¢)) @ ¢’ for some form ¢’ over (D,oy) such that p(¢') is
anisotropic. As ¢ is anisotropic, so is 1, therefore dim(v) < u(D,o,¢). As
p(¢") is anisotropic, dim(¢’) = dim p(¢') < u(D, g, —¢), consequently dim(y) =
dim(m (1)) 4+ dim(¢’) = 2dim(y)) + dim(¢’) < 2u(D, 0,¢) + u(D, 0, —¢) .

For (2) we apply the same argument by using Proposition 5.6. O

Corollary 5.8. With the notation of Corollary 3.4 we have:
(1) u(L,”) <2u(@,7) +u(Q,") =2u"(Q) +u’(Q)
(2) u(L) <3u(@,") =3u™(Q)

Proposition 5.9. With the notation of §4, let ¢ € S(K1,71) be an anisotropic
form. Then ¢ has a Witt p;-decomposition, i.e., there exists an orthogonal de-
composition ¢ ~ 1P such that p1(p1) is hyperbolic and p1(p2) is anisotropic.
Moreover there exists ¢ € S(K1 Qk Ko, 71 ® T2) such that o1 ~ 71(1).

Proof. If pi(p) is isotropic then according to Proposition 4.2, ¢ contains
a subform o which comes from S(K; ® Ko, 71 ® T2), i.e., ¢o ~ m1()o) for
some Yy € S(K; ® Ko,71 ® 72), we can then use an induction argument as in
Proposition 5.5 OJ
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Proposition 5.10. With the notation of Theorem 4.3, we have
u(Kl,Tl) < 211(K1 Rk KQ,T] ® ld) —+ H(Kl Rk KQ,Tl & 7'2).

Proof. The proof is similar to that of Proposition 5.7; we use Proposition 5.9.
O

Remark 5.11. Using [4, 4.4], and Proposition 4.2, one can state similar Witt-
decomposition-like results for other maps involved in these exact sequences. For
example by a Witt 7§{-decomposition result one can give an alternative proof of
Proposition 3.1.

6 A Finiteness result

In the article [1], one can find several useful results about extensions of odd
degree and their connections with substructures of codimension 2 of central
simple algebras with involution, see ([1], Lemma 3.1.1, Lemma 3.3.1, Lemma
3.3.2, Lemma 3.3.3). From these results we can derive the following proposition
which has been proved in [11].

Proposition 6.1. Let D be a noncommutative K -division algebra and o a K/k-
involution on D. Suppose that the degree of D is a 2-power. Then there exists an
extension M/k of odd degree such that Dyy = D ®y M contains the elements A,
w such that T(A) = =X and 7(n) = —p and Ap = —p and [F(N\) : F] = 2 where
F=KM=K®M and 7 is the involution o ® id when o is of second kind or
o is symplectic and D is a quaternion algebra otherwise 7 = Int(u) o (o ® id).

Theorem 6.2. Let D be a division algebra of dimension a power of 2 over its
centre K with a K/k-involution o. Suppose that u(D,o,e) < oo fore =1 and
e = —1, then u(K,o|x) < co. In particular if both ut (D) and u= (D) are finite
then u(K) is finite too.

Proof. We prove this result by induction on dimg (D). For dimg (D) = 1 the
conclusion is evident. Suppose that dimg (D) > 1.

First suppose that o is of the second kind. According to Proposition 6.1,
there exists an extension M/k of odd degree such that Dj; = D ®; M contains
the elements p and A such that 7(A) = =\, 7(u) = —p and Ap = —pA for
7 = o ®id and F(\)/F is a quadratic extension where F = K ®; M. As
M/k is an extension of odd degree, E = D), is a division algebra. According
to Proposition 3.8 we have u(E, 7,¢) < oo and u(FE, 7, —¢) < oo. By applying
Proposition 5.7 we obtain: u(flﬁ,:l:s) < oo and u(E,Tg,j:E) < oo where
E = Cg(F(\)). As 7 is of the second kind, so are 7; and 75. By the induction
hypothesis, we have u(L,71|1) < oo and u(L, 72|1) < oo where L = F(}) is the
centre of E. Let F' be the fixed field of To|r. We have

(L,m1|L)
(L, 72|L)

(Feu F'irlrp@ 1)
(Feu F'\ 7lr®id)

~
~
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where 7’ is the nontrivial automorphism of F’/M. Proposition 5.10 implies that
u(F,7|r) < oo and from Corollary 5.4 we deduce that uw(K,o|x) < u(F,7|r) <
0.

Now consider the case where o is of the first kind. If D is a quaternion algebra
and ¢ is its canonical involution, then there exist A\, u € D with o(\) = —),
o(p)=—p, Ap=—pret [K(\) : K] =2.

Otherwise there exists an extension M/K of odd degree such that E =
D ®x M contains A and p with 7(A\) = =\, 7(u) = —pu, Ay = —pA and
[M(X\) : M] = 2 where 7 = Int(u) o (¢ ® id) (cf. Proposition 6.1). Them
involution 7 is of the first kind but of a different type from that of o. In any
case take:

J oo dimg (D) = 4, o symplectic
"7\ Int(p) o (0 ®id) otherwise

As M/K is an extension of odd degree, F is a division algebra. According
to Proposition 3.8 we have u(E,7,e) < oo and u(E,7,—¢) < oo (note that
according to Proposition 2.2, the finiteness hypothesis (which is for o) is still
valid for 7). By applying Proposition 5.7 we obtain: u(E,n,:I:z—:) < oo and
W(E, 79, 4¢) < oo where E = Cp(M())). The involution 71 is unitary and
by the first part of the proof the condition u(E,Tl,:I:E) < oo implies that
u(L,7|) < oo where L = M (). The involution 72 is of the first kind. The
condition u(E, 1, ) < oo states that both u~(E) and u™(E) are finite. So we
conclude by induction that u(L) = u(L,72|;) < oco. Here 71|y, is the nontrivial
automorphism of L/M. Now Proposition 5.1 implies that u(M) < oo and from
the strong version of Springer’s theorem we deduce that u(K) < u(M) < oc.

O

Remark 6.3. Note that in preceding theorem, according to Proposition 2.2 one
of the two hypotheses u(D,0,¢) < oo and u(D, o, —¢) < oo is actually enough
in the unitary case.

7 Values of the u-invariant, a particular case

Let L/K be a quadratic extension and let ~ be its nontrivial automorphism. The
signed discriminant d4 defines a map from W (L,”) to K*/N(L*). Unfortunately
this map is not a homomorphism. But for forms ¢ and ¥ of even dimension
we have dy (¢ @ ¢) = du(p).de(¢). Let I(L,”) € W(L,”) be the classes of
all nondegenerate hermitian forms over (L,”). The group W (L,”) has a natural
ring structure.

Proposition 7.1. (1) The map e; : I(L,”) — K*/N(L*) defined by e1(p) =
d+(p) is a surjective homomorphism.

(2) kere; = I%(L,").

(3) Via ey, the group I1/I? is isomorphic to K*/N(L*).
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Proof. (1) The map e; is surjective because d+ ({1, —a)) = aN(L*).
(2) The group I = I(L,”) is generated by hermitian forms (a, b) where a, b € K*.
Thus I? is generated by the hermitian forms:

v = {(a,b) ® (¢,d) = (ac, ad, be, bd)

We have di(¢) = 1. So I? C kere;. Conversely suppose that ¢ € I with
e1(p) = 1. The form ¢ is represented by (aj,- - ,a2,) with n > 1.

For n = 1, we have ¢ = (aj,a2) with —ajas € N(L*). So ¢ ~ (a1, —ay),
therefore ¢ is hyperbolic and ¢ = 0 in W (L,").

Now suppose that n > 2. We can write: ¢ = (a1, az,a3) ® (a4, ,a2,). SO
@ ~ {a1,as,a3,a1az2a3) ® (—ajasas,aq, - ,as,). We have

(a1, a2, a3, a1azas) ~ (a1, a2) ® (1,a1a3) € I°.

The dimension of ¢ = (—ajasas,aq, -+ ,a2,) is 2(n — 1) and dy ¢’ = 1. By
induction we obtain ¢’ € I2.
(3) is deduced from (1) and (2). O
Let D be a division algebra over a field K with a K/k-involution 7. Here
we call a hermitian form ¢ over (D, 7) an n-fold Pfister form if ¢ is the restric-
tion of an n-fold Pfister form ¢ over k to D. This notion appears in [10] for
quaternion algebras. A hermitian form ¢ induced by the n-fold Pfister form
qg={{ay, - ,an)), is still denoted by ¢ = ({a1,- - ,an)).

Definition 7.2. Let D be a division algebra over a field K with a K/k-
involution 7 and let € be an element of K with e7(¢) = 1. An e-hermitian
form ¢ over (D, ) is called universal if ¢ represents all nonzero e-hermitian
elements of D.

Proposition 7.3. Let L/K be a quadratic extension and let ~ be the nontrivial
automorphism of L/K. Then we have u(L,”) # 3,5,7.

Proof. Suppose that u(L,”) < 4. Every 2-fold hermitian Pfister form ({(a,b)
is hyperbolic. The hermitian form (1,a,b) is a hermitian neighbor of ((a,b)
and therefore it is isotropic. We deduce that every hermitian form {(a,b,c) o
dimension 3 over (L,”) is isotropic, so we have u(L,”) < 2.

Suppose that u(L,”) < 8. We conclude that every 3-fold hermitian Pfister
form ({a,b, —c)) is hyperbolic. Thus for every a, b, ¢ € K* we have:

({a,b)) = ¢((a, b))

Every form in I? = I?(L,”) is an orthogonal sum of the forms ({(a;,b;)). As for
every hyperbolic plane IH and ¢ € K* we have IH ~ cIH, the Witt cancellation
theorem implies that ¢ ~ cyp for every ¢ € I?. In particular ¢ is universal over
(L,7) (in the sense of Definition 7.2).

Now suppose that v = u(L,”) = 5 or 7. Let ¢ be an anisotropic hermitian
form of dimension w. In particular ¢ represents its discriminant d = d4 (¢). We
have then ¢ = 1 @ (d) where ¢ is a form of dimension 4 or 6 and dy(¢) = 1.

)
)
f
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As ¢ € I, Proposition 7.1 implies that ¢ € I2. We have already shown that 1
is universal, consequently ¢ is isotropic which is a contradiction to the choice
of . O

Remark 7.4. In a similar way, if D = (a,b)x is a quaternion division algebra
with the canonical involution ~, then u(D,”) # 3,5,7. However the value 3 for
the u-invariant u(D,”, —1) is possible, for example if K is a p-adic field then
u(D,”,—1)=3.

Proposition 7.5. Let Ly be a field with u(Lo) = n. Let L = Lo((x)) be the
field of Laurent series over Lo and let o be the Lo-automorphism of L induced
by x — —x. Then u(L,0) = n.

Proof. TLet K be the fixed field of 0. We have K = Ly((2?)) so u(K) =
2n. Consequently u(L,0) < n (cf. Remark 3.5). Let ¢ = {(a1,---,a,) be an
anisotropic quadratic form of dimension n over Lg. The restriction of ¢ to L is
anisotropic. In fact the isotropy of ¢z o) is equivalent to that of the quadratic
form q ® 2%q = (a1, -+ ,an, —2%a1,- -+, —x%a,) over K. The anisotropy of this
form is equivalent to that of ¢ over L. O

Remark 7.6. Proposition 7.5 state in particular that the possible values for
the hermitian u-invariant of commutative fields contain the possible values of
the usual u-invariant.

8 Classical groups over Q,(t), p # 2

We refer to [21] and [20] for basic notions about Tits’s indices. In the symbol
ngtw’ where X = A, B, C, D, the integers n and r are respectively the abso-
lute and relative rank of the considered classical group G, g denotes the order of
the quotient of the Galois group I' = Gal(k*“?/k) which operates effectively on
the Dynkin diagram. In case the diagram has no nontrivial automorphism, g is
necessarily 1. If g = 1, G is called of inner type, otherwise G is called of outer
type. The integer t is the degree of a certain division algebra which occurs in
the definition of the considered group. If ¢ or g are omitted in the symbol, they
are necessarily 1.

Type A,

Lemma 8.1. Let k be a function field of a p-adic field with p # 2. Let L/k be
a quadratic extension and let = be the nontrivial automorphism of L/k. Then
u(L,”) < 4.

Proof. Let ¢ ~ (a1, --,a5) be a hermitian form of dimension 5 over (L,7),
where a; € k,i=1,---,5. Then, ¢ is isotropic if and only if the quadratic form
q = (a1, -+ ,as5,—aay, -+ ,—aas) is isotropic over k where L = k(y/a). But

this form is isotropic over k, because its Hasse invariant is ¢(q) = (—a, d) where
d = det(p), which has index < 2 in the Brauer group of k£ and according to the
Theorem 4.6 of [12], ¢ is isotropic. We have in particular u(L,”) < 4. O
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Proposition 8.2. Let k = Qu(t) with p # 2. The index lA%d} occurs over k
for every positive integers d, v and n satisfying rd = n + 1.

Proof. According to [21] or [20, 17.1.3], 1A£g)r occurs over k if and only if there
exists a division algebra D over k of degree d with rd = n+ 1. The existence of
such algebras comes from the fact that there exist division algebras of arbitrary
degree over Q. O

Proposition 8.3. Let k = Q,(t) with p # 2.

(1) If the index QAS} occurs over k, then n+1— 2r € {0,1,2,3,4}. All the

anisotropic indices QA%, QAS(% 2A§()J and QAS()) occur over k.

(2) If the index 2A$Z)T occurs over k thenn+1—4r € {0,2,4,6}.

Proof.  According to [21] or [20, 17.1.6], QA%‘%Z« occurs over k if and only
if there exist a quadratic extension E/k, a division algebra D over FE and an
involution o on D of the second kind such that k is the fixed field of o|g and
a nondegenerate hermitian form h over (D, o) of dimension d~*(n + 1) and of
Witt index r.

(1) For d =1, D = E. According to Lemma 8.1 we have u(F,0) < 4. We
conclude that 0 < n+ 1 —2r < 4. As for E = Q,(t)(V#), we have u(E, o) = 4,
the indices 2A%, ZA% QAS()J and QAS()) occur over k.

(2) For d = 2, D is a quaternion algebra over E. Thank to Proposition 3.6
we have u(D, o) < 3. We have then 0 < ”T“ —2r < 3. O

Type B,

Proposition 8.4. Let k = Qp(t) with p # 2. If the index B, , occurs over k
then we have: n —4 < r < n.

Proof. According to [21] or [20, 17.2.3], B, can occur over k if and only if
there exists a nondegenerate quadratic form g of dimension 2n 4+ 1 and of Witt
index r. Let g, be the unique anisotropic part of ¢ up to isometry. We have:

dimg, =2n+1—2r (7)

According to [12], the dimension of ¢, cannot exceed 10. We obtain then 0 <
2n—2r+1<10andson—4<r<n. O

Proposition 8.5. The anisotropic indices By o, B2y and B3 can occur over
k= Qp(t) with p # 2.

Proof. According to (7), it is enough to find anisotropic quadratic forms of
dimension 3, 5 and 7 (resp.), which is possible because u(Q,(t)) > 8. O

Remark 8.6. According to (7), the existence of By over Q,(¢) is equivalent
to u(Qp(t)) = 9. According to a conjecture, one believes that u(Q(¢)) = 8 (cf.
[14, Chapter 5, 2.5], [5] and [12]).
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Type C,

Proposition 8.7. Let k = Q(¢) with p # 2. If the index C?gL(,iT)‘ occurs over
k then we have d € {1,2,4}. For d = 1 we have n = r. For d = 2 we have
n—2r € {0,1,2}. For d =4, we have n — 4r € {0,2,4,6,8,10}.

Proof. According to [21] or [20, 17.2.10], C’fzdz can occur over k if and only if
there exists a division algebra D over k of degree d with an orthogonal involution
o and a skew hermitian form h over (D, o) of dimension 2d~'n and of Witt index
r. As D has an involution of the first kind, D lies in the 2-torsion of the Brauer
group Bra(k) (cf. [19, Ch. 8, 8.4]). According to a result due to Saltman [18§],
we know that d € {1,2,4}. Let h, be the anisotropic part of h. We have

dimh, = 2d~'n — 2r (8)

If d = 1, h is alternating and in this case we have r = n.

If d = 2, D is a quaternion algebra over k. According to Corollary 3.4
and Lemma 8.1 we have u(D,o,—1) = u(D,”) < 3u(L,”) < 2 where ~ is the
canonical involution of D and L is a maximal subfield of D stable under ~. We
deduce that 0 < dim h, < 2. Now (8) implies that n — 2r € {0, 1, 2}.

If d = 4, according to a result due to Albert (cf. [6, 16.1]), D is isomorphic to
a biquaternion algebra. We write D = D ® D, where D, and D5 are quaternion
algebras. According to Proposition 2.2 we have u(D,0,—1) = u(D; ® D3,” ®
~,—1) where ~ (resp. ) is the canonical involution of Dy (resp. Ds). Let L be
a maximal subfield of Dy stable under ~. Thanks to Proposition 3.1 we have:

WDy ® Dy, ®@ —1) <u(D1®L,”®id)+iu(Dy®L,”®,—1)

Thanks to Proposition 3.6 we have u(D; ® L,” ® id) < u(L). According
to [12], u(L) < 10. We conclude then u(D; ® L,” ® id) < 2. Now by using
Proposition 3.10 and Proposition 3.1 we obtain

w(Dy ® L,”®",—1) < 6.

We obtain then u(D; ® Ds,”® 7, —1) < 5. We conclude that 0 < dimh, < 5
and (8) implies that n/2 — 2r € {0,1,--- ,5}. O

Proposition 8.8. The anisotropic indices C’fg, 02(?3 and C’éflg occur over k =
Qp(t) with p # 2.

Proof. According to (8), it is enough to find a skew hermitian form of di-
mension 2 over (D,o) where D is a suitable quaternion division algebra over
Qp(t) and o is an orthogonal involution of D. This choice is possible because
u(D,o,~1) = 2 for D = (—p,u)qg, ) Where u € Z;\Z;z. In fact by Proposi-
tion 3.6, u(D,0,—1) < 7 u(Qp(t)). We obtain then u(D,o,—1) < 2, because
u(Qp(t)) < 10 according to [12]. So it is enough to construct an anisotropic
skew hermitian form of dimension 2 over (D, o) or equivalently an anisotropic
hermitian form of dimension 2 over (D,”) where ~ is the canonical involution of
D. We may take for example the hermitian form (1,¢). O
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Type D, inner

Lemma 8.9. Let D be a division algebra over a field K with a K/k-involu-
tion o. Consider the division algebra D(t) = k(t) @, D with the involution
o =id®o. Let (V,hy) and (W, hyw) be two anisotropic e-hermitian spaces over
(D,0). Let V(t) = k(t) @, V, W(t) = k(t) @& W, hy and hy the restrictions of
hyv and hy (resp.) to D(t). Then the hermitian form hy @ thy is anisotropic
over (D(t),o). In particular u(D(t),0,¢) > 2u(D,o,e) where ¢ € K satisfies
eo(e) =1.

Proof. Let z1®xze € V(t)®W(t) be a nonzero anisotropic vector for hy ®thy,
ie., hy @ thw(z1 @ x2,21 @ x2) = 0. This relation implies that:

hy (21, 21) + thw (22, 22) = 0 (9)

By using the embedding V(t) C V((t)) we may suppose that z1 = X5 yv;t’
and zy = X2, w;t" where v; € V, w; € W, vy # 0 and wys # 0. We consider
two cases: N < M and N > M. If N < M, (9) implies that hy (var,vpr) = 0
which is a contradiction because hy is anisotropic. If N > M, (9) implies that
hw (wxn,wy) = 0 which is a contradiction because hy is anisotropic. O

Proposition 8.10. Let k = Q,(t) with p # 2. Then if the index IDSL‘? occurs
over k then d € {1,2,4}. Moreover:

(1) For d =1 we have n —r € {0,2,3,4,5}
(2) For d =2 we have n —2r € {0,2,3,4,5,6,7,8,9}
(3) For d =4 we have n —4r € {0,2,4,---,20}.

Proof. According to [21] or [20, 17.3.13], IDSLC,IZ occurs over k if and only if there
exist a division algebra D over k of degree d with an orthogonal involution o and
a nondegenerate hermitian form h of dimension 2nd~! with trivial discriminant
and of Witt index r, and moreover d > 1, rd < n and n # rd + 1. As D has an
involution of the first kind, according to a result of Albert (cf. [19, Ch. 8, 8.4]),
D lies in the 2-torsion of Br(k). By using a result of Saltman [18], we obtain
d € {1,2,4}. Let h, be the anisotropic part of h. We have:

dimh, =2d " 'n—2r, dyhg=1 (10)

(1) If d = 1, we have D = k and h,, is a symmetric bilinear form over k and
dim h,, is even. By using a result due to Parimala-Suresh [12] the dimension of
he cannot exceed 10, we obtain then 2n — 2r = dim h, € {0,2,4,6,8,10}.

The case dim h, = 2 is impossible because in this case d+ h, = 1 implies the
isotropy of h,. Consequently 2n — 2r = 2 is impossible.

The case dimh, = 4 is possible, we can take the anisotropic form h, =
(1,p, —u, —pu) which has trivial discriminant where u € Zp*\Zp*Q. This form
is anisotropic over Q,(t). The case 2n — 2r = 4 is then possible.
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The case dim h, = 6 is possible. Consider the biquaternion division algebra
(u,t) @k (t +1,p). The fact that this algebra is a division algebra can be found
in an appendix of the Saltman’s paper [18] due to W. Jacob and J.-P. Tignol.
Let h, = (u,t,—ut,—(t + 1), —p, (t + 1)p) be the Albert form of this algebra.
This form is anisotropic and has trivial discriminant. Consequently 2n —2r = 6
is possible.

The case dimh, = 8 is also possible. We can take the anisotropic form
he = (1,t) ® (1, p, —u, —pu). The anisotropy of h, can be deduced for example
from Lemma 8.9.

(2) If d = 2, D is a quaternion division algebra over k. Now (10) implies
that d+ h = d4 hy, = 1. We write D = (a,b), the quaternion division algebra
over k generated by i, j with 2 = a € k*, j2 = b € k*, ij = —ji. Let
L = k(i) = k(y/a) C D. According to Proposition 2.2, u(D,o) = u(D,”,—1)
where ~ is the canonical involution of D.

As L is the function field of a p-adic field (p # 2), we have u(L) < 10 (cf. [12,
4.5]). According to Lemma 8.1, u(L, ;) < 4. Now by applying Corollary 3.4
we obtain:

1
u(D,”,—-1) < 0+8 =
2

Consequently dim h, < 9. We have then n — 2r € {0,1,2,--- ,9}.

The case dimh, = 1 is impossible because the discriminant of every skew
hermitian form over D of dimension 1 is different from 1. Consequently the case
n — 2r = 1 is impossible.

The case dim h, = 2 is possible. To construct, consider an arbitrary nonde-
generate skew hermitian form hg of dimension 1 over (Dy,0g) where Dy is the
unique quaternion division algebra over Q, and oy is its canonical involution.
Consider the skew hermitian form

9.

h = ho & the (11)

According to Lemma 8.9, A is anisotropic, moreover its discriminant is trivial.
We conclude that the case n — 2r = 2 is possible.

It is well known that, there exists an anisotropic skew hermitian form of
dimension 3 over Dy (cf. [19, Ch. 10, 3.6], [15] or [22]). The restriction of this
form to (D, o) is anisotropic. Consequently the case dimh, = 3 or n — 2r = 3
is possible.

The cases dim h, = 4 or 6 are similar; we take an anisotropic skew hermitian
form hg over (Dy, o) of dimension 2 or 3 and we consider the anisotropic form
h defined in (11).

For the case dim h, = 5, we first consider a subform of dimension 5 of the
anisotropic skew hermitian form of dimension 6 over (D, o) that we constructed
above. By multiplying this form by its discriminant, we obtain an anisotropic
form of dimension 5 with trivial discriminant. Therefore n — 2r = 5 is possible.

(3) If d = 4, D is a biquaternion algebra. We write D = D1 ® Dy where Dy
and Dy are two quaternion algebras. We have u(D, o) = u(D; ® D3,”®") where
~ (resp. ) is the canonical involution of D; (resp. Ds). Let L be a maximal
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subfield of D stable under ~. According to Proposition 3.1 and Proposition 3.10
we have

WDy ® Dy, ®7) <iuDi®L,”®id,—1)+u(D;®L,”®")

<5 +6=7,

We obtain then u(D, o) < 10. Now (10) implies that 0 < n/2 —2r < 10. O

Corollary 8.11. The anisotropic indices 1D7(l1,2) for 2 <n <4 and 1D§L2,2J for
2 < n <6 occur over k= Qp(t) with p # 2.

Type D,, outer

Proposition 8.12. Let k = Q(t) with p # 2. If the index 2D§g2 occurs over k
then d € {1,2,4}. Moreover:

(1) For d =1 we have n —r € {0,1,2,3,4,5}
(2) For d =2 we have n—2r € {0,1,2,3,5,6,7,8,9}
(3) For d =4 we have n —4r € {0,2,---,20}.

Proof. We use the notation of the proof of Proposition 8.10. The criterion
for the existence of 2D\, is the same as for ' D{) except dih # 1 (cf. [21]).
Therefore we have d € {1,2,4}.

(1) For d = 1, dim h, = 2 is possible; it is enough to choose the anisotropic
form (1,p). Consequently n —r =1 is possible.

The case dim h, = 4 is possible. In fact it is enough to choose a subform
of dimension 4 of the anisotropic form (1,t) ® (1,p, —u, —pu) with nontrivial
discriminant. We can choose for example (p, —u, —pu, t). Consequently n—r = 2
is possible.

For dimh, = 6 we can choose (p, —u, —pu,tp, —tu, —tpu). Consequently
n —r = 3 is possible.

(2) For d = 2, D is a quaternion algebra over k. We have that dimh, < 9
as in the proof of Proposition 8.10.

For the case dim h, = 1, it is enough to consider a skew hermitian form of
dimension 1 which has necessarily nontrivial discriminant. Consequently the
case n — 2r = 1 is possible.

For the case dim h, = 2, we consider two arbitrary skew symmetric elements
of Dy = (—p,u)q, with different reduced norm modulo Qp*2. We denote these
elements by a and b. Now consider the skew hermitian form h = (a,tb) over
D = Dy®q, Qp(t). The form h is anisotropic form with nontrivial discriminant.
Consequently n — 2r = 2 is possible.

The case dim h, = 3 is possible. In fact, there exists a skew hermitian form
ho of dimension 2 with discriminant equal to ¢ # 1 € Qp*/(@p*2 (cf. [19, Ch.
10, 3.6], [15] or [22]). We also consider a skew hermitian form h{, over (Dy, 0p)
of dimension 1 and with the discriminant equal to ¢/ # 1 € Qp*/Qp*Q. We
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may suppose that ¢’ # ¢ (this choice is possible because Card(Qp*/Qp*Q) =4).
Thanks to Lemma 8.9, the form h, = ho ® th{, is an anisotropic skew hermitian
form over (D, o) of dimension 3 and with nontrivial discriminant. Consequently
n — 2r = 3 is also possible.

For dimh, = 5, we consider an anisotropic skew hermitian form hgy over
(Do, 09) of dimension 3 and with trivial discriminant and an anisotropic skew
hermitian form h{ over (Dy, 0¢) of dimension 2 and with nontrivial discriminant
(According to [19, Ch. 10, 3.6], [15] or [22] these choices are possible). Now
consider the form h = hg @ th{, over (D, o) which is of dimension 5 and with
nontrivial discriminant Consequently n — 2r = 5 is possible.

Suppose that h ~ {a1,as, - ,as) is an anisotropic skew hermitian form of
dimension 5 and with nontrivial discriminant constructed as in the preceding
paragraph. At least one of the forms (a;,,- -, a;4) has nontrivial discriminant
where 1 < i < ip < i3 < iy < 5. Consequently dim h, = n — 2r = 4 is possible.

(3) For d = 4, D is a biquaternion algebra. As in the proof of Proposition 8.10
(3), we obtain n/2 — 2r < 10. O

Corollary 8.13. The anisotropic indices 2Dﬁ% for 2 < n <3 and QDS% for
1< n <5 occur over k= Qp(t) with p # 2.
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