
Hermitian forms and the u-invariantM. G. MahmoudiDe
ember 2004Abstra
tWe study the notion of hermitian u-invariant. We give some estimatesof the u-invariant of a division algebra with involution in terms of the
u-invariant of some subalgebras stable under the involution. We also �ndsome �niteness results for 
omparing the u-invariant of a division algebrawith involution and that of its 
entre. Some results about the values ofthis invariant are also given. A des
ription of the Tits index of some al-gebrai
 groups of 
lassi
al type over Qp(t), p 6= 2 is given as an appli
ation.Mathemati
s Subje
t Classi�
ation (2000): 11E39, 11E81, 11E571 Introdu
tionThe u-invariant is one of the most interesting invariants in the algebrai
 theory ofquadrati
 forms. This invariant was introdu
ed by Kaplansky over non formallyreal �elds and by Elman and Lam [2℄ over formally real �elds. (In this work wealways assume that 
hara
teristi
 6= 2).Determination of this invariant for a given �eld, has been of great importan
ein the literature. For a wide 
lass of �elds, the values of this invariant are notknown and sometimes it is not 
lear if the u-invariant of su
h �elds is �nite.Obtaining lower and upper bounds for this invariant and 
omparing the u-invariant of a given �eld K with the u-invariant of its sub�elds or the �elds
ontaining K are good approa
hes to the problem.Systems of quadrati
 forms and exa
t sequen
es of Witt groups are twopowerful tools used in the literature to obtain good lower and upper boundsfor the u-invariant. For example, systems of quadrati
 forms have been used in[8℄ by Leep to obtain the bound u(L) 6

n+1
2

u(K) for a �eld extension L/K ofdegree n.Using exa
t sequen
es of Witt groups is however less 
ommon than usingsystems of quadrati
 forms, but one 
an mention an exa
t triangle of Wittgroups used by Elman and Lam (
f. [2℄, [3℄) to 
ompare the u-invariant of a�eld with the u-invariant of a quadrati
 extension of this �eld.In this work, we try to adapt these tools in the 
ontext of hermitian formsover a division algebra with involution. To our best knowledge, the notion ofthe u-invariant of a division algebra with involution appears, for the �rst time,1



in P�ster's paper [13℄ in 
onne
tion with systems of quadrati
 forms over aformally real �eld and with ex
eption of [13℄, this notion has not been furtherstudied in the literature.Our initial motivation for studying this notion was to des
ribe the Tits indexof some 
lassi
al groups over Qp(t), p 6= 2 for whi
h we would have need toobtain some information about the maximal dimension of anisotropi
 hermitianforms over some division algebras with involution over Qp(t), p 6= 2. The results
on
erning Tits indi
es are given in the last se
tion of this paper as appli
ationsof our main results. We later 
ome ba
k to this subje
t.Let D be a division algebra with an involution σ and let ε be an elementof the 
entre of D with σ(ε)ε = 1. The u-invariant with respe
t to ε, is byde�nition the supremum over the dimension of anisotropi
 ε-hermitian formsover (D,σ). This number is denoted by u(D,σ, ε) (value ∞ is admitted also).Let E be a subdivision algebra of D stable under σ. We are interested in thefollowing questions:Question 1.1. (Going up)Under whi
h 
onditions does the �niteness of u(E, σ|E , ε) imply that of
u(D,σ, ε) and 
an one obtain an upper bound for u(D,σ, ε) in terms of u(E, σ|E , ε)?Question 1.2. (Going down)Under whi
h 
onditions does the �niteness of u(D,σ, ε) imply that of u(E, σ|E , ε)and 
an one obtain a lower bound for u(D,σ, ε) in terms of u(E, σ|E , ε)?A substantial part of this work is devoted to these questions. In 
ertainsituations, we are able to give pre
ise answers. We will espe
ially deal with thefollowing 
ases:

• D/E is a quadrati
 extension of �elds (
f. Remark 3.5, Proposition 5.1,Proposition 5.10).
• D is a quaternion algebra and E is a maximal sub�eld of D (
f. Corol-lary 3.4, Remark 3.5, Corollary 5.8).
• more generally if there exist two invertible elements λ and µ in D su
hthat λµ = −µλ, σ(λ) = −λ, σ(µ) = −µ and K(λ) is a quadrati
 extensionof K where K is the 
entre of D. Let E be the 
entralizer of K(λ) in D(
f. Proposition 3.1, Remark 3.2, Proposition 5.7).
• E is the �xed �eld of the restri
tion of σ to the 
entre of D (
f. Proposi-tion 3.6).
• D is the tensor produ
t E ⊗k L where k is the �xed �eld of σ|K , K isthe 
entre of D and L/k is a �eld extension (
f. Proposition 3.8, Propo-sition 3.10, Remark 3.11). 2



In parti
ular the Question 1.1 has an a�rmative answer when E is the �xed�eld of σ|K where K is the 
entre of D. By 
ontrast, the �niteness of u(D,σ, ε)does not imply, in general, that of u(k), for example if D = (−1,−1)R is thealgebra of Hamiltonian quaternions and σ is its 
anoni
al involution we have
u(D,σ,−1) = 1 and u(R) = ∞. In fa
t we prove that if dimK D is a powerof 2, and if both u(D,σ, ε) and u(D,σ,−ε) are �nite then u(K,σ|K) < ∞ (
f.Theorem 6.2). In parti
ular if σ is of the �rst kind, then u(K) is �nite if andonly if u(D,σ, 1) and u(D,σ,−1) are �nite.The prin
ipal ideas to prove these results are to use some exa
t sequen
es ofWitt groups, mainly the exa
t sequen
e of Milnor-Husemoller [19, Ch.10, 1.2℄,Lewis [9℄ and Parimala-Sridharan-Suresh [1, Appendix 2℄ and to use the resultsof Leep [8℄ and P�ster [13℄ on systems of quadrati
 and hermitian forms. We alsouse a variation of the exa
t sequen
e of Parimala-Sridharan-Suresh dis
ussed in[4℄. On one o

asion, we need to 
ompare the hermitian u-invariant of a �eldwith that of some of its sub�elds. We do this by using an exa
t sequen
e ofWitt groups of biquadrati
 extensions. We present this exa
t sequen
e in �4,(see Theorem 4.3). This exa
t sequen
e may be regarded as a parti
ular 
ase ofa general exa
t sequen
e of L-groups and proje
tive Witt groups due to Rani
ki,see [16℄ and [17, p.242℄.Another natural question is to ask about possible values for the u-invariantfor some parti
ular type of division algebra with involution. We 
onsider the
ase of a quadrati
 extension L/K together with the nontrivial automorphism
¯ and we prove that u(L, )̄ 6= 3, 5, 7 (
f. Proposition 7.3).This result is a hermitian analogue of a 
lassi
al theorem in the theory ofquadrati
 forms whi
h states that the u-invariant 
annot be equal to 3, 5 and 7(
f. [19, Ch.2, 16.2℄). Our proof is of 
ourse similar to the proof of this theorem.One 
ould also de�ne the notion of u-invariant for 
entral simple algebraswith involution. But thanks to Morita theory, the problem 
an be translated todivision algebras with involution, so we are only interested in this situation.As David Lewis pointed out to me, one 
an also de�ne the notion of the
u-invariant for G-equivariant forms, i.e., the forms stable under the a
tion of a�nite group G and with the same ideas one 
an obtain some results that aresimilar to those stated here.Patri
k Morandi pointed out to me that by using a version of a theorem ofSpringer for hermitian forms obtained by Larmour [7℄, one 
an 
al
ulate the
u-invariant of a valued division algebra over a henselian valued �eld, in termsof the u-invariant of its residue division algebra.Finally in se
tion �8, we give some appli
ations of these results to des
ribethe Tits index of some 
lassi
al groups over Qp(t) with p 6= 2. We re
all thata

ording to a generalized Witt de
omposition theorem ([21℄), semisimple alge-brai
 groups de�ned over an arbitrary �eld K are determined up to isomorphismby their Ksep 
lass, their anisotropi
 kernel and their Tits index, see Tits [21℄or Springer [20, Ch. 17℄ for these notions. Des
ribing the Tits index is thereforeimportant. For the groups of 
lassi
al type, these indi
es 
an be des
ribed interms of algebras with involution. For �nite �elds, the �eld of real numbers,3



number �elds and p-adi
 �elds, all possible indi
es are known (see [21℄). We tryto des
ribe these indi
es over Qp(t), p 6= 2 (
f. �8).In 
onsequen
e of the results due to Saltman [18℄ on the stru
ture of thegroup Br2(Qp(t)), the only division algebras over Qp(t) with an involution ofthe �rst kind are split ones, quaternions and biquaternions. For split 
ase, bya result due to Parimala and Suresh [12℄ we have 8 6 u(Qp(t)) 6 10 (an earlierresult due to Ho�mann and Van Geel [5℄ states that 8 6 u(Qp(t)) 6 22). Byusing these results and by examining anisotropi
 hermitian and skew hermitianforms over quaternion algebras and biquaternions algebras over Qp(t) we obtainsome information about possible indi
es.2 The u-invariant of a division algebra with in-volutionLet K be a �eld of 
hara
teristi
 di�erent from 2. For a division algebra D over
K, a K/k-involution σ on D is an involution where k is the �xed �eld of σ|K .Let us denote by Sε(D,σ) the semigroup of isometry 
lasses of ε-hermitianforms over (D,σ) and by W ε(D,σ) the Witt group of ε-hermitian forms over
(D,σ).We refer to [19℄ and [6℄ for basi
 notions about quadrati
 and hermitianforms and algebras with involution.Every division algebra over a �eld K 
onsidered in this paper is impli
itlyassumed to be K-
entral.Let D be a division algebra over a �eld K with an involution σ. Let ε ∈ Kwith εσ(ε) = 1. A system h = (h1, · · · , hr) : V × V → Dr of r, ε-hermitianforms over a right D-ve
tor spa
e V is 
alled anisotropi
 if x ∈ V , h(x, x) = 0implies that x = 0.We 
onsider the u-invariant in the sense of Kaplansky:De�nition 2.1. ([14, Ch. 9, De�nition 2.4℄)

ur(D,σ, ε) = sup{dimD V ; there exists an anisotropi
 ε-hermitian map
h : V × V → Dr}Let us simplify the notation by writing u(D,σ, ε) instead of u1(D,σ, ε) andby u(D,σ) instead of u(D,σ, 1).We re
all that a

ording to a result due to Leep [8℄, the system u-invariant

ur = u(k) satis�es ur 6 r u1 +ur−1 and ur 6
r(r+1)

2
u1 . This result has beengeneralized by P�ster [13℄ to the system u-invariant of ε-hermitian forms overa division algebra with involution and also over skew �elds with involution notne
essarily �nite-dimensional over their 
entres.As a �rst observation, we have:Proposition 2.2. Let D be a division algebra over a �eld K. Let σ and τ betwo involutions on D with the same restri
tion to K: σ|K = τ |K . Let ε ∈ Kwith εσ(ε) = 1. 4



(1) If σ and τ are of the se
ond kind and ε′ ∈ K with ε′τ(ε′) = 1 then
u(D,σ, ε) and u(D, τ, ε′) do not depend on the 
hoi
e of ε and ε′; moreover
u(D,σ, ε) = u(D, τ, ε′).(2) If σ and τ are of the �rst kind then we have: u(D,σ, ε) = u(D, τ, ε) if σand τ have the same type, otherwise we have u(D,σ, ε) = u(D, τ,−ε).Proof. For (1), there exists an element b ∈ D∗ su
h that σ = Int(b) ◦ τ . Wehave bτ(b)−1 = λ ∈ K∗. We obtain then λτ(λ) = 1. Let λ′ = λ−1ε′ε−1. Wehave λ′τ(λ′) = 1. It follows from Hilbert 90 that there exists µ ∈ K∗ su
h that

µτ(µ−1) = λ′.If we take c = µb, then σ = Int(b) ◦ τ = Int(c) ◦ τ . Now the 
orresponden
e
ϕ 7→ c−1ϕ gives a bije
tion between the semigroups Sε(D,σ) and Sε′

(D, τ).This bije
tion preserves isometry, orthogonal sum and dimension. So we 
on-
lude that u(D,σ, ε) = u(D, τ, ε′).For (2), we use the same argument. There exists b ∈ D∗ su
h that σ =
Int (b) ◦ τ . We have λ := bτ(b)−1 ∈ K∗. Moreover λ = 1 if σ and τ are of thesame type and λ = −1 if σ and τ are of di�erent type. The 
orresponden
e
ϕ 7→ b−1ϕ from Sε(D,σ) to Sλε(D, τ) gives u(D,σ, ε) = u(D, τ, λε).Remark 2.3. As pointed out to me by the Referee, the pre
eding propositiona
tually says that for a given division algebra D, there are three possible u-invariants, let us say a unitary, an orthogonal and a symple
ti
 one; namely forany σ and ε, the u-invariant of (D,σ, ε) 
oin
ides with one of them, dependingon the type of σ and the value of ε. Note that for unitary 
ase, the pre
edingproposition states that for a given D, u(D,σ, ε) depends only to the restri
tionof σ to the 
entre of D. This leads us to introdu
e the notation u+(D) forthe orthogonal u-invariant, u−(D) for the symple
ti
 u-invariant (this was alsosuggested to me by Karim Be
her). In this way, if τ1 is a symple
ti
 involutionand τ2 is an orthogonal involution on D we have u+(D) = u(D, τ1,−1) =
u(D, τ2, 1) and u−(D) = u(D, τ1, 1) = u(D, τ2,−1). This point of view mightlead to some simpli�
ation in the presentation of some parts of this paper, 
f.for instan
e Corollary 3.4 and Proposition 3.6 or Theorem 6.2.3 Going up resultsLet D be a division algebra over a �eld K with an involution σ. We supposethat there exist two invertible elements λ and µ in D su
h that λµ = −µλ,
σ(λ) = −λ, σ(µ) = −µ and K(λ) is a quadrati
 extension of K.Let D̃ be the 
entralizer of L = K(λ) in D. A

ording to [1, Appendix 2℄,we have µD̃µ−1 = D̃, µ2 ∈ D̃, µ2 ∈ D̃ and D = D̃ ⊕ µD̃. On D̃ we have twonatural involutions σ1 = σ|D and σ2 = Int(µ−1)◦σ1. We have deg D̃ = 1

2 deg D.The involution σ1 is always of the se
ond kind. The involution σ2 is of the samekind as σ but of di�erent type if σ is of the �rst kind. See [1, �3.1℄ for moredetails. 5



Let πi : D → D̃ be the L-linear proje
tions π1(α+µβ) = α and π2(α+µβ) =
β. If h : V × V → D is a ε-hermitian spa
e over (D,σ), then hi : V × V →
D̃ is de�ned by hi(x, y) = πi(h(x, y)). It is easily veri�ed that h1 is an ε-hermitian spa
e over (D̃, σ1) and h2 is an −ε-hermitian spa
e over (D̃, σ2). See[1, Appendix 2℄ for more details.We prove the following proposition whi
h plays an important role in thispaper.Proposition 3.1. Let D be a division algebra over a �eld K with a K/k-involution σ. Suppose that there exist λ, µ ∈ D∗ su
h that σ(λ) = −λ,
σ(µ) = −µ, λµ = −µλ and L = K(λ) is a quadrati
 extension of K. Let
D̃ be the 
entralizer of L in D, σ1 = σ| eD and σ2 = Int(µ−1) ◦ σ1 and ε ∈ Kwith εσ(ε) = 1. Then we have:

u(D,σ, ε) 6
1

2
u(D̃, σ2,−ε) + u(D̃, σ1, ε).Proof. Let π1 and π2 be the proje
tions from D to D̃ indu
ed by the de-
omposition D = D̃ ⊕ µD̃, i.e, πi(d1 + µd2) = di, for i = 1, 2. Let (V, h) bea nondegenerate ε-hermitian spa
e over (D,σ) and h1 = π1h, h2 = π2h. Wehave dim eD(h1) = dim eD(h2) = 2 dimD(h). If dim eD(h2) > u(D̃, σ2,−ε) + 2m − 1for some positive integer m > 1, then h2 
ontains an orthogonal sum of mhyperboli
 planes. Consequently h2 is totally isotropi
 over a D̃-ve
tor sub-spa
e W of V of dimension m. If moreover m > u(D̃, σ1, ε) + 1 then h1 isisotropi
 over W . In this way, in order that h be isotropi
, it is su�
ient tohave 2n = dim eD(h2) > u(D̃, σ2,−ε) + 2 u(D̃, σ1, ε) + 1. This is equivalent to

u(D,σ, ε) 6
1
2

u(D̃, σ2,−ε) + u(D̃, σ1, ε).Remark 3.2. In the proof of the previous proposition, one may inter
hangethe role of h1 et h2, in this way we obtain:
u(D,σ, ε) 6 u(D̃, σ2,−ε) +

1

2
u(D̃, σ1, ε).Remark 3.3. One may also give an alternative proof of the previous resultby using an exa
t sequen
e of Parimala-Sridharan-Suresh. See the proof ofProposition 5.7 whi
h uses this idea.Corollary 3.4. Let Q = (a, b)K be a quaternion division algebra over a �eld

K. Let ¯ be the 
anoni
al involution of Q and ˆ an orthogonal involution of Qand let L = K(
√

a) ⊂ Q whi
h is stable under ,̄ then we have:
u(Q, )̂ = u(Q, ,̄−1) 6 min{ 1

2
u(L) + u(L, )̄,u(L) + 1

2
u(L, )̄},

u(Q, )̄ = u(Q, ,̂−1) 6
1
2

u(L, )̄.Remark 3.5. Let L/K be a quadrati
 extension and let ¯ be its nontrivial au-tomorphism. We have the bound u(L, )̄ 6
1
2
u(K) be
ause to every anisotropi
hermitian form over (L, )̄ of dimension n, one 
an asso
iate an anisotropi
6



quadrati
 form over K of dimension 2n. In the same way, if Q is a quaternionalgebra over a �eld K with the 
anoni
al involution ,̄ we have u(Q, )̄ 6
1
4

u(K).See also Proposition 3.6 whi
h states a more general result.Proposition 3.6. Let D be a division algebra of degree m over its 
entre Kwith a K/k-involution σ and let ε ∈ K with εσ(ε) = 1. Then :
u(D,σ, ε) 6

r(r + 1)

2m2[K : k]
u(k) (1)where r is the dimension of k-ve
tor spa
e of ε-hermitian elements of D. Inparti
ular, if u(k) is �nite then so is u(D,σ, ε).Proof. Let (V, h) be an anisotropi
 ε-hermitian spa
e over (D,σ) of dimension

n. Take Dε the k-ve
tor spa
e of ε-hermitian elements of D, in other words:
Dε = {x ∈ D : σ(x) = εx}.It is well known that D = D+1⊕D−1 and dimk(D+1) = dimk(D−1) = m2 when

σ is of the se
ond kind and dimk(D+1) = 1
2m(m + 1) or 1

2m(m − 1) when σ isof the �rst kind. Let {e1, · · · , er} be a k-basis of Dε and {f1, · · · , fs} a k-basisof D−ε. One 
an write h in the form:
h(x, y) = ϕ1(x, y)e1 + · · · + ϕr(x, y)er

+ ψ1(x, y)f1 + · · · + ψs(x, y)fswhere ϕ1, · · · , ϕr are symmetri
 bilinear forms and ψ1, · · · , ψs are skew sym-metri
 bilinear forms over k (the forms ϕi (1 6 i 6 r) and ψi (1 6 i 6 s) arepossibly degenerate). So ψi(x, x) = 0 for all x ∈ V . We dedu
e that
h(x, x) = ϕ1(x, x)e1 + · · · + ϕr(x, x)er.As h is anisotropi
, ϕ1, · · · , ϕr have no 
ommon isotropi
 ve
tor. Now by usinga result due to Leep (
f. [14, Ch 9, 2.1℄ or [19, Ch.2, 16.5℄) we obtain:

m2[K : k]n = dimk(V ) 6 ur(k) 6
r(r + 1)

2
u(k).Therefore n 6

r(r+1)
2m2[K:k]

u(k) whi
h implies the 
laimed inequality (1).Remark 3.7. The previous result is a �niteness statement. For many situa-tions, one may have better estimates for u(D,σ, ε). For example for quadrati
extensions and quaternion algebras, see Proposition 3.1, Remark 3.2, Corollary3.4, Proposition 5.1, Proposition 3.8, Proposition 3.10, Remark 3.11. Neverthe-less this bound is optimal for m = 1 or (m = 2 and σ symple
ti
).Proposition 3.8. Let D be a division algebra over a �eld K with a K/k-involution σ. Let L/k be an extension of degree n and suppose that D ⊗k L isalso a division algebra. Then
u(D ⊗k L, σ ⊗ id, ε) 6

n + 1

2
u(D,σ, ε). (2)In parti
ular the �niteness of u(D,σ, ε) implies that of u(D ⊗k L, σ ⊗ id, ε).7



Proof. Let (V, ϕ) be an ε-hermitian spa
e over (D ⊗k L, σ ⊗ id). We 
hoosea k-basis {e1, · · · , en} of L. We 
an write ϕ(x, y) = (ϕ1(x, y) ⊗ e1)) + · · · +
(ϕn(x, y) ⊗ en) where ϕ1, · · · , ϕn are ε-hermitian forms (possibly degenerate)over (D,σ). If ϕ is anisotropi
 and dim(ϕ) = m, then ϕ1, · · · , ϕn have no
ommon isotropi
 ve
tor, therefore mn = dim(ϕi) 6 un(D,σ, ε) so:

u(D ⊗k L, σ ⊗ id, ε) 6
1

n
un(D,σ, ε).A

ording to a result due to P�ster (
f. [14, Ch.9, 2.5℄ or [13℄) we have:

un(D,σ, ε) 6
n(n+1)

2 u(D,σ, ε). This implies (2).Remark 3.9. If in the previous statement we take D = k, then we retrieveLeep's estimate u(L) 6
n+1

2
u(k).Proposition 3.10. Let D be a division algebra over a �eld K with a K/k-involution σ. Let L/k be a quadrati
 extension and let ¯ : L −→ L be thenontrivial k-automorphism of L. Suppose that D ⊗k L is a division algebra.Then we have:

u(D ⊗k L, σ ⊗ ,̄ ε) 6
1

2
u(D,σ,−ε) + u(D,σ, ε).Proof. Let L = k(ξ) with ξ2 ∈ k and ξ̄ = −ξ. Let (V, ϕ) be an ε-hermitianspa
e over (D ⊗k L, σ ⊗ )̄. We 
an write ϕ in the form

ϕ(x, y) = ϕ1(x, y) ⊗ 1 + ϕ2(x, y) ⊗ ξ,where ϕ1 is an ε-hermitian form and ϕ2 is a −ε-hermitian form over (D,σ). Byrepeating the argument given in the proof of Proposition 3.1 we 
on
lude theresult.Remark 3.11. In the proof of Proposition 3.10, one 
an inter
hange the roleof ϕ1 and ϕ2, in this way we obtain:
u(D ⊗k L, σ ⊗ ,̄ ε) 6 u(D,σ,−ε) +

1

2
u(D,σ, ε).4 An exa
t sequen
e of Witt groups for biquadrati
extensionsLet L = K1 ⊗k K2/k be a �eld extension of degree 4 where K1/k and K2/kare two quadrati
 extensions with nontrivial automorphisms τ1 et τ2 (resp.).Suppose that K2 = k(λ) with λ ∈ K2, λ2 ∈ k and τ2(λ) = −λ. Every element

α of L 
an be uniquely written in the form α1 ⊗ 1 + α2 ⊗ λ where α1, α2 ∈ K1.We 
onsider two proje
tions:
π1 : L −→ K1 π2 : L −→ K1

α 7→ α1 α 7→ α28



For every nondegenerate hermitian spa
e (V, h) over (K1 ⊗k K2, τ1 ⊗ τ2) (resp.over (K1 ⊗k K2, τ1 ⊗ id)), we asso
iate the hermitian spa
e (V, π1h) (resp.
(V, π2h)) over (K1, τ1) de�ned by

(π1h)(x, y) = π1(h(x, y)), x, y ∈ V
(π2h)(x, y) = π2(h(x, y)), x, y ∈ VIt is easy to 
he
k that π1h and π2h are nondegenerate hermitian forms over

(K1, τ1).For every nondegenerate hermitian spa
e (W, f) over (K1, τ1), we asso
iatethe hermitian spa
es (W⊗kK2, ρ1f) over (K1⊗kK2, τ1⊗id) and (W⊗kK2, ρ2f)over (K1 ⊗k K2, τ1 ⊗ τ2) by
(ρ1f)(x ⊗ α, y ⊗ β) = f(x, y) ⊗ αβ, x, y ∈ W ; α, β ∈ K2

(ρ2f)(x ⊗ α, y ⊗ β) = f(x, y) ⊗ τ2(α)β, x, y ∈ W ; α, β ∈ K2Proposition 4.1. (1) Let (V, h) be a nondegenerate hermitian form of di-mension 1 over (K1 ⊗k K2, τ1 ⊗ τ2) with h ≃ 〈d〉 where d ∈ K1 ⊗k K2 and
(τ1 ⊗ τ2)(d) = d. Then π1h is isometri
 to

(
d1 d2λ

2

−d2λ
2 −d1λ

2

)where d1 = π1(d) and d2 = π2(d).(2) Let (V, h) be a nondegenerate hermitian spa
e of dimension 1 over (K1 ⊗k

K2, τ1 ⊗ id) with h ≃ 〈d〉 where d ∈ K1 ⊗k K2 and (τ1 ⊗ id)(d) = d. Then π2his isometri
 to (
d2 d1

d1 d2λ
2

)where d1 = π1(d) and d2 = π2(d).(3) For the one dimensional form f = 〈a〉 over (K1, τ1) we have
ρ1(f) ≃ 〈a ⊗ 1〉, ρ2(f) ≃ 〈a ⊗ 1〉.Proof. (1) Let 0 6= x ∈ V with h(x, x) = d. We have a basis {x, xλ} for the

K1-ve
tor spa
e V . In this basis we have:
(π1h)(x, x) = d1, (π1h)(x, xλ) = d2λ

2

(π1h)(xλ, x) = −d2λ
2 (π1h)(xλ, xλ) = −d1λ

2These relations imply the isometry we are looking for. The proof of (2) is similarand (3) is obvious.Proposition 4.2. (1) Let f be an anisotropi
 hermitian form over (K1, τ1) su
hthat ρ1f is isotropi
. Then f 
ontains a subform isometri
 to π1(〈d〉) where 〈d〉is a one dimensional form over (K1 ⊗ K2, τ1 ⊗ τ2).(2) Let h be an anisotropi
 hermitian form over (K1 ⊗k K2, τ1 ⊗ id) su
h that
π2h is isotropi
 , then there exists a one dimensional form 〈a〉 over (K1, τ1)9



su
h that f 
ontains a subform isometri
 to ρ1(〈a〉).(3) Let f be an isotropi
 hermitian form over (K1, τ1) su
h that ρ2f is isotropi
.Then f 
ontains a subform isometri
 to π2(〈d〉) where 〈d〉 is a one dimensionalhermitian form over (K1 ⊗k K2, τ1 ⊗ id).Proof. (1) Let v = x1 ⊗ 1 + y1 ⊗ λ 6= 0 be an isotropi
 ve
tor for ρ1(f), i.e.,
ρ1(f)(v, v) = 0. This relation implies that

{
f(x1, x1) + f(y1, y1)λ

2 = 0
f(x1, y1) + f(y1, x1) = 0

(3)The ve
tors x1 and y1 are linearly independent over K1. In fa
t if x1 = αy1 forsome α ∈ K1, the previous system gives
{

ατ1(α) + λ2 = 0
τ1(α) + α = 0whi
h implies that α2 = λ2 so K1 ≃ K2, 
ontradi
tion be
ause K1 ⊗k K2 isa �eld. Now 
onsider the K1-ve
tor spa
e W generated by x1 and y1. For

d1 = f(y1, y1) and d2 = f(y1, x1)λ
−2, the representing matrix of f |W in thebasis {y1, x1} is (

d1 d2λ
2

−d2λ
2 −d1λ

2

)A

ording to Proposition 4.1, for a hermitian element d = d1 ⊗ 1 + d2 ⊗ λ withrespe
t to (τ1 ⊗ τ2) we have
π1(〈d〉) ≃

(
d1 d2λ

2

−d2λ
2 −d1λ

2

)so f 
ontains a subform isometri
 to π1(〈d〉).(2) Let x 6= 0 be an isotropi
 ve
tor for π2h, i.e., (π2h)(x, x) = 0. This relationimplies that h(x, x) = a⊗1 ∈ K1⊗k K2 for some a ∈ K1. Sin
e h is anisotropi
,we have a 6= 0. We dedu
e then that h 
ontains a subform isometri
 to ρ1(〈a〉).(3) The argument is similar to that of (1). Let v = x1 ⊗ 1 + y1 ⊗ λ 6= 0 be ananisotropi
 ve
tor for ρ2h, i.e., (ρ2h)(v, v) = 0. This relation implies that
{

f(x1, x1) − f(y1, y1)λ
2 = 0

f(x1, y1) − f(y1, x1) = 0The ve
tors x1 and y1 are linearly independent over K1. Let W be the K1-ve
tor spa
e generated by x1 and y1. The matrix of the form f |W with respe
tto the basis {y1, x1} is (
d2 d1

d1 d2λ
2

)A

ording to Proposition 4.1, for the one dimensional hermitian form 〈d〉 over
(K1 ⊗k K2, τ1 ⊗ id) where d = d1 ⊗ 1 + d2 ⊗ λ we have:

π2(〈d〉) ≃
(

d2 d1

d1 d2λ
2

)whi
h 
ompletes the proof. 10



Theorem 4.3. We have the following exa
t sequen
e of Witt groups:
W (K1 ⊗k K2, τ1 ⊗ τ2)

π1→ W (K1, τ1)
ρ1→ W (K1 ⊗k K2, τ1 ⊗ id)

π2→ W (K1, τ1)
ρ2→ W (K1 ⊗k K2, τ1 ⊗ τ2)Proof. Thanks to the previous proposition, it is enough to verify that thissequen
e is a 
omplex. Let 〈d〉 be a one dimensional hermitian form over (K1⊗k

K2, τ1 ⊗ τ2) where d = d1 ⊗ 1 + d2 ⊗ λ where d1, d2 ∈ K1. A

ording toProposition 4.1 we have
π1(〈d〉) ≃

(
d1 d2λ

2

−d2λ
2 −d1λ

2

)
.We obtain then

ρ1π1(〈d〉) ≃
(

d1 ⊗ 1 d2λ
2 ⊗ 1

−d2λ
2 ⊗ 1 −d1λ

2 ⊗ 1

)A simple 
al
ulation shows that
v =

[
1 ⊗ 1
1 ⊗ λ−1

]is an isotropi
 ve
tor for ρ1π1(〈d〉). Consequently we have ρ1π1 = 0.In order to show that π2ρ1 = 0, we 
onsider a one dimensional form 〈a〉 over
(K1, τ1). We have ρ1(〈a〉) ≃ 〈a ⊗ 1〉. So

π2ρ1(〈a〉) ≃
(

0 a
a 0

)whi
h is a hyperboli
 form.In order to show that ρ2π2 = 0, we 
onsider a one dimensional form 〈d〉 over
(K1⊗k K2, τ1⊗ id) where d = d1⊗1+d1⊗λ is a hermitian element with respe
tto (τ1 ⊗ id) with d1, d2 ∈ K1. We have:

ρ2π2(〈d〉) ≃
(

d2 ⊗ 1 d1 ⊗ 1
d1 ⊗ 1 d2λ

2 ⊗ 1

)
.This form is hyperboli
 be
ause

v =

[
1 ⊗ 1
1 ⊗ λ−1

]is an isotropi
 ve
tor.5 Going down resultsProposition 5.1. Let L/K be a quadrati
 extension and let ¯ be its nontrivialautomorphism. Then u(L) and u(L, )̄ are �nite if and only if u(K) is �nite,moreover we have u(K) 6 2 u(L, )̄ + u(L) and u(K) 6 u(L, )̄ + 2 u(L).11



Proof. We write L = K(
√

a) where a ∈ K∗. Let q be an anisotropi
 form ofdimension n over K. Consider the following exa
t sequen
e of Witt groups dueto Milnor-Husemoller [19, Ch.10, 1.2℄:
0 → W (L, )̄

π→ W (K)
r∗

→ W (L)In this exa
t sequen
e, π is the transfer map indu
ed by the proje
tion π : L →
K, x + y

√
a 7→ x and r∗ is the restri
tion map. If r∗(q) is anisotropi
, then q
ontains a subform isometri
 to 〈b,−ab〉 for some b ∈ K. We 
an then write (byindu
tion)

q ≃ (〈1,−a〉 ⊗ q1) ⊕ q2where q1, q2 are two nondegenerate quadrati
 forms over K so that r∗(q2) isanisotropi
. Let ϕ be the hermitian form over (L, )̄ indu
ed by q1. We have
π(ϕ) ≃ 〈1,−a〉 ⊗ q1. Therefore we have a Witt r∗-de
omposition, i.e., thereexists an orthogonal de
omposition q ≃ q′ ⊥ q′′ where q′ ≃ π(ϕ) for somenondegenerate hermitian form ϕ over (L, )̄ (in parti
ular r∗(q′) is hyperboli
)and r∗(q′′) is anisotropi
. We may suppose that ϕ is anisotropi
, therefore:
dim(q) = dim(π(ϕ)) + dim(q′′) = 2 dim(ϕ) + dim(q′′) 6 2 u(L, )̄ + u(L) whi
himplies the result. If we use the same argument with the following exa
t sequen
eof Witt groups due to Lewis [9℄:

W (L)
s∗→ W (K)

r∗

→ W (L, )̄,we obtain u(K) 6 u(L, )̄ + 2 u(L). In this exa
t sequen
e, s∗ is the S
harlautransfer map and r∗ is the restri
tion map.Now suppose that we have u(K) < ∞. A

ording to a result due to Elmanand Lam (
f. [2, theorem 4.3℄) we have u(L) 6
3
2

u(K) < ∞. The �nitenessof u(L, )̄ is easy to 
he
k. In fa
t if ϕ = 〈a1, · · · , an〉 is a form over (L, )̄where ai ∈ K, its tra
e form is isometri
 to ψ = 〈a1, · · · , an,−aa1, · · · ,−aan〉.Isotropy of ϕ and ψ are equivalent. The �niteness of u(K) implies thereforethat of u(L, )̄.Remark 5.2. One 
an regard the estimates of Proposition 5.1 as an improve-ment, in some situations, of the estimate u(K) 6 4 u(L) for a non formally real�eld K due to Elman [3, Theorem 3.1(iii)℄, be
ause one 
an �nd many exampleswhere
min{2 u(L, )̄ + u(L) , u(L, )̄ + 2 u(L)} < 4 u(L).For example if K is a p-adi
 �eld then u(K) = u(L) = 4 and u(L, )̄ 6 2.Our bound is independent of the formally real nature of L or K. To our bestknowledge, the going down result of Elman, is the best one for arbitrary �elds.In the sequel, we need the following lemma whi
h is an immediate 
onse-quen
e of a theorem of Springer.Lemma 5.3. Let L/K be a quadrati
 extension and let τ be its nontrivial auto-morphism. Let M/K be an extension of odd degree and let ϕ be an anisotropi
hermitian form over (L, τ). Then ϕ remains anisotropi
 over (L⊗K M, τ ⊗ id).12



Proof. For a hermitian spa
e (V, ϕ) over (L, τ), we denote its tra
e formby tr(ϕ), de�ned by tr(ϕ)(x, y) = trL/K(ϕ(x, y)) for every x, y ∈ V . We have
tr(ϕ|(L⊗KM)) ≃ tr(ϕ)|M . If ϕ|(L⊗KM) is isotropi
, then tr(ϕ)|M is also isotropi
.The strong version of Springer's theorem implies that tr(ϕ) is isotropi
. Conse-quently ϕ is isotropi
.Corollary 5.4. With the notation of the previous lemma we have:

u(L, τ) 6 u(L ⊗K M, τ ⊗ id).Let D be a division algebra over a �eld K with an involution σ. Supposethat there exist λ, µ ∈ D∗ su
h that σ(λ) = −λ, σ(µ) = −µ, λµ = −µλand L = K(λ) is a quadrati
 extension of K. In this situation, we have thefollowing exa
t sequen
e of Witt groups due to Parimala, Sridharan and Suresh[1, Appendix 2℄:
W ε(D,σ)

πε

1→ W ε(D̃, σ1)
ρε

1→ W−ε(D,σ)
π−ε

2→ W ε(D̃, σ2) (4)In this sequen
e, the map πε
1 and π−ε

2 are transfers indu
ed by the proje
tions
π1 and π2 de�ned in �3. The map ρε

1 is a restri
tion map de�ned by the multi-pli
ation by λ and the usual restri
tion map r∗:
W ε(D̃, σ1)

ρ1 //

×λ

&&NNNNNNNNNNN

W−ε(D,σ)

W−ε(D̃, σ1)

r∗

77pppppppppppSee [1, Appendix 2℄ for more details. These maps also indu
e homomorphismsbetween semigroups of isometry 
lasses of hermitian forms:
Sε(D,σ)

πε

1→ Sε(D̃, σ1)
ρε

1→ S−ε(D,σ)
π−ε

2→ Sε(D̃, σ2) (5)Now we 
an reformulate the exa
t sequen
e of (4) in the following way:Proposition 5.5. Let ϕ ∈ Sε(D̃, σ1) be an anisotropi
 form. Then ϕ has a Witt
ρε
1-de
omposition, i.e., there exists an orthogonal de
omposition ϕ ≃ ϕ1 ⊕ ϕ2su
h that ρε

1(ϕ1) is hyperboli
 and ρε
1(ϕ2) is anisotropi
. Moreover there exists

ψ ∈ Sε(D,σ) su
h that ϕ1 ≃ πε
1(ψ).Proof. If ρε

1(ϕ) is anisotropi
, we take ϕ2 = ϕ. If ρε
1(ϕ) is isotropi
 then ϕ
ontains a subform ϕ0 whi
h 
omes from Sε(D,σ), i.e., ϕ0 ≃ πε

1(ψ0) for some
ψ0 ∈ Sε(D,σ); see the proof of (4) in [1, Appendix 2℄ where this has beenimpli
itly proved, see also [4, 4.4℄. We have then an orthogonal de
omposition
ϕ ≃ ϕ0⊕ϕ′ for some ϕ′ ∈ Sε(D̃, σ1). As ρε

1(ϕ0) is hyperboli
 and dimϕ′ < dimϕwe 
an use indu
tion on dim ϕ to �nish the proof.We have also the following exa
t sequen
e of Witt groups:
W−ε(D,σ)

π−ε

2→ W ε(D̃, σ2)
ρε

2→ W−ε(D,σ) (6)13



whi
h is a variation of the exa
t sequen
e of Parimala, Sridharan and Suresh,see [4℄. In this sequen
e, ρε
2 is the 
omposition of the multipli
ation by −λ andthe usual restri
tion map r∗ and the multipli
ation by −µ:

W ε(D̃, σ2)
ρ2 //

−λ

²²

W−ε(D,σ)

W ε(D̃, σ2) r∗

// W ε(D, Int(µ−1) ◦ σ)

×µ

OO

We state a Witt-de
omposition-like result for the exa
t sequen
e of (6):Proposition 5.6. Let ϕ ∈ Sε(D̃, σ2) be an anisotropi
 form. Then ϕ has a Witt
ρε
2-de
omposition, i.e., there exists an orthogonal de
omposition ϕ ≃ ϕ1 ⊕ ϕ2su
h that ρε

2(ϕ1) is hyperboli
 and ρε
2(ϕ2) is anisotropi
. Moreover there exists

ψ ∈ S−ε(D,σ) su
h that ϕ1 ≃ π−ε
2 (ψ).Proof. We use the same argument as in Proposition 5.5. If ρε

2(ϕ) is isotropi
then ϕ 
ontains a subform ϕ0 whi
h 
omes from S−ε(D,σ), i.e., ϕ0 ≃ πε
2(ψ0)for some ψ0 ∈ S−ε(D,σ); see [4, 4.4℄.Proposition 5.7. Let D, D̃, σ1, σ and σ2 be as in Proposition 3.1, then wehave:(1) u(D̃, σ1, ε) 6 u(D,σ,−ε) + 2 u(D,σ, ε).(2) u(D̃, σ2, ε) 6 3 u(D,σ,−ε).Proof. (1) Let ϕ be an anisotropi
 ε-hermitian form over (D̃, σ1). A
-
ording to Proposition 5.5, there exists an ε-hermitian form ψ over (D,σ)su
h that ϕ ≃ π1(ψ) ⊕ ϕ′ for some form ϕ′ over (D̃, σ1) su
h that ρ(ϕ′) isanisotropi
. As ϕ is anisotropi
, so is ψ, therefore dim(ψ) 6 u(D,σ, ε). As

ρ(ϕ′) is anisotropi
, dim(ϕ′) = dim ρ(ϕ′) 6 u(D,σ,−ε), 
onsequently dim(ϕ) =
dim(π1(ψ)) + dim(ϕ′) = 2 dim(ψ) + dim(ϕ′) 6 2 u(D,σ, ε) + u(D,σ,−ε) .For (2) we apply the same argument by using Proposition 5.6.Corollary 5.8. With the notation of Corollary 3.4 we have:
(1) u(L, )̄ 6 2 u(Q, )̄ + u(Q, )̂ = 2 u−(Q) + u+(Q)
(2) u(L) 6 3 u(Q, )̂ = 3 u+(Q)Proposition 5.9. With the notation of �4, let ϕ ∈ S(K1, τ1) be an anisotropi
form. Then ϕ has a Witt ρ1-de
omposition, i.e., there exists an orthogonal de-
omposition ϕ ≃ ϕ1⊕ϕ2 su
h that ρ1(ϕ1) is hyperboli
 and ρ1(ϕ2) is anisotropi
.Moreover there exists ψ ∈ S(K1 ⊗k K2, τ1 ⊗ τ2) su
h that ϕ1 ≃ π1(ψ).Proof. If ρ1(ϕ) is isotropi
 then a

ording to Proposition 4.2, ϕ 
ontainsa subform ϕ0 whi
h 
omes from S(K1 ⊗k K2, τ1 ⊗ τ2), i.e., ϕ0 ≃ π1(ψ0) forsome ψ0 ∈ S(K1 ⊗k K2, τ1 ⊗ τ2), we 
an then use an indu
tion argument as inProposition 5.5 14



Proposition 5.10. With the notation of Theorem 4.3, we have
u(K1, τ1) 6 2 u(K1 ⊗k K2, τ1 ⊗ id) + u(K1 ⊗k K2, τ1 ⊗ τ2).Proof. The proof is similar to that of Proposition 5.7; we use Proposition 5.9.Remark 5.11. Using [4, 4.4℄, and Proposition 4.2, one 
an state similar Witt-de
omposition-like results for other maps involved in these exa
t sequen
es. Forexample by a Witt πε

1-de
omposition result one 
an give an alternative proof ofProposition 3.1.6 A Finiteness resultIn the arti
le [1℄, one 
an �nd several useful results about extensions of odddegree and their 
onne
tions with substru
tures of 
odimension 2 of 
entralsimple algebras with involution, see ([1℄, Lemma 3.1.1, Lemma 3.3.1, Lemma3.3.2, Lemma 3.3.3). From these results we 
an derive the following propositionwhi
h has been proved in [11℄.Proposition 6.1. Let D be a non
ommutative K-division algebra and σ a K/k-involution on D. Suppose that the degree of D is a 2-power. Then there exists anextension M/k of odd degree su
h that DM = D⊗k M 
ontains the elements λ,
µ su
h that τ(λ) = −λ and τ(µ) = −µ and λµ = −µλ and [F (λ) : F ] = 2 where
F = KM = K ⊗k M and τ is the involution σ ⊗ id when σ is of se
ond kind or
σ is symple
ti
 and D is a quaternion algebra otherwise τ = Int(µ) ◦ (σ ⊗ id).Theorem 6.2. Let D be a division algebra of dimension a power of 2 over its
entre K with a K/k-involution σ. Suppose that u(D,σ, ε) < ∞ for ε = 1 and
ε = −1, then u(K,σ|K) < ∞. In parti
ular if both u+(D) and u−(D) are �nitethen u(K) is �nite too.Proof. We prove this result by indu
tion on dimK(D). For dimK(D) = 1 the
on
lusion is evident. Suppose that dimK(D) > 1.First suppose that σ is of the se
ond kind. A

ording to Proposition 6.1,there exists an extension M/k of odd degree su
h that DM = D ⊗k M 
ontainsthe elements µ and λ su
h that τ(λ) = −λ, τ(µ) = −µ and λµ = −µλ for
τ = σ ⊗ id and F (λ)/F is a quadrati
 extension where F = K ⊗k M . As
M/k is an extension of odd degree, E = DM is a division algebra. A

ordingto Proposition 3.8 we have u(E, τ, ε) < ∞ and u(E, τ,−ε) < ∞. By applyingProposition 5.7 we obtain: u(Ẽ, τ1,±ε) < ∞ and u(Ẽ, τ2,±ε) < ∞ where
Ẽ = CE(F (λ)). As τ is of the se
ond kind, so are τ1 and τ2. By the indu
tionhypothesis, we have u(L, τ1|L) < ∞ and u(L, τ2|L) < ∞ where L = F (λ) is the
entre of Ẽ. Let F ′ be the �xed �eld of τ2|L. We have

(L, τ1|L) ≃ (F ⊗M F ′, τ |F ⊗ τ ′)
(L, τ2|L) ≃ (F ⊗M F ′, τ |F ⊗ id)15



where τ ′ is the nontrivial automorphism of F ′/M . Proposition 5.10 implies that
u(F, τ |F ) < ∞ and from Corollary 5.4 we dedu
e that u(K,σ|K) 6 u(F, τ |F ) <
∞. Now 
onsider the 
ase where σ is of the �rst kind. If D is a quaternion algebraand σ is its 
anoni
al involution, then there exist λ, µ ∈ D with σ(λ) = −λ,
σ(µ) = −µ, λµ = −µλ et [K(λ) : K] = 2.Otherwise there exists an extension M/K of odd degree su
h that E =
D ⊗K M 
ontains λ and µ with τ(λ) = −λ, τ(µ) = −µ, λµ = −µλ and
[M(λ) : M ] = 2 where τ = Int(µ) ◦ (σ ⊗ id) (
f. Proposition 6.1). Theminvolution τ is of the �rst kind but of a di�erent type from that of σ. In any
ase take:

τ =

{
σ dimK(D) = 4, σ symplectic
Int(µ) ◦ (σ ⊗ id) otherwiseAs M/K is an extension of odd degree, E is a division algebra. A

ordingto Proposition 3.8 we have u(E, τ, ε) < ∞ and u(E, τ,−ε) < ∞ (note thata

ording to Proposition 2.2, the �niteness hypothesis (whi
h is for σ) is stillvalid for τ). By applying Proposition 5.7 we obtain: u(Ẽ, τ1,±ε) < ∞ and

u(Ẽ, τ2,±ε) < ∞ where Ẽ = CE(M(λ)). The involution τ1 is unitary andby the �rst part of the proof the 
ondition u(Ẽ, τ1,±ε) < ∞ implies that
u(L, τ1|L) < ∞ where L = M(λ). The involution τ2 is of the �rst kind. The
ondition u(Ẽ, τ2,±ε) < ∞ states that both u−(Ẽ) and u+(Ẽ) are �nite. So we
on
lude by indu
tion that u(L) = u(L, τ2|L) < ∞. Here τ1|L is the nontrivialautomorphism of L/M . Now Proposition 5.1 implies that u(M) < ∞ and fromthe strong version of Springer's theorem we dedu
e that u(K) 6 u(M) < ∞.Remark 6.3. Note that in pre
eding theorem, a

ording to Proposition 2.2 oneof the two hypotheses u(D,σ, ε) < ∞ and u(D,σ,−ε) < ∞ is a
tually enoughin the unitary 
ase.7 Values of the u-invariant, a parti
ular 
aseLet L/K be a quadrati
 extension and let ¯ be its nontrivial automorphism. Thesigned dis
riminant d± de�nes a map from W (L, )̄ to K∗/N(L∗). Unfortunatelythis map is not a homomorphism. But for forms ϕ and ψ of even dimensionwe have d±(ϕ ⊕ ψ) = d±(ϕ).d±(ψ). Let I(L, )̄ ⊂ W (L, )̄ be the 
lasses ofall nondegenerate hermitian forms over (L, )̄. The group W (L, )̄ has a naturalring stru
ture.Proposition 7.1. (1) The map e1 : I(L, )̄ → K∗/N(L∗) de�ned by e1(ϕ) =
d±(ϕ) is a surje
tive homomorphism.(2) ker e1 = I2(L, )̄.(3) Via e1, the group I/I2 is isomorphi
 to K∗/N(L∗).16



Proof. (1) The map e1 is surje
tive be
ause d±(〈1,−a〉) = aN(L∗).(2) The group I = I(L, )̄ is generated by hermitian forms 〈a, b〉 where a, b ∈ K∗.Thus I2 is generated by the hermitian forms:
ϕ = 〈a, b〉 ⊗ 〈c, d〉 = 〈ac, ad, bc, bd〉We have d±(ϕ) = 1. So I2 ⊂ ker e1. Conversely suppose that ϕ ∈ I with

e1(ϕ) = 1. The form ϕ is represented by 〈a1, · · · , a2n〉 with n > 1.For n = 1, we have ϕ = 〈a1, a2〉 with −a1a2 ∈ N(L∗). So ϕ ≃ 〈a1,−a1〉,therefore ϕ is hyperboli
 and ϕ = 0 in W (L, )̄.Now suppose that n ≥ 2. We 
an write: ϕ = 〈a1, a2, a3〉 ⊕ 〈a4, · · · , a2n〉. So
ϕ ∼ 〈a1, a2, a3, a1a2a3〉 ⊕ 〈−a1a2a3, a4, · · · , a2n〉. We have

〈a1, a2, a3, a1a2a3〉 ≃ 〈a1, a2〉 ⊗ 〈1, a1a3〉 ∈ I2.The dimension of ϕ′ = 〈−a1a2a3, a4, · · · , a2n〉 is 2(n − 1) and d± ϕ′ = 1. Byindu
tion we obtain ϕ′ ∈ I2.(3) is dedu
ed from (1) and (2).Let D be a division algebra over a �eld K with a K/k-involution τ . Herewe 
all a hermitian form ϕ over (D, τ) an n-fold P�ster form if ϕ is the restri
-tion of an n-fold P�ster form q over k to D. This notion appears in [10℄ forquaternion algebras. A hermitian form ϕ indu
ed by the n-fold P�ster form
q = 〈〈a1, · · · , an〉〉, is still denoted by ϕ = 〈〈a1, · · · , an〉〉.De�nition 7.2. Let D be a division algebra over a �eld K with a K/k-involution τ and let ε be an element of K with ετ(ε) = 1. An ε-hermitianform ϕ over (D, τ) is 
alled universal if ϕ represents all nonzero ε-hermitianelements of D.Proposition 7.3. Let L/K be a quadrati
 extension and let ¯ be the nontrivialautomorphism of L/K. Then we have u(L, )̄ 6= 3, 5, 7.Proof. Suppose that u(L, )̄ < 4. Every 2-fold hermitian P�ster form 〈〈a, b〉〉is hyperboli
. The hermitian form 〈1, a, b〉 is a hermitian neighbor of 〈〈a, b〉〉and therefore it is isotropi
. We dedu
e that every hermitian form 〈a, b, c〉 ofdimension 3 over (L, )̄ is isotropi
, so we have u(L, )̄ 6 2.Suppose that u(L, )̄ < 8. We 
on
lude that every 3-fold hermitian P�sterform 〈〈a, b,−c〉〉 is hyperboli
. Thus for every a, b, c ∈ K∗ we have:

〈〈a, b〉〉 ≃ c〈〈a, b〉〉Every form in I2 = I2(L, )̄ is an orthogonal sum of the forms 〈〈ai, bi〉〉. As forevery hyperboli
 plane IH and c ∈ K∗ we have IH ≃ cIH, the Witt 
an
ellationtheorem implies that ϕ ≃ cϕ for every ϕ ∈ I2. In parti
ular ϕ is universal over
(L, )̄ (in the sense of De�nition 7.2).Now suppose that u = u(L, )̄ = 5 or 7. Let ϕ be an anisotropi
 hermitianform of dimension u. In parti
ular ϕ represents its dis
riminant d = d±(ϕ). Wehave then ϕ = ψ ⊕ 〈d〉 where ψ is a form of dimension 4 or 6 and d±(ψ) = 1.17



As ψ ∈ I, Proposition 7.1 implies that ψ ∈ I2. We have already shown that ψis universal, 
onsequently ϕ is isotropi
 whi
h is a 
ontradi
tion to the 
hoi
eof ϕ.Remark 7.4. In a similar way, if D = (a, b)K is a quaternion division algebrawith the 
anoni
al involution ,̄ then u(D, )̄ 6= 3, 5, 7. However the value 3 forthe u-invariant u(D, ,̄−1) is possible, for example if K is a p-adi
 �eld then
u(D, ,̄−1) = 3.Proposition 7.5. Let L0 be a �eld with u(L0) = n. Let L = L0((x)) be the�eld of Laurent series over L0 and let σ be the L0-automorphism of L indu
edby x 7→ −x. Then u(L, σ) = n.Proof. Let K be the �xed �eld of σ. We have K = L0((x

2)) so u(K) =
2n. Consequently u(L, σ) 6 n (
f. Remark 3.5). Let q = 〈a1, · · · , an〉 be ananisotropi
 quadrati
 form of dimension n over L0. The restri
tion of q to L isanisotropi
. In fa
t the isotropy of q|(L,σ) is equivalent to that of the quadrati
form q ⊕ x2q = 〈a1, · · · , an,−x2a1, · · · ,−x2an〉 over K. The anisotropy of thisform is equivalent to that of q over L0.Remark 7.6. Proposition 7.5 state in parti
ular that the possible values forthe hermitian u-invariant of 
ommutative �elds 
ontain the possible values ofthe usual u-invariant.8 Classi
al groups over Qp(t), p 6= 2We refer to [21℄ and [20℄ for basi
 notions about Tits's indi
es. In the symbol
gXt

n,r, where X = A, B, C, D, the integers n and r are respe
tively the abso-lute and relative rank of the 
onsidered 
lassi
al group G, g denotes the order ofthe quotient of the Galois group Γ = Gal(ksep/k) whi
h operates e�e
tively onthe Dynkin diagram. In 
ase the diagram has no nontrivial automorphism, g isne
essarily 1. If g = 1, G is 
alled of inner type, otherwise G is 
alled of outertype. The integer t is the degree of a 
ertain division algebra whi
h o

urs inthe de�nition of the 
onsidered group. If t or g are omitted in the symbol, theyare ne
essarily 1. Type AnLemma 8.1. Let k be a fun
tion �eld of a p-adi
 �eld with p 6= 2. Let L/k bea quadrati
 extension and let ¯ be the nontrivial automorphism of L/k. Then
u(L, )̄ 6 4.Proof. Let ϕ ≃ 〈a1, · · · , a5〉 be a hermitian form of dimension 5 over (L, )̄,where ai ∈ k, i = 1, · · · , 5. Then, ϕ is isotropi
 if and only if the quadrati
 form
q = 〈a1, · · · , a5,−aa1, · · · ,−aa5〉 is isotropi
 over k where L = k(

√
a). Butthis form is isotropi
 over k, be
ause its Hasse invariant is c(q) = (−a, d) where

d = det(ϕ), whi
h has index 6 2 in the Brauer group of k and a

ording to theTheorem 4.6 of [12℄, q is isotropi
. We have in parti
ular u(L, )̄ 6 4.18



Proposition 8.2. Let k = Qp(t) with p 6= 2. The index 1A
(d)
n,r o

urs over kfor every positive integers d, r and n satisfying rd = n + 1.Proof. A

ording to [21℄ or [20, 17.1.3℄, 1A

(d)
n,r o

urs over k if and only if thereexists a division algebra D over k of degree d with rd = n + 1. The existen
e ofsu
h algebras 
omes from the fa
t that there exist division algebras of arbitrarydegree over Qp.Proposition 8.3. Let k = Qp(t) with p 6= 2.(1) If the index 2A

(1)
n,r o

urs over k, then n + 1 − 2r ∈ {0, 1, 2, 3, 4}. All theanisotropi
 indi
es 2A

(1)
1,0, 2A

(1)
2,0

2A
(1)
3,0 and 2A

(1)
4,0 o

ur over k.(2) If the index 2A

(2)
n,r o

urs over k then n + 1 − 4r ∈ {0, 2, 4, 6}.Proof. A

ording to [21℄ or [20, 17.1.6℄, 2A

(d)
n,r o

urs over k if and onlyif there exist a quadrati
 extension E/k, a division algebra D over E and aninvolution σ on D of the se
ond kind su
h that k is the �xed �eld of σ|E anda nondegenerate hermitian form h over (D,σ) of dimension d−1(n + 1) and ofWitt index r.(1) For d = 1, D = E. A

ording to Lemma 8.1 we have u(E, σ) 6 4. We
on
lude that 0 6 n + 1 − 2r 6 4. As for E = Qp(t)(

√
t), we have u(E, σ) = 4,the indi
es 2A

(1)
1,0, 2A

(1)
2,0

2A
(1)
3,0 and 2A

(1)
4,0 o

ur over k.(2) For d = 2, D is a quaternion algebra over E. Thank to Proposition 3.6we have u(D,σ) 6 3. We have then 0 6

n+1
2 − 2r 6 3.Type BnProposition 8.4. Let k = Qp(t) with p 6= 2. If the index Bn,r o

urs over kthen we have: n − 4 6 r 6 n.Proof. A

ording to [21℄ or [20, 17.2.3℄, Bn,r 
an o

ur over k if and only ifthere exists a nondegenerate quadrati
 form q of dimension 2n + 1 and of Wittindex r. Let qa be the unique anisotropi
 part of q up to isometry. We have:

dim qa = 2n + 1 − 2r (7)A

ording to [12℄, the dimension of qa 
annot ex
eed 10. We obtain then 0 6

2n − 2r + 1 6 10 and so n − 4 6 r 6 n.Proposition 8.5. The anisotropi
 indi
es B1,0, B2,0 and B3,0 
an o

ur over
k = Qp(t) with p 6= 2.Proof. A

ording to (7), it is enough to �nd anisotropi
 quadrati
 forms ofdimension 3, 5 and 7 (resp.), whi
h is possible be
ause u(Qp(t)) > 8.Remark 8.6. A

ording to (7), the existen
e of B4,0 over Qp(t) is equivalentto u(Qp(t)) > 9. A

ording to a 
onje
ture, one believes that u(Qp(t)) = 8 (
f.[14, Chapter 5, 2.5℄, [5℄ and [12℄). 19



Type CnProposition 8.7. Let k = Qp(t) with p 6= 2. If the index C
(d)
n,r o

urs over

k then we have d ∈ {1, 2, 4}. For d = 1 we have n = r. For d = 2 we have
n − 2r ∈ {0, 1, 2}. For d = 4, we have n − 4r ∈ {0, 2, 4, 6, 8, 10}.Proof. A

ording to [21℄ or [20, 17.2.10℄, C

(d)
n,r 
an o

ur over k if and only ifthere exists a division algebra D over k of degree d with an orthogonal involution

σ and a skew hermitian form h over (D,σ) of dimension 2d−1n and of Witt index
r. As D has an involution of the �rst kind, D lies in the 2-torsion of the Brauergroup Br2(k) (
f. [19, Ch. 8, 8.4℄). A

ording to a result due to Saltman [18℄,we know that d ∈ {1, 2, 4}. Let ha be the anisotropi
 part of h. We have

dim ha = 2d−1n − 2r (8)If d = 1, h is alternating and in this 
ase we have r = n.If d = 2, D is a quaternion algebra over k. A

ording to Corollary 3.4and Lemma 8.1 we have u(D,σ,−1) = u(D, )̄ 6
1
2
u(L, )̄ 6 2 where ¯ is the
anoni
al involution of D and L is a maximal sub�eld of D stable under .̄ Wededu
e that 0 6 dim ha 6 2. Now (8) implies that n − 2r ∈ {0, 1, 2}.If d = 4, a

ording to a result due to Albert (
f. [6, 16.1℄), D is isomorphi
 toa biquaternion algebra. We write D = D1⊗D2 where D1 and D2 are quaternionalgebras. A

ording to Proposition 2.2 we have u(D,σ,−1) = u(D1 ⊗ D2,¯⊗

,̄−1) where ¯ (resp. )̄ is the 
anoni
al involution of D1 (resp. D2). Let L bea maximal sub�eld of D2 stable under .̄ Thanks to Proposition 3.1 we have:
u(D1 ⊗ D2,¯⊗¯− 1) 6 u(D1 ⊗ L,¯⊗ id) + 1

2
u(D1 ⊗ L,¯⊗ ,̄−1)Thanks to Proposition 3.6 we have u(D1 ⊗ L,¯⊗ id) 6

1
4

u(L). A

ordingto [12℄, u(L) 6 10. We 
on
lude then u(D1 ⊗ L,¯⊗ id) 6 2. Now by usingProposition 3.10 and Proposition 3.1 we obtain
u(D1 ⊗ L,¯⊗ ,̄−1) 6 6.We obtain then u(D1 ⊗ D2,¯⊗ ,̄−1) 6 5. We 
on
lude that 0 6 dimha 6 5and (8) implies that n/2 − 2r ∈ {0, 1, · · · , 5}.Proposition 8.8. The anisotropi
 indi
es C

(2)
1,0 , C

(2)
2,0 and C

(4)
2,0 o

ur over k =

Qp(t) with p 6= 2.Proof. A

ording to (8), it is enough to �nd a skew hermitian form of di-mension 2 over (D,σ) where D is a suitable quaternion division algebra over
Qp(t) and σ is an orthogonal involution of D. This 
hoi
e is possible be
ause
u(D,σ,−1) = 2 for D = (−p, u)Qp(t) where u ∈ Z∗

p\Z∗
p
2. In fa
t by Proposi-tion 3.6, u(D,σ,−1) 6

1
4

u(Qp(t)). We obtain then u(D,σ,−1) 6 2, be
ause
u(Qp(t)) 6 10 a

ording to [12℄. So it is enough to 
onstru
t an anisotropi
skew hermitian form of dimension 2 over (D,σ) or equivalently an anisotropi
hermitian form of dimension 2 over (D, )̄ where ¯ is the 
anoni
al involution of
D. We may take for example the hermitian form 〈1, t〉.20



Type Dn innerLemma 8.9. Let D be a division algebra over a �eld K with a K/k-involu-tion σ. Consider the division algebra D(t) = k(t) ⊗k D with the involution
σ̂ = id⊗σ. Let (V, hV ) and (W,hW ) be two anisotropi
 ε-hermitian spa
es over
(D,σ). Let V (t) = k(t)⊗k V , W (t) = k(t)⊗k W , ĥV and ĥW the restri
tions of
hV and hW (resp.) to D(t). Then the hermitian form ĥV ⊕ tĥW is anisotropi
over (D(t), σ̂). In parti
ular u(D(t), σ̂, ε) > 2 u(D,σ, ε) where ε ∈ K satis�es
εσ(ε) = 1.Proof. Let x1⊕x2 ∈ V (t)⊕W (t) be a nonzero anisotropi
 ve
tor for ĥV ⊕tĥW ,i.e., ĥV ⊕ tĥW (x1 ⊕ x2, x1 ⊕ x2) = 0. This relation implies that:

ĥV (x1, x1) + tĥW (x2, x2) = 0 (9)By using the embedding V (t) ⊂ V ((t)) we may suppose that x1 = Σ∞
i=Nvit

iand x2 = Σ∞
i=Mwit

i where vi ∈ V , wi ∈ W , vN 6= 0 and wM 6= 0. We 
onsidertwo 
ases: N 6 M and N > M . If N 6 M , (9) implies that hV (vM , vM ) = 0whi
h is a 
ontradi
tion be
ause hV is anisotropi
. If N > M , (9) implies that
hW (wN , wN ) = 0 whi
h is a 
ontradi
tion be
ause hW is anisotropi
.Proposition 8.10. Let k = Qp(t) with p 6= 2. Then if the index 1D

(d)
n,r o

ursover k then d ∈ {1, 2, 4}. Moreover:(1) For d = 1 we have n − r ∈ {0, 2, 3, 4, 5}(2) For d = 2 we have n − 2r ∈ {0, 2, 3, 4, 5, 6, 7, 8, 9}(3) For d = 4 we have n − 4r ∈ {0, 2, 4, · · · , 20}.Proof. A

ording to [21℄ or [20, 17.3.13℄, 1D

(d)
n,r o

urs over k if and only if thereexist a division algebra D over k of degree d with an orthogonal involution σ anda nondegenerate hermitian form h of dimension 2nd−1 with trivial dis
riminantand of Witt index r, and moreover d > 1, rd 6 n and n 6= rd + 1. As D has aninvolution of the �rst kind, a

ording to a result of Albert (
f. [19, Ch. 8, 8.4℄),

D lies in the 2-torsion of Br(k). By using a result of Saltman [18℄, we obtain
d ∈ {1, 2, 4}. Let ha be the anisotropi
 part of h. We have:

dim ha = 2d−1n − 2r, d± ha = 1 (10)(1) If d = 1, we have D = k and ha is a symmetri
 bilinear form over k and
dim ha is even. By using a result due to Parimala-Suresh [12℄ the dimension of
ha 
annot ex
eed 10, we obtain then 2n − 2r = dimha ∈ {0, 2, 4, 6, 8, 10}.The 
ase dimha = 2 is impossible be
ause in this 
ase d± ha = 1 implies theisotropy of ha. Consequently 2n − 2r = 2 is impossible.The 
ase dimha = 4 is possible, we 
an take the anisotropi
 form ha =
〈1, p,−u,−pu〉 whi
h has trivial dis
riminant where u ∈ Zp

∗\Zp
∗2. This formis anisotropi
 over Qp(t). The 
ase 2n − 2r = 4 is then possible.21



The 
ase dimha = 6 is possible. Consider the biquaternion division algebra
(u, t)⊗k (t + 1, p). The fa
t that this algebra is a division algebra 
an be foundin an appendix of the Saltman's paper [18℄ due to W. Ja
ob and J.-P. Tignol.Let ha = 〈u, t,−ut,−(t + 1),−p, (t + 1)p〉 be the Albert form of this algebra.This form is anisotropi
 and has trivial dis
riminant. Consequently 2n−2r = 6is possible.The 
ase dimha = 8 is also possible. We 
an take the anisotropi
 form
ha = 〈1, t〉 ⊗ 〈1, p,−u,−pu〉. The anisotropy of ha 
an be dedu
ed for examplefrom Lemma 8.9.(2) If d = 2, D is a quaternion division algebra over k. Now (10) impliesthat d± h = d± ha = 1. We write D = (a, b)k, the quaternion division algebraover k generated by i, j with i2 = a ∈ k∗, j2 = b ∈ k∗, ij = −ji. Let
L = k(i) = k(

√
a) ⊂ D. A

ording to Proposition 2.2, u(D,σ) = u(D, ,̄−1)where ¯ is the 
anoni
al involution of D.As L is the fun
tion �eld of a p-adi
 �eld (p 6= 2), we have u(L) 6 10 (
f. [12,4.5℄). A

ording to Lemma 8.1, u(L, |̄L) 6 4. Now by applying Corollary 3.4we obtain:

u(D, ,̄−1) 6
10 + 8

2
= 9.Consequently dimha 6 9. We have then n − 2r ∈ {0, 1, 2, · · · , 9}.The 
ase dim ha = 1 is impossible be
ause the dis
riminant of every skewhermitian form over D of dimension 1 is di�erent from 1. Consequently the 
ase

n − 2r = 1 is impossible.The 
ase dimha = 2 is possible. To 
onstru
t, 
onsider an arbitrary nonde-generate skew hermitian form h0 of dimension 1 over (D0, σ0) where D0 is theunique quaternion division algebra over Qp and σ0 is its 
anoni
al involution.Consider the skew hermitian form
h = h0 ⊕ th0 (11)A

ording to Lemma 8.9, h is anisotropi
, moreover its dis
riminant is trivial.We 
on
lude that the 
ase n − 2r = 2 is possible.It is well known that, there exists an anisotropi
 skew hermitian form ofdimension 3 over D0 (
f. [19, Ch. 10, 3.6℄, [15℄ or [22℄). The restri
tion of thisform to (D,σ) is anisotropi
. Consequently the 
ase dimha = 3 or n − 2r = 3is possible.The 
ases dim ha = 4 or 6 are similar; we take an anisotropi
 skew hermitianform h0 over (D0, σ0) of dimension 2 or 3 and we 
onsider the anisotropi
 form

h de�ned in (11).For the 
ase dim ha = 5, we �rst 
onsider a subform of dimension 5 of theanisotropi
 skew hermitian form of dimension 6 over (D,σ) that we 
onstru
tedabove. By multiplying this form by its dis
riminant, we obtain an anisotropi
form of dimension 5 with trivial dis
riminant. Therefore n− 2r = 5 is possible.(3) If d = 4, D is a biquaternion algebra. We write D = D1 ⊗ D2 where D1and D2 are two quaternion algebras. We have u(D,σ) = u(D1⊗D2,¯⊗ )̄ where
¯ (resp. )̄ is the 
anoni
al involution of D1 (resp. D2). Let L be a maximal22



sub�eld of D2 stable under .̄ A

ording to Proposition 3.1 and Proposition 3.10we have
u(D1 ⊗ D2,¯⊗ )̄ 6

1
2

u(D1 ⊗ L,¯⊗ id,−1) + u(D1 ⊗ L,¯⊗ )̄

6
9
2 + 6 = 21

2 ,We obtain then u(D,σ) 6 10. Now (10) implies that 0 6 n/2 − 2r 6 10.Corollary 8.11. The anisotropi
 indi
es 1D
(1)
n,0 for 2 6 n 6 4 and 1D

(2)
n,0 for

2 6 n 6 6 o

ur over k = Qp(t) with p 6= 2.Type Dn outerProposition 8.12. Let k = Qp(t) with p 6= 2. If the index 2D
(d)
n,r o

urs over kthen d ∈ {1, 2, 4}. Moreover:(1) For d = 1 we have n − r ∈ {0, 1, 2, 3, 4, 5}(2) For d = 2 we have n − 2r ∈ {0, 1, 2, 3, 5, 6, 7, 8, 9}(3) For d = 4 we have n − 4r ∈ {0, 2, · · · , 20}.Proof. We use the notation of the proof of Proposition 8.10. The 
riterionfor the existen
e of 2D

(d)
n,r is the same as for 1D

(d)
n,r ex
ept d± h 6= 1 (
f. [21℄).Therefore we have d ∈ {1, 2, 4}.(1) For d = 1, dim ha = 2 is possible; it is enough to 
hoose the anisotropi
form 〈1, p〉. Consequently n − r = 1 is possible.The 
ase dimha = 4 is possible. In fa
t it is enough to 
hoose a subformof dimension 4 of the anisotropi
 form 〈1, t〉 ⊗ 〈1, p,−u,−pu〉 with nontrivialdis
riminant. We 
an 
hoose for example 〈p,−u,−pu, t〉. Consequently n−r = 2is possible.For dim ha = 6 we 
an 
hoose 〈p,−u,−pu, tp,−tu,−tpu〉. Consequently

n − r = 3 is possible.(2) For d = 2, D is a quaternion algebra over k. We have that dimha 6 9as in the proof of Proposition 8.10.For the 
ase dim ha = 1, it is enough to 
onsider a skew hermitian form ofdimension 1 whi
h has ne
essarily nontrivial dis
riminant. Consequently the
ase n − 2r = 1 is possible.For the 
ase dim ha = 2, we 
onsider two arbitrary skew symmetri
 elementsof D0 = (−p, u)Qp
with di�erent redu
ed norm modulo Qp

∗2. We denote theseelements by a and b. Now 
onsider the skew hermitian form h = 〈a, tb〉 over
D = D0⊗Qp

Qp(t). The form h is anisotropi
 form with nontrivial dis
riminant.Consequently n − 2r = 2 is possible.The 
ase dimha = 3 is possible. In fa
t, there exists a skew hermitian form
h0 of dimension 2 with dis
riminant equal to c 6= 1 ∈ Qp

∗/Qp
∗2 (
f. [19, Ch.10, 3.6℄, [15℄ or [22℄). We also 
onsider a skew hermitian form h′
0 over (D0, σ0)of dimension 1 and with the dis
riminant equal to c′ 6= 1 ∈ Qp

∗/Qp
∗2. We23



may suppose that c′ 6= c (this 
hoi
e is possible be
ause Card(Qp
∗/Qp

∗2
) = 4).Thanks to Lemma 8.9, the form ha = h0 ⊕ th′

0 is an anisotropi
 skew hermitianform over (D,σ) of dimension 3 and with nontrivial dis
riminant. Consequently
n − 2r = 3 is also possible.For dimha = 5, we 
onsider an anisotropi
 skew hermitian form h0 over
(D0, σ0) of dimension 3 and with trivial dis
riminant and an anisotropi
 skewhermitian form h′

0 over (D0, σ0) of dimension 2 and with nontrivial dis
riminant(A

ording to [19, Ch. 10, 3.6℄, [15℄ or [22℄ these 
hoi
es are possible). Now
onsider the form h = h0 ⊕ th′
0 over (D,σ) whi
h is of dimension 5 and withnontrivial dis
riminant Consequently n − 2r = 5 is possible.Suppose that h ≃ 〈a1, a2, · · · , a5〉 is an anisotropi
 skew hermitian form ofdimension 5 and with nontrivial dis
riminant 
onstru
ted as in the pre
edingparagraph. At least one of the forms 〈ai1 , · · · , ai4〉 has nontrivial dis
riminantwhere 1 6 i1 < i2 < i3 < i4 6 5. Consequently dim ha = n − 2r = 4 is possible.(3) For d = 4, D is a biquaternion algebra. As in the proof of Proposition 8.10(3), we obtain n/2 − 2r 6 10.Corollary 8.13. The anisotropi
 indi
es 2D

(1)
n,0 for 2 6 n 6 3 and 2D

(2)
n,0 for

1 6 n 6 5 o

ur over k = Qp(t) with p 6= 2.A
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