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Abstract

In quadratic form theory over fields, a much studied field invariant
is the w-invariant, defined as the supremum over the dimensions of
anisotropic quadratic forms over the field. We investigate the corre-
sponding notions of u-invariant for hermitian and for skew-hermitian
forms over a division algebra with involution, with a special focus on
skew-hermitian forms over a quaternion algebra. Under certain condi-
tions on the center of the quaternion algebra, we obtain sharp bounds
for this invariant.
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1 Involutions and hermitian forms

Throughout this article K denotes a field of characteristic different from 2
and K its multiplicative group. We shall employ standard terminology from
quadratic form theory, as used in [9]. We say that K is real if K admits a
field ordering, nonreal otherwise. By the Artin-Schreier Theorem, K is real
if and only if —1 is not a sum of squares in K.

Let A be a division ring whose center is K and with dimg(A) < oo; we
refer to such A as a division algebra over K, for short. We further assume
that A is endowed with an involution o, that is, a map o : A — A such that
o(a+b) =o0(a)+ o(b) and o(ab) = o(b)o(a) hold for any a,b € A and such



that coo = idx. Then 0|k : K — K is an involution of K, and there are two
cases to be distinguished. If o|x = idf, then we say that the involution o is
of the first kind. In the other case, when o|f is a nontrivial automorphism of
the field K, we say that o is of the second kind. In general, we fix the subfield
k={x € K | o(x) =z} and say that o is a K/k-involution of A. Note that
o: A — Ais k-linear. If o is of the second kind, then K/k is a quadratic
extension. Recall that involutions of the first kind on a division algebra A
over K do exist if and only if A is of exponent at most 2, i.e. A ®x A is
isomorphic to a matrix algebra over K. Moreover, an involution o of the first
kind over A is either of orthogonal or of symplectic type, depending on the
dimension of the subspace {z € A | o(x) = x}.

Let € € K* with o(e)e = 1. We are mainly interested in the cases where
e = +1; if o is of the first kind then these are the only possibilities for e. An
e-hermitian form over (A, o) is a pair (V, h) where V is a finite-dimensional
A-vector space and hisamap h: V xV — A that is A-linear in the second
argument and with o(h(z,y)) = e-h(y, x) for any x,y € V; it follows that A is
‘sesquilinear’ in the sense that h(za, yb) = o(a)h(x,y)b holds for any x,y € V
and a,b € A. In this situation we may also refer to h as the e-hermitian form
and to V' as the underlying vector space. We simply say that h is hermitian
(resp. skew-hermitian) if h is 1-hermitian (resp. (—1)-hermitian).

In the simplest case we have A = K, 0 = idg, and € = 1. A 1-hermitian
form over (K, idk) is a symmetric bilinear form b : V' x V' — K on a finite
dimensional vector space V over K; by the choice of a basis it can be identified
with a quadratic form over K in n = dimg (V') variables.

An e-hermitian form h over (A, o) with underlying vector space V' is said
to be regular or nondegenerate if, for any x € V' \ {0}, the associated A-linear
form V' — A,y — h(x,y) is nontrivial; if this condition fails & is said to be
singular or degenerate. We say that h is isotropic if there exists a vector
x € V \ {0} such that h(x,z) = 0, otherwise we say that h is anisotropic.
Let hy and hy be two e-hermitian forms over (A, o) with underlying spaces
Vi and V5. The orthogonal sum of hy and hsy is the e-hermitian form h on
the A-vector space V = V] x V, given by h(z,y) = hy(z1,y1) + ha(z2,ys) for
x = (r1,22),y = (y1,y2) € V, and it is denoted by hy; L hy. An isometry
between h; and ho is an isomorphism of A-vector spaces 7 : V3 — V5 such
that hy(z,y) = ho(7(x),7(y)) holds for all z,y € V4. If an isometry between
hy and hs exists, then we say that h; and hy are isometric and write hy =~ ho.
Witt’s Cancellation Theorem [2; (6.3.4)] states that, whenever hq, hy and
h are e-hermitian forms on (A, o) such that hy L h ~ hy L h, then also
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hy ~ hg holds. A regular 2n-dimensional e-hermitian form (V,h) is said to
be hyperbolic if there exits an n-dimensional subspace W of V such that
h(z,y) = 0 for all z,y € W. The (up to isometry) unique isotropic 2-
dimensional e-hermitian form is denoted by H.

Given an e-hermitian form (V, ) on (A, o) we write

D(h) = {h(z,2) |z € V\ {0}} CA.
Note that this set contains 0 if and only if h is isotropic. We further put
Sym®(A,0) = {r € A|o(x) =ex}.

For any e-hermitian form h over (A, o) we have D(h) C Sym®(A, o). Given
ai,...,a, € Sym*(A, o), an e-hermitian form h on the A-vector space V =
A™is given by h(z,y) = o(z1)aiyn+- - -+ 0(Tn)anyy, for z = (21,...,2,),y =
(Y1, .- Yyn) € A" = V. We denote this form h by (ay,...,a,) and observe
that it is regular if and only if a; # 0 for 1 < i < n. As char(K) # 2, any
e-hermitian form is isometric to {(ay, ..., a,) for some n € N and a4,...,a, €
Sym®(A, o) [2, (6.2.4)].

We denote by Herm! (A, o) the set of isometry classes of regular n-
dimensional e-hermitian forms over (A,o). Mapping a € Sym®(A, o) to
the class of (a) yields a surjection

Sym®(A,0) \ {0} — Hermij(A,o0).

Two elements a, b € Sym®(A, o) are congruent if there exists ¢ € A such
that a = o(c)be, which is equivalent to saying that (a) ~ (b) over (A, o).

1.1 Remark. In the case where A = K and ¢ = 1, there is a natural one-
to-one correspondence between Herm[(A, o) and K*/K*?. We may then
identify the two sets and thus endow Herm](A,o) with a natural group
structure. One can proceed in a similar way in the two cases, first where A
is a quaternion algebra and o its canonical involution, and second when o is
a unitary involution on a field A = K.

Given an e-hermitian form h over (A, o) and an element a € k* where
k={x € K| o(x) =z}, we define the scaled e-hermitian form ah in the
obvious way. Two e-hermitian forms h and h' over (A, o) are said to be
similar, if h' ~ ah for some a € k*.



2 Hermitian u-invariants

We keep the setting of the previous section. Following [8, Chap. 9, (2.4)] we
define

u(A,o,e) = sup {dim(h) | h anisotropic e-hermitian form over (A, o)}
in NU {oo} and call this the u-invariant of (A,o,€). Then
u(K, idg,1) = sup {dim(y) | ¢ anisotropic quadratic form over K}

is the u-invariant of the field K, denoted by u(K). We refer to [8, Chap. §]
for an overview on this invariant for nonreal fields and for the discussion of a
different definition of this definition, which is more reasonable when dealing
with real fields.

To obtain upper bounds on u(A, g,¢), one can use the theory of systems
of quadratic forms. In fact, to every e-hermitian form h over (A, o) one can
associate a system of quadratic forms over k in such a way that the isotropy
of h is equivalent to the simultaneous isotropy of this system.

For r € N, one denotes by u,.(K) the supremum over the n € N for which
there exists a system of r quadratic forms in n variables over K having
no nontrivial common zero. The numbers u,(K) are called the system u-
invariants of K. Note that uo(K) = 0 and uy (K) = u(K). Leep proved that
these system wu-invariants satisfy the inequalities

u(K) < ru(K) +u,y(K) < "y (K)
for any integer r > 1. Using systems of quadratic forms, he further showed
that u(L) < %u([( ) holds for an arbitrary finite field extension L/K.
(See [9, Chap. 2, Sect. 16] for these and more facts on systems on quadratic
forms.) In the same vein the following result was obtained in [7, (3.6)].

2.1 Proposition. Let A be a division algebra over K, o an involution on
A, and € € K with eo(e) = 1. Then

u, (k) o r(r+1)

WA, 0,8) < m2[K : k]  2m?[K : K] (k)

where k = {x € K | o(x) =z}, m = deg(A) and r = dimy(Sym*(A, 0)). In
particular, if u(k) < oo, then u(A,o,e) < 0o.
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In this article, we are mainly concerned with the wu-invariant of an in-
volution of the first kind. Assume that o is an involution of the first kind
on the division algebra A over K. In this case A ®x A is isomorphic to a
matrix algebra and ¢ = +1. In [7] it is explained that u(A,o,¢) only de-
pends on € and on the type of o, i.e., whether it is orthogonal or symplectic.
More precisely, given two involutions of the first kind o and 7 on A one has
u(A,o,e) = u(A, 7,¢) if 0 and 7 are of same type and u(A, 0,¢) = u(A, 7, —¢)
if they are of opposite type. We define

ut(A) =u(A,0,+1) and u (A) =u(A,o0,—1)

with respect to an arbitrary orthogonal involution ¢ on A, as these num-
bers do not depend on the choice of . We call u™(A) the orthogonal and
u” (A) the symplectic u-invariant of A. By the previous, for any symplectic
involution 7 on A one has u(A, 7,e) = u=¢(A).

Let us briefly turn to the case of an involution o of the second kind. It
turns out that u(A, o,¢) depends only on the field k = {z € K | o(z) = z},
and in particular it does not depend on ¢ at all.

Let ¢ € N. Using (2.1) one can obtain estimates for the u-invariants
of division algebras with involution over a C;-field. We recall some facts
from Tsen-Lang Theory, following [9, Chap. 2, Sect. 15]. A field K is
called a C;-field if every homogeneous polynomial over K of degree d in more
than d' variables has a nontrivial zero. The natural examples of C;-fields are
extensions of transcendence degree 7 of an arbitrary algebraically closed field
and (for ¢ > 0) extensions of transcendence degree i — 1 of a finite field. A
result due to Lang and Nagata states that if K is a C;-field then u,(K) < r-2°
for any » € N (cf. [9, Chap. 2, (15.8)]). In [8, Chap. 5], variations of the
Ci-property and open problems in this context are discussed.

2.2 Corollary. Let K be a C;-field and let A be a division algebra of exponent
2 and of degree m over K. Then u™(A) < 2071 mTH and u~(A) < 271 m=L

m

Proof: We use (2.1) and the fact that u,(k) < 2'r. O

2.3 Corollary. Let K be a C;-field. Let A be a quaternion division algebra
over K. Then u™(A) <3-272% and u=(A) < 2072

Example (5.4) will show that the first bound in (2.3) is sharp. For the
second bound, we leave this as an easy exercise. In fact, determining the sym-
plectic u-invariant of a quaternion algebra is a pure quadratic form theoretic
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problem in view of Jacobson’s Theorem [9, Chap. 10, (1.1)], which relates
skew-hermitian forms over a quaternion algebra with canonical involution to
quadratic forms over the center. This is why our investigation for quaternion
algebras concentrates on the orthogonal u-invariant.

3 Kneser’s Theorem

In this section, we give an upper bound on the u-invariant of a division algebra
with involution in terms of the number of 1-dimensional (skew-)hermitian
forms, under a condition on the levels of certain subalgebras. This extends
an observation due to Kneser [4, Chap. XI, (6.4)] on the commutative case.

From [6] we recall the definition of the level of an involution. Let o be an
involution on a central simple algebra A over K. The level of o is defined as

s(A,0) = sup{m € N | m x (1) is anisotropic over (A, o)}

in NU{oo}. Whenever s(A, ¢) is finite, it is equal to the smallest number m
for which —1 can be written as a sum of m hermitian squares over (A, o).

3.1 Theorem. Let A be a division algebra over K equipped with an involu-
tion o. Lete € K be such that o(e)e = 1. Let ¢ be an e-hermitian form over
(A,0) and let a« € D* be such that o(«) = ea. Let Cp(«) be the centralizer
of K(a) in A. Suppose that s(Ca(a),0lca@) < 00. If ¢ = L () is
anisotropic then D(v) C D(p).

Proof: We write 0 = o(do)dy + --- + o(ds)ds with s = s(Ca(@),0|ca(a))
and do, ...,ds € Ca(a) \ {0}. We suppose that D(¢)) = D(p) and want to
conclude that ¢ is isotropic. We claim that a-(o(dg)do+- - -+0(d;)d;) € D(¢p)
for any 0 < ¢ < s. For ¢ = s this yields that ¢ is isotropic.

For i = 0, the elements « and ao(dy)dy are indeed represented by .
Let now 1 < ¢ < s and assume that the claim is established for 7 — 1.
With a(o(dy)do + - - -+ o(di—1)d;—1) € D(p) = D(¢), we obtain readily that
alo(do)do+ -+ o(di—1)d;—1) + ao(d;)d; € D(p), finishing the argument. [

3.2 Corollary. Assume that s(Ca(K()),0) < 0o for every a € Sym®(A, o).
Then u(A,o0,¢) < |[Herm] (A, o).

Proof: Let h ~ (ay,...,a,) be an anisotropic e-hermitian form of dimension
n over (A,o). Let h; = (ay,...,a;) for i = 1,...,n. By (3.1) we have
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D(hy) € D(hy) € --- € D(h,) = D(h). We conclude that h represents at
least n pairwise incongruent elements of Sym®(A, ¢), i.e. [Hermj(A,o)| > n.
Therefore we have |Herm] (A, 0)| > u(A, 0, ¢). O

3.3 Remark. The hypothesis of (3.2) is trivially satisfied if the subfield of
K consisting of the elements fixed by o is nonreal; this is for example the
case whenever o is of the first kind and K is a nonreal field.

3.4 Example. Let p be a prime number different from 2 and let () denote the
unique quaternion division algebra over Q,. Then it follows from [9, Chap.
10, (3.6)] that u*(Q) = |Herm;(Q,7)| = 3 (see also (4.9), below). Let now
m be a positive integer and K = Q,((t1)) ... (tm)). Then Qk is a quaternion
division algebra over K and u*(Q) = |Herm;'(Qg,v)| = 3-2™. This
follows from the fact that the u-invariant(s) and the number of 1-dimensional
e-hermitian forms over a division algebra defined over a field K both double
when the center is extended from K to K((t)).

The upper bound on the u-invariant obtained in (3.2) motivates to look for
criteria for the finiteness of Hermj (A, o) where A is a division algebra over K,
o an involution on A, and € = +1. We conjecture that |Hermj (A, o)| < oo
is equivalent to |K*/K*?| < co. In the next section we shall confirm this in
the case of skew-hermitian forms over a quaternion division algebra.

4 Congruence of pure quaternions

From this section on we consider a quaternion division algebra () over K.
Let v denote the canonical involution of (), w the norm form of () and #’ its
pure part, so that 7 = (1) L 7. By a skew-hermitian form over Q) we always
mean a regular skew-hermitian form over (@, ). In this section we want to
describe Herm[*(Q, 7).

Following [10] the discriminant of a skew-hermitian form h over @ is
defined as the square class disc(h) = (—1)" Nrd((h(z;, x;)))K** in K*/K*?
where (z1,...,x,) is an arbitrary A-basis of the underlying vector space and
where Nrd : M,,(A) — K denotes the reduced norm.

4.1 Remark. For a € K* there exists a skew-hermitian form of dimension
1 and discriminant a over @) if and only if —a is represented by the pure part
of the norm form of ). In particular, any 1-dimensional skew-hermitian form
over () has nontrivial discriminant.



4.2 Proposition. Skew-hermitian forms of dimension 1 over Q) are classified
up to similarity by their discriminants.

Proof: More generally, similar skew-hermitian forms over () have the same
discriminant. Assume now that zi, 2o € Q* are pure quaternions such that
the discriminants of the skew-hermitian forms (z1) and (z3) coincide. Hence
there exists d € K* such that z3 = d?2? = (dz;)?. Therefore the pure
quaternions zs and dz; are congruent in (), i.e. there exists a € Q* such
that dz; = a~'zpa. Multiplying this equality with Nrd(a) = v(a)a, if follows
that (Nrd(a)d)z; = v(a)za. With ¢ = (Nrd(a)d) € K* we obtain that
(cz1) ~ (29), so (z1) and (z9) are similar. O

4.3 Remark. A closer look at the above argument yields the following refine-
ment. Let G be a subgroup of K* containing Nrd(Q*). Two 1-dimensional
skew-hermitian forms are obtained one from each other by scaling with an
element of G if and only if their discriminants coincide in K* /G2

4.4 Lemma (Scharlau). Let A, u € Q* be anticommuting elements, in partic-
ular Q = (a,b)g fora =X, b=pu?> € K*. Let c € K*. The skew-hermitian
forms (X} and (cA\) over Q are isometric if and only if ¢ is represented over
K by one of the quadratic forms (1, —a) and (b, —ab) over K.

Proof: See [9, Chap. 10, (3.4)]. O
The following result was obtained in [5], in slightly different terms.
4.5 Proposition (Lewis). Let A € Q* be a pure quaternion. We consider

Herm; '(Q, ) as a pointed set with the isometry class of (\) as distinguished
point. With L = K()\) and a = \* € K*, one obtains an ezact sequence

| — 727 — K* /Ny (L) =2 Herm; Y(Q,~) "5 K> /K2
Proof: Let b € K* be such that @ = (a,b)x. By (4.4) the group of elements
xr € K* such that (xA) ~ (\) coincides with Ny k(LX) UbNL/k(L*). This
proves the exactness in the first two terms. The exactness at Hermfl(Q, v)
follows from (4.2). O

4.6 Remark. We sketch an alternative, cohomological argument for the
exact sequence in (4.5), which has been pointed out to us by J.-P. Tignol.
Let p = Int(\) 0. First note that Herm;'(Q,~) can be identified with
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Hermy(Q, p) = H'(K,O(p)) where O(p) = {z € Q | p(z)x = 1}. By [3,
Chap. VII, §29], there is an exact sequence 1 — O%(p) — O(p) — pg — 1.
Moreover, we have Ot (p) = L' = {& € L | Ny/k(z) = 1}. This yields the
exact sequence 1 — py — H'(K,L') — HY(K,O(p)) —» K*/K*?. Using
that H'(K, L') ~ K* /Ny x(L*) we obtain the sequence in (4.5).

4.7 Proposition. Let S = {aK*?* | a € D(r')} C K*/K*?. Fora € S let
H, = {h € Herm; '(Q,7) | disc(h) = a}. Then Herm; ' (Q,7) = U,cs Ha,
in particular [Hermy ' (Q,7)| = Y .cs |Ha|. Moreover, for any o = aK** € S
one has |Ho| < 3 |K* /Ny (L*)| with L = K(v/=a).

Proof: The first part is clear. For a € S, there is a pure quaternion A € Q*
with disc((\)) = —«, and (4.5) applied to L = K(\) yields the last part. O

4.8 Corollary. Let S = {aK*? | a € D(7')} and let L be the set of mazimal
subfields of Q. Then

1
’Herml’l(Q,fy)} < 3 sup’KX/NL/K(LX)} - 1S]
LeL

Proof: This is immediate from (4.7). O

4.9 Remark. We keep the notation of (4.8). Kaplansky showed in [1] that
(@ is the unique quaternion division algebra over K if and only if

sup | K /Ny x(L7)| = 2.
Lec

If this condition holds, then (4.8) yields |Herm;*(Q,v)| < |S|, and as the
converse inequality follows from (4.7), we obtain that |[Herm;'(Q,~)| = |S].
This applies in particular to any local field. Moreover, if K is a non-dyadic
local field, then |K*/K*?| = 4 and |S| = 3, so that we obtain immediately
that u*(Q) = [Herm; (Q, )] = |S] = 3.

4.10 Theorem. Herm;'(Q,~) is finite if and only if K*/K*? is finite.

Proof: Let S = {aK*? | a € D(r")}. We fix a pure quaternion X in @ and
put L = K(\).

Assume that K*/K*? is finite. Then S is finite. For o = aK*?] there is
a surjection from H, to the group K* /Ny k(L*), where L = K(y/—a), and



this group is a quotient of K*/K*?. Therefore H, is finite for any a € S.
Since S is also finite, it follows that Herm; ' (Q,7) = U,cg Ha is finite.
Suppose now that Herm; ' (Q, ) is finite. Then K* /Ny, x(L*) is finite by
(4.5). As K*/Nrd(Q*) is a quotient of this group, it is also finite. Moreover,
the image of disc : Herm; '(Q,v) — K*/K*? is finite, which means that
S is finite. Since the group of reduced norms Nrd(Q*) is generated by the
elements of D(7'), it follows that Nrd(Q*)/K*? is finite. Hence, K*/K*? is
finite. 0

5 Anisotropic forms of dimension three

We keep the setting of the previous section. In this section we show that
3-dimensional anisotropic skew-hermitian forms over () do exist except for a
few exceptional cases.

5.1 Lemma. Let z,y,z € Q* be pure quaternions. If Nrd(xyz) ¢ D(n'),
then the skew-hermitian form (x,y, z) over Q is anisotropic.

Proof: 1f (x,y, z) is isotropic, then (z,y, z) ~ H L (w) for some pure quater-
nion w € Q* and it follows that Nrd(zyz) = Nrd(w) € D(n'). O

Recall that a preordering of a field K is a subset T C K that is closed
under addition and under multiplication and contains all squares in K.

5.2 Theorem. The following are equivalent:

1) D(n") U {0} is a preordering of K.

2) D(7') is closed under multiplication.

3) D(n') = D(r).

(1)
(2)
(3)
(4) For any a,b,c € D(n') one has abc € D(r').

If any of these conditions holds, then K is a real field and Q /=1y s split.

Proof: By the definition of a preordering, (1) implies (2). Since any element
of @ is a product of two pure quaternions, the group of nonzero norms D(7)
is generated by the elements of D(n’). Therefore (2) implies (3). Since D(7)
is always a group, it is clear that (3) implies (4).
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Assume now that (4) holds. Take a diagonalisation 7" ~ (a,b,c). Then
a,b,c € D(n'), so (4) yields that abc € D(x'). Since 7’ has determinant 1,
we have abc € K*? and conclude that 1 € D(n’). Fixing ¢ = 1 € D(7’)
we conclude from (4) that D(n') is closed under multiplication. Hence (2)
and (3) are satisfied. For a,b € D(x’), we have a~'b € D(x’), whence
1+a b€ D(rr) = D(r') by (3) and a + b = a(l +a~'b) € D(7') by (2).
Hence D(7') is closed under addition. Therefore D(n")U{0} is a preordering,
showing (1). Since m = (1) L 7’ is anisotropic, this preordering does not
contain —1, so K is real. Moreover, Q=7 is split because 1 € D(7'). [

5.3 Corollary. If K is nonreal or if Q=1 15 a division algebra or if
D(rw) # D(x'), then u*(Q) = 3.

Proof: By (5.2), in each case there are a,b,c € D(n’) with abc ¢ D(n’).
With pure quaternions z,y,z € @ such that Nrd(z) = a, Nrd(y) = b, and
Nrd(z) = ¢, the skew-hermitian form (z,y, z) is anisotropic by (5.1). O

5.4 Example. Let k = C(X1, X5), @ = (X1, Xs), and K = C(Xq,...,X,,)
for some n > 2. Then Q is a division algebra and u™(Qg) < 3-2"2 by
(2.3), because K is a C,-field. By (5.3), there is an anisotropic 3-dimensional
skew-hermitian form h over (). Multiplying this form h with the quadratic
form (1,X3) ® --- ® (1, X,) over K, we obtain a skew-hermitian form of
dimension 3 - 2”72 over Q. Therefore u™(Q) = 3 - 2772

6 Kaplansky fields

Kaplansky [1] noticed that most statements about quadratic over local fields
remain valid over what he called ‘generalized Hilbert fields’, which are called
‘pre-Hilbert fields’ in [4, Chap. XII, Sect. 6]. As the relation to Hilbert’s work
is vague (based on the notion of ‘Hilbert symbol’ for a local field), we use the
term ‘Kaplansky field” instead. To be precise, K is called a Kaplansky field
if there is a unique quaternion division algebra over K (up to isomorphism).
Natural examples of such fields are local fields and real closed fields. For the
construction of other examples we refer to [4, Chap. XII, Sect. 7].
Tsukamoto [10] obtained a classification for skew-hermitian forms over
the unique quaternion division algebra over a field K that is either real
closed or a local number field. As observed in [10], the same result holds
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more generally under the condition that the field K satisfies ‘local class field
theory’. In this section we show that Tsukamoto’s classification for skew-
hermitian forms over a quaternion division algebra () over K is valid whenever
K is a Kaplansky field, which is a strictly weaker condition. The proof is
adapted from [10] and [9, Chap. 10, (3.6)].

6.1 Lemma. Let K be a Kaplansky field and let () be the unique quaternion
division algebra over K. For any pure quaternion A € Q* and any d € K*
we have (\) ~ (d\) as skew-hermitian forms over Q.

Proof: Let u € Q* be such that uA = —Au. Then Q ~ (a, b)x for a = A\* and
b = p?. Assume that there exists d € K* with (\) 2 (d\). By (4.4), none
of the forms (1, —a) and (b, —ab) represents d. Then (a,d)x is a quaternion
division algebra and not isomorphic to (), contradicting the hypothesis. [

6.2 Theorem (Tsukamoto). Let K be a Kaplansky field and let @ be the
unique quaternion division algebra over K.

(a) Any skew-hermitian form of dimension at least 4 over Q) is isotropic.

(b) Skew-hermitian forms over Q are classified by their dimension and dis-
criminant.

(¢) A 2-dimensional skew-hermitian form over Q is isotropic if and only if
it has trivial discriminant.

(d) Any 3-dimensional skew-hermitian form over Q with trivial discrimi-
nant 1s anisotropic.

Proof: Let ~ denote the canonical involution on (). We first show that 1-
dimensional skew-hermitian forms over @) are classified by the discriminant.
Let 21,29 € Sym™ (Q,y) and assume that the skew-hermitian forms (z;) and
(z2) over @ have the same discriminant. According to (4.2), then (z1) ~ (czs)
for some ¢ € K. Since also (z9) ~ (cz3) by (6.1), we obtain that (z;) =~ (29).

(a) Let z1, 22 € Sym™ (Q, ) be such that the skew-hermitian form (z1, z5)
over ) has trivial discriminant. Then Nrd(z;) and Nrd(z2) represent the same
class in K*/K*?. This means that the 1-dimensional forms (z;) and (—z5)
have the same discriminant, whence (z1) ~ (—z5) by what we showed above.

(b) Let ¢ be a 3-dimensional skew-hermitian form over Q). If ¢ is isotropic,
then ¢ ~ H1 (a) where a € Sym™ (Q, ), and it follows that ¢ has the same
discriminant as (a), which cannot be trivial by part (a).
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(c) Let ¢ be a 4-dimensional skew-hermitian form over (). There exist
ay,...,aq € Sym (Q,v) with ¢ ~ (a1, as, as, ay). Asdimg(Sym™(Q,v)) = 3,
there exist ¢y, ...,c4 € K, not all zero, such that cia; +coas +c3as+cqay = 0.
By the first paragraph of the proof, for 1 < ¢ < 4 there is some d; € () with
cia; = y(d;)a;d;. Then 2?21 v(d;)a;d; = 0 and thus ¢ is isotropic.

(d) Let ¢ and ¢ be two n-dimensional skew-hermitian forms over @ for
some n > 1, and assume that both forms have the same discriminant. By (b),
the 2n-dimensional form ¢ 1 —1) then splits off n — 1 hyperbolic planes. The
remaining 2-dimensional form has trivial discriminant and thus is hyperbolic
by (a). Therefore ¢ 1 —1) is hyperbolic, which means that ¢ ~ . OJ

6.3 Corollary. Let Q) be a quaternion division algebra over K. Skew-
hermitian forms over ) are classified by dimension and discriminant if and
only if K is a Kaplansky field.

Proof: By (6.2) the condition is sufficient. To show its necessity, suppose that
@ is not the unique quaternion division algebra over K. By (4.9), there exists
A € @\ K such that, for the field L = K(\) C @, the index of Ny /x(L*) in
K* is at least 4. Let a,b € K* be such that \> = a and Q ~ (a,b)r. Now,
there exists ¢ € K* such that neither ¢ nor bc is a norm of L/K. Then the
two 1-dimensional skew-hermitian forms (\) and (c\) over () have the same
discriminant, but they are not isometric by (4.4). O

6.4 Corollary. Let K be a nonreal Kaplansky field and let Q) be the unique
quaternion division algebra over K. Then ut(Q) = 3.

Proof: we have u*(Q) < 3 by (6.2) and u*(Q) > 3 by (5.3). O

The field K is said to be euclidean if K**U {0} is an ordering of K, or
equivalently, if K is real and K* = K*2U —K*? (cf. [4, Chap. VIII, (4.2)]).
If K is euclidean, then (—1, —1)g is the unique quaternion division algebra
over K, in particular K is a Kaplansky field.

6.5 Proposition. Let ) be a quaternion division algebra over K and -~y its
canonical involution. The following are equivalent:

(1) wt (@ =1.
(2) [Herm; (@, )] = 1.
(3) K is euclidean and Q ~ (=1, —1)k.

13



Proof: The equivalence of (1) and (2) is clear. If (3) holds, then K is
a Kaplansky field and any 1-dimensional skew-hermitian form over @) has
trivial discriminant, and by (6.2) this implies (2).

Suppose that (1) and (2) hold. From (2) it follows that D(n') = K*?,
whence 7' ~ (1,1,1) and > K*? = K*?. Therefore Q ~ (—1,—1)x and
—1¢ K*? =3 K*% as Q is not split. So K is real. To prove (3), it remains
to show that K* = K*2U—K*2 We fix i € Q with > = —1 and L = K(4).
For any a € K, the skew-hermitian form (i, —ai) over @) is isotropic by (1),
whence a € Ny (L*)U =Ny (L*) = K** U —K*? by (4.4). O

6.6 Proposition. Let K be a real Kaplansky field and let Q = (=1, —1)g.
Then ut(Q) < 2.

Proof: Let i be a pure quaternion in @ with 2 = —1. By (6.2), the skew-
hermitian form (i,4) over @) is isotropic. We claim that every 2-dimensional
skew-hermitian form over @) is isometric to (i, z) for some pure quaternion z €
. Once this is shown, it follows that every 3-dimensional skew-hermitian
form over ) contains (i,7) and therefore is isotropic.

Let h be a 2-dimensional skew-hermitian form over ). We write disc(h) =
aK*? with a € K*. Then a € Nrd(Q*) and a is a sum of four squares in
K. Since K is a real Kaplansky field, the quaternion algebra (—1,a)x is
split, because it is not isomorphic to (—1,—1)g. Therefore a is a sum of
two squares in K. It follows that there is a pure quaternion z in ) with
Nrd(z) = a. Then the skew-hermitian form (i, z) over ) has discriminant a
and is therefore isometric to h, by (6.2). O

6.7 Example. Let K be a maximal subfield of R with 2 ¢ K*2. Then K is a
real field with four square classes represented by +1, 2, and Q = (=1, —1)g
is the unique quaternion division algebra over K. Since @) ~ (—1, —2)g, there
are anticommuting pure quaternions «, 8 € ) with o?> = 1 and 2 = 2. Then
the skew-hermitian form («, 3) over Q has nontrivial discriminant 2K, so
it is anisotropic. This together with (6.6) shows that u™(Q) = 2.

6.8 Theorem. Let K be a Kaplansky field and let Q) be the unique quaternion
division algebra over (). Then

1 if K is real euclidean,

ut(Q) =< 2 if K is real non-euclidean,
3 if K 1s nonreal.
Proof: This follows from (6.2), (6.5), (6.6), and (5.3). O
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