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Abstract

In quadratic form theory over fields, a much studied field invariant

is the u-invariant, defined as the supremum over the dimensions of

anisotropic quadratic forms over the field. We investigate the corre-

sponding notions of u-invariant for hermitian and for skew-hermitian

forms over a division algebra with involution, with a special focus on

skew-hermitian forms over a quaternion algebra. Under certain condi-

tions on the center of the quaternion algebra, we obtain sharp bounds

for this invariant.
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1 Involutions and hermitian forms

Throughout this article K denotes a field of characteristic different from 2
andK× its multiplicative group. We shall employ standard terminology from
quadratic form theory, as used in [9]. We say that K is real if K admits a
field ordering, nonreal otherwise. By the Artin-Schreier Theorem, K is real
if and only if −1 is not a sum of squares in K.

Let ∆ be a division ring whose center is K and with dimK(∆) < ∞; we
refer to such ∆ as a division algebra over K, for short. We further assume
that ∆ is endowed with an involution σ, that is, a map σ : ∆ → ∆ such that
σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(b)σ(a) hold for any a, b ∈ ∆ and such
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that σ◦σ = id∆. Then σ|K : K → K is an involution of K, and there are two
cases to be distinguished. If σ|K = idK , then we say that the involution σ is
of the first kind. In the other case, when σ|K is a nontrivial automorphism of
the field K, we say that σ is of the second kind. In general, we fix the subfield
k = {x ∈ K | σ(x) = x} and say that σ is a K/k-involution of ∆. Note that
σ : ∆ → ∆ is k-linear. If σ is of the second kind, then K/k is a quadratic
extension. Recall that involutions of the first kind on a division algebra ∆
over K do exist if and only if ∆ is of exponent at most 2, i.e. ∆ ⊗K ∆ is
isomorphic to a matrix algebra over K. Moreover, an involution σ of the first
kind over ∆ is either of orthogonal or of symplectic type, depending on the
dimension of the subspace {x ∈ ∆ | σ(x) = x}.

Let ε ∈ K× with σ(ε)ε = 1. We are mainly interested in the cases where
ε = ±1; if σ is of the first kind then these are the only possibilities for ε. An
ε-hermitian form over (∆, σ) is a pair (V, h) where V is a finite-dimensional
∆-vector space and h is a map h : V ×V → ∆ that is ∆-linear in the second
argument and with σ(h(x, y)) = ε·h(y, x) for any x, y ∈ V ; it follows that h is
‘sesquilinear’ in the sense that h(xa, yb) = σ(a)h(x, y)b holds for any x, y ∈ V
and a, b ∈ ∆. In this situation we may also refer to h as the ε-hermitian form
and to V as the underlying vector space. We simply say that h is hermitian

(resp. skew-hermitian) if h is 1-hermitian (resp. (−1)-hermitian).
In the simplest case we have ∆ = K, σ = idK , and ε = 1. A 1-hermitian

form over (K, idK) is a symmetric bilinear form b : V × V → K on a finite
dimensional vector space V over K; by the choice of a basis it can be identified
with a quadratic form over K in n = dimK(V ) variables.

An ε-hermitian form h over (∆, σ) with underlying vector space V is said
to be regular or nondegenerate if, for any x ∈ V \{0}, the associated ∆-linear
form V → ∆, y 7→ h(x, y) is nontrivial; if this condition fails h is said to be
singular or degenerate. We say that h is isotropic if there exists a vector
x ∈ V \ {0} such that h(x, x) = 0, otherwise we say that h is anisotropic.
Let h1 and h2 be two ε-hermitian forms over (∆, σ) with underlying spaces
V1 and V2. The orthogonal sum of h1 and h2 is the ε-hermitian form h on
the ∆-vector space V = V1 × V2 given by h(x, y) = h1(x1, y1) + h2(x2, y2) for
x = (x1, x2), y = (y1, y2) ∈ V , and it is denoted by h1 ⊥ h2. An isometry

between h1 and h2 is an isomorphism of ∆-vector spaces τ : V1 → V2 such
that h1(x, y) = h2(τ(x), τ(y)) holds for all x, y ∈ V1. If an isometry between
h1 and h2 exists, then we say that h1 and h2 are isometric and write h1 ≃ h2.
Witt’s Cancellation Theorem [2, (6.3.4)] states that, whenever h1, h2 and
h are ε-hermitian forms on (∆, σ) such that h1 ⊥ h ≃ h2 ⊥ h, then also
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h1 ≃ h2 holds. A regular 2n-dimensional ε-hermitian form (V, h) is said to
be hyperbolic if there exits an n-dimensional subspace W of V such that
h(x, y) = 0 for all x, y ∈ W . The (up to isometry) unique isotropic 2-
dimensional ε-hermitian form is denoted by H.

Given an ε-hermitian form (V, h) on (∆, σ) we write

D(h) = {h(x, x) | x ∈ V \ {0}} ⊆ ∆ .

Note that this set contains 0 if and only if h is isotropic. We further put

Symε(∆, σ) = {x ∈ ∆ | σ(x) = εx} .

For any ε-hermitian form h over (∆, σ) we have D(h) ⊆ Symε(∆, σ). Given
a1, . . . , an ∈ Symε(∆, σ), an ε-hermitian form h on the ∆-vector space V =
∆n is given by h(x, y) = σ(x1)a1y1 + · · ·+σ(xn)anyn for x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ ∆n = V . We denote this form h by 〈a1, . . . , an〉 and observe
that it is regular if and only if ai 6= 0 for 1 6 i 6 n. As char(K) 6= 2, any
ε-hermitian form is isometric to 〈a1, . . . , an〉 for some n ∈ N and a1, . . . , an ∈
Symε(∆, σ) [2, (6.2.4)].

We denote by Hermε
n(∆, σ) the set of isometry classes of regular n-

dimensional ε-hermitian forms over (∆, σ). Mapping a ∈ Symε(∆, σ) to
the class of 〈a〉 yields a surjection

Symε(∆, σ) \ {0} −→ Hermε
1(∆, σ) .

Two elements a, b ∈ Symε(∆, σ) are congruent if there exists c ∈ ∆ such
that a = σ(c)bc, which is equivalent to saying that 〈a〉 ≃ 〈b〉 over (∆, σ).

1.1 Remark. In the case where ∆ = K and ε = 1, there is a natural one-
to-one correspondence between Hermε

1(∆, σ) and K×/K×2. We may then
identify the two sets and thus endow Herm1

1(∆, σ) with a natural group
structure. One can proceed in a similar way in the two cases, first where ∆
is a quaternion algebra and σ its canonical involution, and second when σ is
a unitary involution on a field ∆ = K.

Given an ε-hermitian form h over (∆, σ) and an element a ∈ k× where
k = {x ∈ K | σ(x) = x}, we define the scaled ε-hermitian form ah in the
obvious way. Two ε-hermitian forms h and h′ over (∆, σ) are said to be
similar, if h′ ≃ ah for some a ∈ k×.
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2 Hermitian u-invariants

We keep the setting of the previous section. Following [8, Chap. 9, (2.4)] we
define

u(∆, σ, ε) = sup {dim(h) | h anisotropic ε-hermitian form over (∆, σ)}

in N ∪ {∞} and call this the u-invariant of (∆, σ, ε). Then

u(K, idK , 1) = sup {dim(ϕ) | ϕ anisotropic quadratic form over K}

is the u-invariant of the field K, denoted by u(K). We refer to [8, Chap. 8]
for an overview on this invariant for nonreal fields and for the discussion of a
different definition of this definition, which is more reasonable when dealing
with real fields.

To obtain upper bounds on u(∆, σ, ε), one can use the theory of systems
of quadratic forms. In fact, to every ε-hermitian form h over (∆, σ) one can
associate a system of quadratic forms over k in such a way that the isotropy
of h is equivalent to the simultaneous isotropy of this system.

For r ∈ N, one denotes by ur(K) the supremum over the n ∈ N for which
there exists a system of r quadratic forms in n variables over K having
no nontrivial common zero. The numbers ur(K) are called the system u-
invariants of K. Note that u0(K) = 0 and u1(K) = u(K). Leep proved that
these system u-invariants satisfy the inequalities

ur(K) 6 ru(K) + ur−1(K) 6
r(r+1)

2
u(K)

for any integer r > 1. Using systems of quadratic forms, he further showed
that u(L) 6

[L:K]+1
2

u(K) holds for an arbitrary finite field extension L/K.
(See [9, Chap. 2, Sect. 16] for these and more facts on systems on quadratic
forms.) In the same vein the following result was obtained in [7, (3.6)].

2.1 Proposition. Let ∆ be a division algebra over K, σ an involution on

∆, and ε ∈ K with εσ(ε) = 1. Then

u(∆, σ, ε) 6
ur(k)

m2[K : k]
6

r(r + 1)

2m2[K : k]
· u(k)

where k = {x ∈ K | σ(x) = x}, m = deg(∆) and r = dimk(Symε(∆, σ)). In

particular, if u(k) <∞, then u(∆, σ, ε) <∞.
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In this article, we are mainly concerned with the u-invariant of an in-
volution of the first kind. Assume that σ is an involution of the first kind
on the division algebra ∆ over K. In this case ∆ ⊗K ∆ is isomorphic to a
matrix algebra and ε = ±1. In [7] it is explained that u(∆, σ, ε) only de-
pends on ε and on the type of σ, i.e., whether it is orthogonal or symplectic.
More precisely, given two involutions of the first kind σ and τ on ∆ one has
u(∆, σ, ε) = u(∆, τ, ε) if σ and τ are of same type and u(∆, σ, ε) = u(∆, τ,−ε)
if they are of opposite type. We define

u+(∆) = u(∆, σ,+1) and u−(∆) = u(∆, σ,−1)

with respect to an arbitrary orthogonal involution σ on ∆, as these num-
bers do not depend on the choice of σ. We call u+(∆) the orthogonal and
u−(∆) the symplectic u-invariant of ∆. By the previous, for any symplectic
involution τ on ∆ one has u(∆, τ, ε) = u−ε(∆).

Let us briefly turn to the case of an involution σ of the second kind. It
turns out that u(∆, σ, ε) depends only on the field k = {x ∈ K | σ(x) = x},
and in particular it does not depend on ε at all.

Let i ∈ N. Using (2.1) one can obtain estimates for the u-invariants
of division algebras with involution over a Ci-field. We recall some facts
from Tsen-Lang Theory, following [9, Chap. 2, Sect. 15]. A field K is
called a Ci-field if every homogeneous polynomial over K of degree d in more
than di variables has a nontrivial zero. The natural examples of Ci-fields are
extensions of transcendence degree i of an arbitrary algebraically closed field
and (for i > 0) extensions of transcendence degree i − 1 of a finite field. A
result due to Lang and Nagata states that if K is a Ci-field then ur(K) 6 r ·2i

for any r ∈ N (cf. [9, Chap. 2, (15.8)]). In [8, Chap. 5], variations of the
Ci-property and open problems in this context are discussed.

2.2 Corollary. Let K be a Ci-field and let ∆ be a division algebra of exponent

2 and of degree m over K. Then u+(∆) 6 2i−1 · m+1
m

and u−(∆) 6 2i−1 · m−1
m

.

Proof: We use (2.1) and the fact that ur(k) 6 2ir. �

2.3 Corollary. Let K be a Ci-field. Let ∆ be a quaternion division algebra

over K. Then u+(∆) 6 3 · 2i−2 and u−(∆) 6 2i−2.

Example (5.4) will show that the first bound in (2.3) is sharp. For the
second bound, we leave this as an easy exercise. In fact, determining the sym-
plectic u-invariant of a quaternion algebra is a pure quadratic form theoretic
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problem in view of Jacobson’s Theorem [9, Chap. 10, (1.1)], which relates
skew-hermitian forms over a quaternion algebra with canonical involution to
quadratic forms over the center. This is why our investigation for quaternion
algebras concentrates on the orthogonal u-invariant.

3 Kneser’s Theorem

In this section, we give an upper bound on the u-invariant of a division algebra
with involution in terms of the number of 1-dimensional (skew-)hermitian
forms, under a condition on the levels of certain subalgebras. This extends
an observation due to Kneser [4, Chap. XI, (6.4)] on the commutative case.

From [6] we recall the definition of the level of an involution. Let σ be an
involution on a central simple algebra ∆ over K. The level of σ is defined as

s(∆, σ) = sup {m ∈ N | m× 〈1〉 is anisotropic over (∆, σ)}

in N∪{∞}. Whenever s(∆, σ) is finite, it is equal to the smallest number m
for which −1 can be written as a sum of m hermitian squares over (∆, σ).

3.1 Theorem. Let ∆ be a division algebra over K equipped with an involu-

tion σ. Let ε ∈ K be such that σ(ε)ε = 1. Let ψ be an ε-hermitian form over

(∆, σ) and let α ∈ D× be such that σ(α) = εα. Let CD(α) be the centralizer

of K(α) in ∆. Suppose that s(C∆(α), σ|C∆(α)) < ∞. If ϕ = ψ ⊥ 〈α〉 is

anisotropic then D(ψ) ( D(ϕ).

Proof: We write 0 = σ(d0)d0 + · · · + σ(ds)ds with s = s(C∆(α), σ|C∆(α))
and d0, . . . , ds ∈ C∆(α) \ {0}. We suppose that D(ψ) = D(ϕ) and want to
conclude that ϕ is isotropic. We claim that α·(σ(d0)d0+· · ·+σ(di)di) ∈ D(ϕ)
for any 0 6 i 6 s. For i = s this yields that ϕ is isotropic.

For i = 0, the elements α and ασ(d0)d0 are indeed represented by ϕ.
Let now 1 6 i 6 s and assume that the claim is established for i − 1.
With α(σ(d0)d0 + · · ·+ σ(di−1)di−1) ∈ D(ϕ) = D(ψ), we obtain readily that
α(σ(d0)d0 + · · ·+ σ(di−1)di−1) +ασ(di)di ∈ D(ϕ), finishing the argument. �

3.2 Corollary. Assume that s(C∆(K(α)), σ) <∞ for every α ∈ Symε(∆, σ).
Then u(∆, σ, ε) 6 |Hermε

1(∆, σ)|.

Proof: Let h ≃ 〈a1, . . . , an〉 be an anisotropic ε-hermitian form of dimension
n over (∆, σ). Let hi = 〈a1, . . . , ai〉 for i = 1, . . . , n. By (3.1) we have

6



D(h1) ( D(h2) ( · · · ( D(hn) = D(h). We conclude that h represents at
least n pairwise incongruent elements of Symε(∆, σ), i.e. |Hermε

1(∆, σ)| > n.
Therefore we have |Hermε

1(∆, σ)| > u(∆, σ, ε). �

3.3 Remark. The hypothesis of (3.2) is trivially satisfied if the subfield of
K consisting of the elements fixed by σ is nonreal; this is for example the
case whenever σ is of the first kind and K is a nonreal field.

3.4 Example. Let p be a prime number different from 2 and let Q denote the
unique quaternion division algebra over Qp. Then it follows from [9, Chap.
10, (3.6)] that u+(Q) = |Herm−1

1 (Q, γ)| = 3 (see also (4.9), below). Let now
m be a positive integer and K = Qp((t1)) . . . ((tm)). Then QK is a quaternion
division algebra over K and u+(QK) = |Herm−1

1 (QK , γ)| = 3 · 2m. This
follows from the fact that the u-invariant(s) and the number of 1-dimensional
ε-hermitian forms over a division algebra defined over a field K both double
when the center is extended from K to K((t)).

The upper bound on the u-invariant obtained in (3.2) motivates to look for
criteria for the finiteness of Hermε

1(∆, σ) where ∆ is a division algebra overK,
σ an involution on ∆, and ε = ±1. We conjecture that |Hermε

1(∆, σ)| < ∞
is equivalent to |K×/K×2| <∞. In the next section we shall confirm this in
the case of skew-hermitian forms over a quaternion division algebra.

4 Congruence of pure quaternions

From this section on we consider a quaternion division algebra Q over K.
Let γ denote the canonical involution of Q, π the norm form of Q and π′ its
pure part, so that π = 〈1〉 ⊥ π′. By a skew-hermitian form over Q we always
mean a regular skew-hermitian form over (Q, γ). In this section we want to
describe Herm−1

1 (Q, γ).
Following [10] the discriminant of a skew-hermitian form h over Q is

defined as the square class disc(h) = (−1)n Nrd((h(xi, xj)))K
×2 in K×/K×2

where (x1, . . . , xn) is an arbitrary ∆-basis of the underlying vector space and
where Nrd : Mn(∆) → K denotes the reduced norm.

4.1 Remark. For a ∈ K×, there exists a skew-hermitian form of dimension
1 and discriminant a over Q if and only if −a is represented by the pure part
of the norm form of Q. In particular, any 1-dimensional skew-hermitian form
over Q has nontrivial discriminant.
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4.2 Proposition. Skew-hermitian forms of dimension 1 over Q are classified

up to similarity by their discriminants.

Proof: More generally, similar skew-hermitian forms over Q have the same
discriminant. Assume now that z1, z2 ∈ Q× are pure quaternions such that
the discriminants of the skew-hermitian forms 〈z1〉 and 〈z2〉 coincide. Hence
there exists d ∈ K× such that z2

2 = d2z2
1 = (dz1)

2. Therefore the pure
quaternions z2 and dz1 are congruent in Q, i.e. there exists α ∈ Q× such
that dz1 = α−1z2α. Multiplying this equality with Nrd(α) = γ(α)α, if follows
that (Nrd(α)d)z1 = γ(α)z2α. With c = (Nrd(α)d) ∈ K× we obtain that
〈cz1〉 ≃ 〈z2〉, so 〈z1〉 and 〈z2〉 are similar. �

4.3 Remark. A closer look at the above argument yields the following refine-
ment. Let G be a subgroup of K× containing Nrd(Q×). Two 1-dimensional
skew-hermitian forms are obtained one from each other by scaling with an
element of G if and only if their discriminants coincide in K×/G2.

4.4 Lemma (Scharlau). Let λ, µ ∈ Q× be anticommuting elements, in partic-

ular Q = (a, b)K for a = λ2, b = µ2 ∈ K×. Let c ∈ K×. The skew-hermitian

forms 〈λ〉 and 〈cλ〉 over Q are isometric if and only if c is represented over

K by one of the quadratic forms 〈1,−a〉 and 〈b,−ab〉 over K.

Proof: See [9, Chap. 10, (3.4)]. �

The following result was obtained in [5], in slightly different terms.

4.5 Proposition (Lewis). Let λ ∈ Q× be a pure quaternion. We consider

Herm−1
1 (Q, γ) as a pointed set with the isometry class of 〈λ〉 as distinguished

point. With L = K(λ) and a = λ2 ∈ K×, one obtains an exact sequence

1 −→ Z/2Z −→ K×/NL/K(L×)
· λ−→ Herm−1

1 (Q, γ)
(−a) Nrd−→ K×/K×2 .

Proof: Let b ∈ K× be such that Q = (a, b)K . By (4.4) the group of elements
x ∈ K× such that 〈xλ〉 ≃ 〈λ〉 coincides with NL/K(L×) ∪ bNL/K(L×). This
proves the exactness in the first two terms. The exactness at Herm−1

1 (Q, γ)
follows from (4.2). �

4.6 Remark. We sketch an alternative, cohomological argument for the
exact sequence in (4.5), which has been pointed out to us by J.-P. Tignol.
Let ρ = Int(λ) ◦ γ. First note that Herm−1

1 (Q, γ) can be identified with
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Herm1
1(Q, ρ) = H1(K,O(ρ)) where O(ρ) = {x ∈ Q | ρ(x)x = 1}. By [3,

Chap. VII, §29], there is an exact sequence 1 → O+(ρ) → O(ρ) → µ2 → 1.
Moreover, we have O+(ρ) = L1 = {x ∈ L | NL/K(x) = 1}. This yields the
exact sequence 1 → µ2 → H1(K,L1) → H1(K,O(ρ)) → K×/K×2. Using
that H1(K,L1) ≃ K×/NL/K(L×) we obtain the sequence in (4.5).

4.7 Proposition. Let S = {aK×2 | a ∈ D(π′)} ⊆ K×/K×2. For α ∈ S let

Hα = {h ∈ Herm−1
1 (Q, γ) | disc(h) = α}. Then Herm−1

1 (Q, γ) =
⋃

α∈S Hα,

in particular |Herm−1
1 (Q, γ)| =

∑

α∈S |Hα|. Moreover, for any α = aK×2 ∈ S
one has |Hα| 6 1

2

∣

∣K×/NL/K(L×)
∣

∣ with L = K(
√
−a).

Proof: The first part is clear. For α ∈ S, there is a pure quaternion λ ∈ Q×

with disc(〈λ〉) = −α, and (4.5) applied to L = K(λ) yields the last part. �

4.8 Corollary. Let S = {aK×2 | a ∈ D(π′)} and let L be the set of maximal

subfields of Q. Then

∣

∣Herm−1
1 (Q, γ)

∣

∣ 6
1

2
sup
L∈L

∣

∣K×/NL/K(L×)
∣

∣ · |S| .

Proof: This is immediate from (4.7). �

4.9 Remark. We keep the notation of (4.8). Kaplansky showed in [1] that
Q is the unique quaternion division algebra over K if and only if

sup
L∈L

∣

∣K×/NL/K(L×)
∣

∣ = 2 .

If this condition holds, then (4.8) yields |Herm−1
1 (Q, γ)| 6 |S|, and as the

converse inequality follows from (4.7), we obtain that |Herm−1
1 (Q, γ)| = |S|.

This applies in particular to any local field. Moreover, if K is a non-dyadic
local field, then |K×/K×2| = 4 and |S| = 3, so that we obtain immediately
that u+(Q) = |Herm−1

1 (Q, γ)| = |S| = 3.

4.10 Theorem. Herm−1
1 (Q, γ) is finite if and only if K×/K×2 is finite.

Proof: Let S = {aK×2 | a ∈ D(π′)}. We fix a pure quaternion λ in Q and
put L = K(λ).

Assume that K×/K×2 is finite. Then S is finite. For α = aK×2, there is
a surjection from Hα to the group K×/NL/K(L×), where L = K(

√
−a), and
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this group is a quotient of K×/K×2. Therefore Hα is finite for any α ∈ S.
Since S is also finite, it follows that Herm−1

1 (Q, γ) =
⋃

α∈S Hα is finite.
Suppose now that Herm−1

1 (Q, γ) is finite. Then K×/NL/K(L×) is finite by
(4.5). As K×/Nrd(Q×) is a quotient of this group, it is also finite. Moreover,
the image of disc : Herm−1

1 (Q, γ) −→ K×/K×2 is finite, which means that
S is finite. Since the group of reduced norms Nrd(Q×) is generated by the
elements of D(π′), it follows that Nrd(Q×)/K×2 is finite. Hence, K×/K×2 is
finite. �

5 Anisotropic forms of dimension three

We keep the setting of the previous section. In this section we show that
3-dimensional anisotropic skew-hermitian forms over Q do exist except for a
few exceptional cases.

5.1 Lemma. Let x, y, z ∈ Q× be pure quaternions. If Nrd(xyz) /∈ D(π′),
then the skew-hermitian form 〈x, y, z〉 over Q is anisotropic.

Proof: If 〈x, y, z〉 is isotropic, then 〈x, y, z〉 ≃ H ⊥ 〈w〉 for some pure quater-
nion w ∈ Q× and it follows that Nrd(xyz) = Nrd(w) ∈ D(π′). �

Recall that a preordering of a field K is a subset T ⊆ K that is closed
under addition and under multiplication and contains all squares in K.

5.2 Theorem. The following are equivalent:

(1) D(π′) ∪ {0} is a preordering of K.

(2) D(π′) is closed under multiplication.

(3) D(π′) = D(π).

(4) For any a, b, c ∈ D(π′) one has abc ∈ D(π′).

If any of these conditions holds, then K is a real field and QK(
√
−1) is split.

Proof: By the definition of a preordering, (1) implies (2). Since any element
of Q is a product of two pure quaternions, the group of nonzero norms D(π)
is generated by the elements of D(π′). Therefore (2) implies (3). Since D(π)
is always a group, it is clear that (3) implies (4).
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Assume now that (4) holds. Take a diagonalisation π′ ≃ 〈a, b, c〉. Then
a, b, c ∈ D(π′), so (4) yields that abc ∈ D(π′). Since π′ has determinant 1,
we have abc ∈ K×2 and conclude that 1 ∈ D(π′). Fixing c = 1 ∈ D(π′)
we conclude from (4) that D(π′) is closed under multiplication. Hence (2)
and (3) are satisfied. For a, b ∈ D(π′), we have a−1b ∈ D(π′), whence
1 + a−1b ∈ D(π) = D(π′) by (3) and a + b = a(1 + a−1b) ∈ D(π′) by (2).
Hence D(π′) is closed under addition. Therefore D(π′)∪{0} is a preordering,
showing (1). Since π = 〈1〉 ⊥ π′ is anisotropic, this preordering does not
contain −1, so K is real. Moreover, QK(

√
−1) is split because 1 ∈ D(π′). �

5.3 Corollary. If K is nonreal or if QK(
√
−1) is a division algebra or if

D(π) 6= D(π′), then u+(Q) > 3.

Proof: By (5.2), in each case there are a, b, c ∈ D(π′) with abc /∈ D(π′).
With pure quaternions x, y, z ∈ Q such that Nrd(x) = a, Nrd(y) = b, and
Nrd(z) = c, the skew-hermitian form 〈x, y, z〉 is anisotropic by (5.1). �

5.4 Example. Let k = C(X1, X2), Q = (X1, X2), and K = C(X1, . . . , Xn)
for some n > 2. Then QK is a division algebra and u+(QK) 6 3 · 2n−2 by
(2.3), because K is a Cn-field. By (5.3), there is an anisotropic 3-dimensional
skew-hermitian form h over Q. Multiplying this form h with the quadratic
form 〈1, X3〉 ⊗ · · · ⊗ 〈1, Xn〉 over K, we obtain a skew-hermitian form of
dimension 3 · 2n−2 over QK . Therefore u+(QK) = 3 · 2n−2.

6 Kaplansky fields

Kaplansky [1] noticed that most statements about quadratic over local fields
remain valid over what he called ‘generalized Hilbert fields’, which are called
‘pre-Hilbert fields’ in [4, Chap. XII, Sect. 6]. As the relation to Hilbert’s work
is vague (based on the notion of ‘Hilbert symbol’ for a local field), we use the
term ‘Kaplansky field’ instead. To be precise, K is called a Kaplansky field

if there is a unique quaternion division algebra over K (up to isomorphism).
Natural examples of such fields are local fields and real closed fields. For the
construction of other examples we refer to [4, Chap. XII, Sect. 7].

Tsukamoto [10] obtained a classification for skew-hermitian forms over
the unique quaternion division algebra over a field K that is either real
closed or a local number field. As observed in [10], the same result holds
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more generally under the condition that the field K satisfies ‘local class field
theory’. In this section we show that Tsukamoto’s classification for skew-
hermitian forms over a quaternion division algebraQ overK is valid whenever
K is a Kaplansky field, which is a strictly weaker condition. The proof is
adapted from [10] and [9, Chap. 10, (3.6)].

6.1 Lemma. Let K be a Kaplansky field and let Q be the unique quaternion

division algebra over K. For any pure quaternion λ ∈ Q× and any d ∈ K×

we have 〈λ〉 ≃ 〈dλ〉 as skew-hermitian forms over Q.

Proof: Let µ ∈ Q× be such that µλ = −λµ. Then Q ≃ (a, b)K for a = λ2 and
b = µ2. Assume that there exists d ∈ K× with 〈λ〉 6≃ 〈dλ〉. By (4.4), none
of the forms 〈1,−a〉 and 〈b,−ab〉 represents d. Then (a, d)K is a quaternion
division algebra and not isomorphic to Q, contradicting the hypothesis. �

6.2 Theorem (Tsukamoto). Let K be a Kaplansky field and let Q be the

unique quaternion division algebra over K.

(a) Any skew-hermitian form of dimension at least 4 over Q is isotropic.

(b) Skew-hermitian forms over Q are classified by their dimension and dis-

criminant.

(c) A 2-dimensional skew-hermitian form over Q is isotropic if and only if

it has trivial discriminant.

(d) Any 3-dimensional skew-hermitian form over Q with trivial discrimi-

nant is anisotropic.

Proof: Let γ denote the canonical involution on Q. We first show that 1-
dimensional skew-hermitian forms over Q are classified by the discriminant.
Let z1, z2 ∈ Sym−(Q, γ) and assume that the skew-hermitian forms 〈z1〉 and
〈z2〉 over Q have the same discriminant. According to (4.2), then 〈z1〉 ≃ 〈cz2〉
for some c ∈ K. Since also 〈z2〉 ≃ 〈cz2〉 by (6.1), we obtain that 〈z1〉 ≃ 〈z2〉.

(a) Let z1, z2 ∈ Sym−(Q, γ) be such that the skew-hermitian form 〈z1, z2〉
overQ has trivial discriminant. Then Nrd(z1) and Nrd(z2) represent the same
class in K×/K×2. This means that the 1-dimensional forms 〈z1〉 and 〈−z2〉
have the same discriminant, whence 〈z1〉 ≃ 〈−z2〉 by what we showed above.

(b) Let ϕ be a 3-dimensional skew-hermitian form overQ. If ϕ is isotropic,
then ϕ ≃ H⊥〈a〉 where a ∈ Sym−(Q, γ), and it follows that ϕ has the same
discriminant as 〈a〉, which cannot be trivial by part (a).
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(c) Let ϕ be a 4-dimensional skew-hermitian form over Q. There exist
a1, . . . , a4 ∈ Sym−(Q, γ) with ϕ ≃ 〈a1, a2, a3, a4〉. As dimK(Sym−(Q, γ)) = 3,
there exist c1, . . . , c4 ∈ K, not all zero, such that c1a1+c2a2+c3a3+c4a4 = 0.
By the first paragraph of the proof, for 1 6 i 6 4 there is some di ∈ Q with
ciai = γ(di)aidi. Then

∑4
i=1 γ(di)aidi = 0 and thus ϕ is isotropic.

(d) Let ϕ and ψ be two n-dimensional skew-hermitian forms over Q for
some n > 1, and assume that both forms have the same discriminant. By (b),
the 2n-dimensional form ϕ ⊥ −ψ then splits off n−1 hyperbolic planes. The
remaining 2-dimensional form has trivial discriminant and thus is hyperbolic
by (a). Therefore ϕ ⊥ −ψ is hyperbolic, which means that ϕ ≃ ψ. �

6.3 Corollary. Let Q be a quaternion division algebra over K. Skew-

hermitian forms over Q are classified by dimension and discriminant if and

only if K is a Kaplansky field.

Proof: By (6.2) the condition is sufficient. To show its necessity, suppose that
Q is not the unique quaternion division algebra over K. By (4.9), there exists
λ ∈ Q \K such that, for the field L = K(λ) ⊆ Q, the index of NL/K(L×) in
K× is at least 4. Let a, b ∈ K× be such that λ2 = a and Q ≃ (a, b)K . Now,
there exists c ∈ K× such that neither c nor bc is a norm of L/K. Then the
two 1-dimensional skew-hermitian forms 〈λ〉 and 〈cλ〉 over Q have the same
discriminant, but they are not isometric by (4.4). �

6.4 Corollary. Let K be a nonreal Kaplansky field and let Q be the unique

quaternion division algebra over K. Then u+(Q) = 3.

Proof: we have u+(Q) 6 3 by (6.2) and u+(Q) > 3 by (5.3). �

The field K is said to be euclidean if K×2 ∪ {0} is an ordering of K, or
equivalently, if K is real and K× = K×2 ∪−K×2 (cf. [4, Chap. VIII, (4.2)]).
If K is euclidean, then (−1,−1)K is the unique quaternion division algebra
over K, in particular K is a Kaplansky field.

6.5 Proposition. Let Q be a quaternion division algebra over K and γ its

canonical involution. The following are equivalent:

(1) u+(Q) = 1.

(2) |Herm−1
1 (Q, γ)| = 1.

(3) K is euclidean and Q ≃ (−1,−1)K.
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Proof: The equivalence of (1) and (2) is clear. If (3) holds, then K is
a Kaplansky field and any 1-dimensional skew-hermitian form over Q has
trivial discriminant, and by (6.2) this implies (2).

Suppose that (1) and (2) hold. From (2) it follows that D(π′) = K×2,
whence π′ ≃ 〈1, 1, 1〉 and

∑

K×2 = K×2. Therefore Q ≃ (−1,−1)K and
−1 /∈ K×2 =

∑

K×2 as Q is not split. So K is real. To prove (3), it remains
to show that K× = K×2 ∪−K×2. We fix i ∈ Q with i2 = −1 and L = K(i).
For any a ∈ K×, the skew-hermitian form 〈i,−ai〉 over Q is isotropic by (1),
whence a ∈ NL/K(L×) ∪ −NL/K(L×) = K×2 ∪ −K×2 by (4.4). �

6.6 Proposition. Let K be a real Kaplansky field and let Q = (−1,−1)K .

Then u+(Q) 6 2.

Proof: Let i be a pure quaternion in Q with i2 = −1. By (6.2), the skew-
hermitian form 〈i, i〉 over Q is isotropic. We claim that every 2-dimensional
skew-hermitian form over Q is isometric to 〈i, z〉 for some pure quaternion z ∈
Q×. Once this is shown, it follows that every 3-dimensional skew-hermitian
form over Q contains 〈i, i〉 and therefore is isotropic.

Let h be a 2-dimensional skew-hermitian form over Q. We write disc(h) =
aK×2 with a ∈ K×. Then a ∈ Nrd(Q×) and a is a sum of four squares in
K. Since K is a real Kaplansky field, the quaternion algebra (−1, a)K is
split, because it is not isomorphic to (−1,−1)K . Therefore a is a sum of
two squares in K. It follows that there is a pure quaternion z in Q with
Nrd(z) = a. Then the skew-hermitian form 〈i, z〉 over Q has discriminant a
and is therefore isometric to h, by (6.2). �

6.7 Example. Let K be a maximal subfield of R with 2 /∈ K×2. Then K is a
real field with four square classes represented by ±1,±2, and Q = (−1,−1)K

is the unique quaternion division algebra overK. SinceQ ≃ (−1,−2)K , there
are anticommuting pure quaternions α, β ∈ Q with α2 = 1 and β2 = 2. Then
the skew-hermitian form 〈α, β〉 over Q has nontrivial discriminant 2K×2, so
it is anisotropic. This together with (6.6) shows that u+(Q) = 2.

6.8 Theorem. Let K be a Kaplansky field and let Q be the unique quaternion

division algebra over Q. Then

u+(Q) =







1 if K is real euclidean,
2 if K is real non-euclidean,
3 if K is nonreal.

Proof: This follows from (6.2), (6.5), (6.6), and (5.3). �
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