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Abstract. Let X be a smooth projective surface over an algebraically closed field k of

characteristic 0. Let D be a central division algebra of prime index over K = k(X). We prove

that D is cyclic, thus proving, in this very special case, a conjecture that Albert probably
never made [Sa].

0. Introduction

A central division algebra of degree n over a field K is said to be cyclic if it admits a cyclic
splitting field of degree n over K. It is an open question whether central division algebras
of prime degree l over any field are cyclic. It is a well-known result of Brauer-Hasse-
Noether that all division algebras over number fields are cyclic. Let k be an algebraically
closed field of characteristic zero, S a normal surface over k and R the completion or
henselization of the local ring at a closed point of S. Then, over the quotient field K of
R, Ford and Salman showed that all division algebras are cyclic. Over the quotient field
of a 2-dimensional excellent henselian local domain with algebraically closed residue field,
it was shown by Colliot-Thélène et al. [CTOP] that all division algebras of index coprime
to residue field characteristic are cyclic, thus extending the result of Ford-Saltman. The
method of approach here is to kill the ramification of the division algebra on a regular
model over a henselian domain in a cyclic extension of K; one then uses the fact that the
Brauer group of the model (or its l-primary part) is trivial.

In the case of the function field K of a surface X over an algebraically closed field k, to
split a division algebra it is not sufficient to split its ramification, because the Brauer group
of X may not be trivial. A theorem of de Jong [dJ] asserts that for every central division
algebra D over K with index prime to the characteristic of K, the index coincides with the
order of D in Br(K). In this paper we adapt the techniques of de Jong to prove that if the
characteristic of K is zero, then every division algebra of prime degree over K is cyclic.

Given a smooth projective surface X over k and an Azumaya algebra A on X , we con-
struct a finite flat morphism Y → X with Y smooth projective which splits A. Such a
construction is announced by de Jong and Artin [dJ] under the more general setting in
which the characteristic of k is coprime to index(Ak(X)). Following de Jong, we connect

Y and X by a family W fibred over A1 and use this family to prove cyclicity when A is
unramified over X . The ramified case reduces to the unramified case, following de Jong’s
techniques closely.
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1. Representing Brauer classes

Let X be a noetherian regular integral 2-dimensional scheme, K its field of rational func-
tions and A an Azumaya algebra over X .

Theorem 1.1. Suppose that the generic fiber AK of A is of the form Mn(D), where D is
a division algebra over K. Then the Brauer class of A can be represented by an Azumaya
algebra ∆ over X such that ∆K = D.

We first recall the definition and some properties of maximal orders. Let R be an integral
domain with field of fractions K and A an associative finite dimensional K-algebra. An
R-order of A is an R-subalgebra Λ of A which is finitely generated and projective as an
R-module and generates A over K: ΛK = A. It is easy to see that R-orders always exist.
(A general reference for the theory of orders is [AG].)

If A is a central simple algebra over K and that R is integrally closed and noetherian, then
every R-order is contained in a maximal one. If Λ is an R-Azumaya algebra such that
A = ΛK , then Λ is a maximal order of A.

Assume now that R is a discrete valuation ring. Then the following holds.

Theorem 1.2. Let R be a discrete valuation ring, K its field of fractions and A a central
simple K-algebra. Any two maximal R-orders Λ and Γ in A are conjugate: Λ = uΓu−1 for
some u ∈ A∗. In particular, if one of the maximal orders is an Azumaya R-algebra, then
so is the other one.

Proof. See for instance [AG], Proposition 3.5.

Proof of Theorem 1.1. Since the canonical map Br(X) → Br(K) is injective, any algebra
∆ such that ∆K = D will represent the Brauer class of A. Let x ∈ X be a point of
codimension 1. Then OX,x is a discrete valuation ring and Ax, being an Azumaya algebra
over OX,x, is a maximal order in AK = Mn(D). Choose now a maximal order ∆(x) in
D. It is easy to check that Mn(∆(x)) is a maximal order in Mn(D). By Theorem 1.2, Ax

and Mn(∆(x)) are isomorphic, hence ∆(x) is Morita equivalent to Ax and is, therefore,
an Azumaya algebra.

We have, for any codimension 1 point x ∈ X , an OX,x-Azumaya algebra ∆(x) ⊂ D
representing the class of AK in Br(K). In other words, the K-algebra D is unramified
over X . We patch all these algebras to get a global representative ∆ of AK , with generic
fiber D.

To do this we can invoke (as in [CTS], Proposition 2.4, page 111 for the case of quadratic
spaces) some general results on projective limits of schemes or prove a little lemma:
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Lemma 1.3. Let X be a noetherian scheme of finite dimension, U a dense open subset of
X , y ∈ X\U a codimension 1 point, V an open neighbourhood of y and W ⊂ U∩V a dense
open subset of X . There exists an open neighbourhood V ′′ of y such that V ′′ ∩ U ⊂ W .

Proof. The closed set Z = X \ W is of dimension n − 1 and contains y, hence Z has an
irredundant decomposition

Z = {y} ∪ {y1} · · · ∪ {yr} ∪ {x1} ∪ · · · ∪ {xs}

into closed irreducible sets, where y, y1, . . . , yr /∈ U and x1, . . . , xs ∈ U . Let F = {x1} ∪

· · · ∪ {xs} and V ′ = X \ F ⊃ W . We have V ′ ∩ U = ∅ and therefore U ∩ F = U ∩ Z.
This shows that V ′ ∩ U = U \ (U ∩ Z) = U ∩ (X \ Z) = U ∩ W = W . Thus we can take
V ′′ = V ∩ V ′.

The next proposition shows that the local algebras ∆(x) can be patched, thus proving
Theorem 1.1.

Proposition 1.4. Let X be a noetherian integral regular scheme of dimension 2, K its
field of rational functions and A a central simple K-algebra. Suppose that A is unramified
over X . There exists an Azumaya algebra Λ over X such that ΛK = A.

Proof. The K-algebra A extends over some open set U as an Azumaya algebra ΛU and we
may assume that U is maximal with this property. Suppose that X \ U contains a point
y of codimension 1. By assumption A is unramified at y, hence there exists an Azumaya
OX,y-algebra Γy ⊂ A such that Γy

K = A. We extend Γy to an Azumaya algebra ΓV over
some suitable open neighbourhood V of y. Since ΓV

K = A = ΛU
K , there exists an open

set W ⊂ U ∩ V over which ΓV
W ≃ ΛU

W We now choose V ′′ ⊂ W as in 1.3 and patch ΛU

with ΓV
V ′′ over U ∩ V ′′ to get an Azumaya algebra over U ∪ V ′′. This shows that if U is

maximal, then X \ U consists of finitely many closed points. By [CTS], Th. 6.13 applied
to the group PGLn, ΛU extends to an Azumaya algebra on X .

2. Splitting extensions

We show how to split an Azumaya algebra over a surface X by a finite map Y → X .

Here and in the rest of the article we suppose that k is an algebraically closed field. We
denote by Sing(X) the singular locus of a given scheme X .

Let

An =
k[X11, X12, . . . , Xnn][T ](

P (T )
)

where P (T ) is the characteristic polynomial of the generic matrix (Xij) with 1 ≤ i, j ≤ n.

Let Yn = Spec(An). We study the singular locus of Yn.
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Lemma 2.1. Let β = diag(B1, . . . , Bm) be a matrix consisting of m cyclic Jordan blocks

Bi =




λi 1 0 · · · 0 0
0 λi 1 · · · 0 0
0 0 λi · · · 0 0
· · · · · · ·
0 0 0 · · · λi 1
0 0 0 · · · 0 λi




with distinct eigenvalues λi. Then, for any i, the scheme Yn is smooth at (β, λi).

Proof. We denote by In the identity matrix of size n. Developing the determinant of
(Xij) − T · In along the first column we get

±P (T ) = (X11 − T )P1(T ) + X2,1P2(T ) + · · · + Xn,1Pn(T )

where the polynomials Pi are the cofactors of the first column. Let ki be the size of
Bi. We see that Pk1

(T )(B, λ1) is (up to sign) the determinant of a matrix of the form
diag(Ik1−1, B2−λ1Ik2

, . . . , Bm−λ1Ikm
), it being understood that the first block is missing

if k1 = 1. Since λ1 6= λi, this shows that ∂P (T )/∂Xk1,1 = Pk1
(T ) is not zero at (B, λ1).

Thus Yn is smooth at (β, λ1) and the same clearly holds for any other λi.

Lemma 2.2. Every neighbourhood of a matrix α with an eigenvalue λ 6= 0 contains an
invertible semisimple matrix with eigenvalue λ.

Proof. We may assume that α is in Jordan form. The given neighbourhood of α contains an
open set defined by the non-vanishing of a polynomial g in the coordinates of the generic
matrix (Xij). We may assume that the diagonal entries of α are (λ, λ2, . . . , λn). Since
g(α) 6= 0 we may find values λ′

2, . . . , λ
′
n all distinct and different from λ and different from

0, such that when we replace λi by λ′
i in α we obtain an α′ for which g(α′) 6= 0. This new

α′ is in the given neighbourhood and is semisimple.

Let Yn be as before and consider the finite map π : Yn → An2

induced by the injection

k[X11, X12, . . . , Xnn] → An. The projection C = π(Sing(Yn)) is a closed subscheme of An2

and is contained in the ramification locus of π, which is the closed subscheme of An2

whose
closed points correspond to matrices with at least two equal eigenvalues.

Lemma 2.3. Let V ⊂ An2

be the set of semisimple invertible matrices with at least two
coincident eigenvalues. Then V ⊆ C.

Proof. It suffices to check that any matrix of the form β = diag(µ1, . . . , µn−2, λ, λ) is in C.
We show that (β, λ) belongs to Sing(Yn). Writing Xii = µi +Xi for i ≤ n−2, Xii = λ+Xi

for i ≥ n− 1, T = λ+ t and νi = µi −λ we see that P (T ) is the determinant of the matrix




ν1 + X1 X12 · · · X1n

X2,1 ν2 + X2 · · · X2,n

· · · · · · · · · · · ·
· · · · · · Xn−1 − t Xn−1,n

· · · · · · Xn,n−1 Xn − t



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and it is clear that it does not contain any linear term in Xi,Xij or t. Thus the variety
it defines is singular at the origin, which corresponds to the point (β, λ) in the previous
coordinates.

Lemma 2.4. Let W ⊂ Mn(k) be the set of all semisimple invertible matrices with at
least n − 1 distinct eigenvalues. Then W is open and dense in Mn(k).

Proof. The set of all semisimple invertible matrices is open and dense in Mn(k). We claim
that matrices having at least n − 1 distinct eigenvalues is open in Mn(k). In fact this set
is the inverse image under the eigenvalue map Mn → A

n
/
Sn of the complement of the

closed set of points with three equal coordinates. Hence W is open and clearly non empty.

By 2.4 the set U = W ∩ C of all semisimple invertible matrices with exactly two equal
eigenvalues is open in C.

Lemma 2.5. The set U is dense in C.

Proof. Let (β, λ) be a point of Sing(Yn). By 2.1, β, which we may assume to be in Jordan
canonical form, contains at least two cyclic Jordan blocks with the same eigenvalue. We
write β = diag(β1, β2, . . . , βr) with the βi’s cyclic Jordan blocks of size si and β1, β2

having the same eigenvalue λ. Suppose that β is in the open set defined by f 6= 0 for

some polynomial function f in the entries Xij of the generic n × n matrix. Let β̃ =

diag(β̃1, β̃2, . . . , β̃r) be a matrix where each β̃i has the same size as βi and the same off-

diagonal entries. Suppose further that β̃ has n − 1 distinct eigenvalues, with β̃1 and β̃2

retaining the eigenvalue λ. Then β̃ is semisimple and, for a general β̃, f(β̃) 6= 0.

For example, if

β =




λ 1 0 0 0
0 λ 1 0 0
0 0 λ 0 0
0 0 0 λ 1
0 0 0 0 λ




then

β̃ =




λ1 1 0 0 0
0 λ2 1 0 0
0 0 λ 0 0
0 0 0 λ3 1
0 0 0 0 λ




with λ, λ1, λ2, λ3 distinct.

Corollary 2.6. The dimension of C is equal to the dimension of U .

Lemma 2.7. The dimension of U is n2 − 3.

Proof. Let Σn−1 ⊂ (k∗)n−1
/
Sn−1 be the set of all {λ, λ3, . . . , λn} consisting of n−1 distinct

elements of k∗. Clearly Σn−1 has dimension n − 1. Mapping each matrix in U to the set
of its eigenvalues we obtain a surjective map p : U → Σn−1. The linear group GLn(k)
acts transitively on each fiber of p and the stabilizer of the matrix diag(λ, λ, λ3, . . . , λn) is
GL2(k)× (k∗)n−2. Hence the dimension of U is dim

(
GLn(k)

)
−dim

(
GL2(k)× (k∗)n−2

)
+

dim(Σn−1) = n2 − (4 + n − 2) + n − 1 = n2 − 3.
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Corollary 2.8. The closed set Sing(Yn) is of codimension 3.

Proof. The closure of U is C = π(Sing(Yn)) and π is a finite map.

We now show how to use the reduced characteristic polynomial to split an Azumaya algebra
over a surface.

If L is a line bundle over some scheme and n a positive integer, we denote by L⊗n the
n-fold tensor product of L with itself and by L−n the inverse of L⊗n.

Let X be a smooth projective surface over an algebraically closed field k and A an Azumaya
algebra of rank n2 over X . Let L be a line bundle over X such that A⊗OX

L is generated
by global sections s1, . . . , sN and let s be any global section of A ⊗OX

L. Choose an
arbitrary affine nonempty open set U ⊂ X over which L is principal: L|U = OUf for some

f ∈ L(U). Then sf−1 ∈ A(U), which is an Azumaya algebra over OX(U). Let

Pf,U (T ) = Tn + b1T
n−1 + · · ·+ bn

with b1, . . . , bn ∈ k[U ] be the characteristic polynomial of sf−1. We define Jf,U as the
ideal of

Sym(L−1|U ) = OU ⊕L−1|U ⊕L−2|U ⊕ · · · = OU ⊕OUf−1 ⊕OUf−2 ⊕ · · ·

generated by f−n ⊕ b1f
−(n−1) ⊕ · · · ⊕ bn.

Lemma 2.9. Let Λ be an Azumaya algebra of rank n2 over a ring R. For any α ∈ Λ
and any c ∈ R, the characteristic polynomial Pα(T ) of α satisfies the relation cnPα(T ) =
Pcα(cT ).

Proof. It immediately follows from the split case Λ = Mn(R).

Lemma 2.10. The ideal Jf,U does not depend on the choice of f .

Proof. We apply 2.9 with f = ug for some other generator g of L|U and u invertible on U .
(We note that the suffixes f or g stand for the elements s/f , s/g in the algebra). We have

Pg,U (T ) = Pu−1f,U (T ) = unPf,U(u−1T ) = Tn + ub1T
n−1 + · · · + unbn .

Thus the ideal Jg,U is generated by

g−n ⊕ b1ug−(n−1) ⊕ · · · ⊕ unbn = un(f−n ⊕ b1f
−(n−1) ⊕ · · · ⊕ bn) .

and coincides therefore with Jf,U .

Patching the ideals Jf,U over a suitable affine covering of X yields a global ideal Js of
Sym(L−1) that only depends on the section s. We call Js the characteristic ideal of s.

We define a projective k-scheme Ys with a finite map to X as the closed subscheme of
Spec

(
Sym(L−1)

)
defined by the ideal Js.

To simplify notation, if s = λ1s1 + · · · + λNsN we put λ = (λ1, . . . , λN ) ∈ kN , Js = Jλ

and Ys = Yλ
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Theorem 2.11. Assume that k is of characteristic zero. There exists a nonempty open
set U ⊂ kN such that, for any λ ∈ U , Yλ is a projective smooth surface.

Proof. We extend the base to X̃ = X × AN where AN = Spec (k[t1, . . . , tN ]). Let Ã

and L̃ be the inverse images of A and L under the projection π : X̃ → X . Put s̃ =

t1s1 + · · ·+ tnsn and let J̃t(T ) be the characteristic ideal of s̃ and Ỹ the closed subscheme

of Spec
(
Sym(L̃−1)

)
defined by J̃t(T ). Look at the diagram

Ỹ
p

{{ww
www

www
ww

π
²²

q

$$HHHHHHHHHH

X X × ANoo //
AN

The map π is clearly finite and flat and the two projections from X × AN are flat, hence

p is flat. We try to determine the singularities of Ỹ using the following lemma.

Lemma 2.12. Let f : Z → X be a flat map of schemes. Suppose that X is regular. If
z ∈ Z is a singular point of Z, then z is a singularity of its fiber f−1(f(z)).

Proof. Let C be the local ring of Z at z and A be the local ring of f(z). By assumption
the maximal ideal of A is generated by a regular sequence (x1, . . . , xm). Since f is flat, C
is faithfully flat over A and this sequence is still regular as a sequence in C. If z is not a
singular point of its fiber, then C/(x1, . . . , xm) is regular and hence its maximal ideal is
generated by a regular sequence (y1, . . . , yr). This implies that the maximal ideal of C is
generated by the regular sequence (x1, . . . , xm, y1, . . . , yr), hence C is regular.

By 2.12 the singularities of Ỹ are contained in the union of the singularities of the fibers
of p.

Lemma 2.13. The singular locus of every fiber p−1(x) of p has codimension 3 in p−1(x).

Proof. Let k(x) be the residue field of x ∈ X , Ω its algebraic closure and Fx the fiber of p
at x. The geometric fibre A(x) of A at x is a matrix algebra Mn(Ω) and

Fx = Spec (Ω[t1, . . . , tN ][T ]/(Px(T ))) ,

where Px(T ) is the characteristic polynomial of s =
(
t1s1(x) + · · · + tNsN (x)

)/
f(x) for

some generator f of L|U , U a neighbourhood of x. Since the sections si(x)/f(x) generate
Mn(Ω) over Ω, by a linear change of coordinates we may assume that s = t1e1 + · · ·+tmem

where m = n2 and {e1, . . . , em} form a basis of Mn(Ω). Then

Fx = Yn × Spec (Ω[tm+1, . . . , tN ]) .

We proved that the singular locus of Yn has codimension 3, hence the same holds for the
singular locus of Fx. For every x ∈ X the fiber Fx is a finite cover of AN and hence the

dimension of Fx is N . Let Sing(Ỹ ) be the singular locus of Ỹ . By 2.10, for every x ∈ X ,

the fiber at x of p|Sing(eY ) : Sing(Ỹ ) → X is contained in the singular locus of Fx and has
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therefore dimension at most N − 3. Since X is 2-dimensional, the dimension of Sing(Ỹ ) is
at most N − 1.

We now look at q : Ỹ → AN . Since Sing(Ỹ ) is at most (N − 1)-dimensional, its image

q(Sing(Ỹ )) is contained in a proper closed subset of AN . Choose an open set W ⊂ AN

which does not intersect q(Sing(Ỹ )) and let Ṽ = q−1(W ). We now have a map q : Ṽ → W
of smooth varieties. This map is clearly flat and surjective and therefore, k being of
characteristic zero, it is generically smooth (see [Ha1], Ch. III, Corollary 10.7). This
means that there exists a dense open set U ⊂ AN such that q−1(U) → U is smooth. For
any λ ∈ U the fiber Yλ = q−1(λ) is smooth.

Let us denote by πλ : Yλ → X the map induced by π on the fibre Yλ.

Proposition 2.14. There exists a dense open set U ⊂ kN such that for any λ ∈ U and
for all but finitely many closed points x ∈ X the fibre π−1

λ (x) contains at least n−1 points.

Proof. For n = 2 we may take U = kN . We now assume that n ≥ 3. Let J be a Jordan
block of size m×m. A direct computation shows that its stabilizer in Mm(k) is the group
G(m) that consists of all matrices of the form




a1 a2 a3 · · · am

0 a1 a2 · · · am−1

...
...

...
...

...
0 0 0 · · · a1




and is therefore of dimension m. Thus the stabilizer of diag(J1, . . . , Jr) ∈ Mn(k) where Ji

denotes a Jordan block of size mi, contains a product of the form G(m1)×· · ·×G(mr) and
is therefore of dimension at least n. It follows that the stabilizer of any matrix α ∈ Mn(k)
is of dimension at least n.

If α is a matrix with less than n− 1 eigenvalues, the eigenvalues may be chosen in at most
n − 2 different ways. Thus the set of matrices with at most n − 2 distinct eigenvalues has
dimension at most n2 − 2.

Consider now the closed set

V =
{
(λ, x) | Pλ(x, T ) has at most n − 2 distinct roots

}
⊂ A

N × X

and its projection V → X . It follows that the fiber of any x has dimension at most
(N − n2) + (n2 − 2) = N − 2 and hence dim(V ) ≤ N . If the image of the projection
p : V → AN is not dense, then there is an open set U ⊂ AN such that for λ ∈ U the
characteristic polynomial Pλ has no triple root. If p(V ) is dense in A

N , then for an open
set U ⊂ AN the fiber of λ ∈ U is finite ([Ha1], Ch. II, Exercise 3.22, page 95). In this case,
for each λ ∈ U , Pλ(x, T ) has at most one double root except for a finite number of points
x ∈ X .
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Proposition 2.15. Suppose that the algebra Ak(X) is a division ring of index n. Then

there exists an open set U of kN such that, for each λ ∈ U , the variety Yλ is integral.

Proof. We extend the scalars to k(X). There exists an open set U of kN such that for each
λ ∈ U , sλ/f generates a maximal subfield of degree n in Ak(X). Since P (T ) is of degree n

and vanishes at sλ/f , it must be irreducible over k(X), hence
(
Yλ

)
k(X)

is integral. This,

together with the smoothness of Y , implies that Y is integral.

Summing up, we have proved the following result.

Theorem 2.16. Let X be a smooth projective surface over an algebraically closed field
k of characteristic zero. Let A be an Azumaya algebra of rank n2 over X with Ak(X) a

division ring. Then there exists an open set U of kN such that for each λ ∈ U ,

(1) Yλ is a smooth, integral projective surface,

(2) the map πλ : Yλ → X is finite and flat,

(3) π∗
λ(A) is trivial in Br(Yλ),

(4) there are only finitely closed point on X which have fewer that n − 1 preimages in Y .

3. A splitting criterion

Proposition 3.1. Let X be a smooth projective surface over an algebraically closed field
k and A an Azumaya algebra over X , of rank n2. Assume that the characteristic of k is
zero or a prime that does not divide n. Fix an element η ∈ H2(X, µn) which maps to
[A] ∈ nBr(X) ⊂ H2(X, Gm). Suppose that there exists a diagram

W
g

//

f
²²

X

A1

with A1 = Spec(k[t]) and such that

(1) W is a 3-dimensional integral scheme with W
k(t)

integral,

(2) the map f is proper,

(3) W1 = f−1(1) has n irreducible components Vi, each with multiplicity 1 and such that
g|Vi

: Vi → X is a birational isomorphism for every i,

(4) W is normal at the generic point of each Vi,

(5) g∗(η)|W0
= 0 in H2(W0, µn).

Then Ak(X) is a matrix algebra over k(X).

Proof. Let R be the local ring of A1 at t = 0 and Rh its henselization. Let gh : W ×A1

Spec(Rh) → X be the composite map W ×A1 Spec(Rh) → W
g
−→ X . The element g∗

h(η) ∈
H2(W ×A1 Spec(Rh)) maps to zero in H2(W0, µn). By proper base change ([Mi], Ch.

VI, 2.7), g∗
h(η) = 0, hence there exists a finite étale map C0

α
−→ A1 of a curve onto a
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neighbourhood of 0, such that if gC0
: W ×A1 C0 → X denotes the restriction of gh, then

g∗
C0

(η) = 0. We extend α : C0 → A1 to an α : C1 → A1 such that the point t = 1 is the
image of a rational point of C1. Such a point exists, since k is algebraically closed. Since
W

k(t)
is integral, the scheme W ×A1 C1 is integral, with generic point Spec(k(W ×A1 C0)).

The class g∗
C1

(η) ∈ H2(W ×A1 C1, µn) is generically zero. Since by (3) each Vi occurs with
multiplicity 1 in the fibre of 1 and by (4) W is normal at the generic point of Vi, t − 1
generates the maximal ideal of the discrete valuation ring OW,Vi

. Let 1′ ∈ C1 be a rational
point such that α(1′) = 1. Then Vi × 1′ ≃ Vi is an irreducible component of the fibre of
1′. Let S be its local ring in k(W ×A1 C1). The maximal ideal of S is generated by a local
parameter of C1 at 1′, hence S is a discrete valuation ring with quotient field k(W ×A1 C1)
and the map H2(S, µn) → H2(k(W ×A1 C1), µn) is injective. Thus g∗

C1
(η) restricts to zero

in H2(S, µn) and specializes to zero in

H2(κ(Vi × {1′}), µn) = H2(κ(Vi), µn) = H2(k(X), µn)

under the map g. The composite map k(X) → κ(Vi)
g
−→ k(X) being the identity, we have

ηk(X) = 0.

4. Construction of families

We shall first construct a variety W satisfying the assumptions (1) to (4) of 3.1. Let X be
a smooth projective surface over an algebraically closed field k and A an Azumaya algebra
of dimension n2 on X . Let L be a line bundle on X such that A⊗OX

L is generated by
global sections e1, . . . , eN . Let s = λ1e1 + · · · + λNeN with λ = (λ1, . . . , λN) ∈ kN and
Js ∈ Sym(L−1) the characteristic ideal of s defined in §2. Recall that Yλ is the subscheme
of Spec

(
Sym(L−1)

)
defined by Js and that locally on any affine open set U ⊂ X over which

L|U is generated by a section f , Js|U is generated by Pf,U (f−1) = f−n⊕b1f
−(n−1)⊕· · ·⊕bn

where Pf,U (T ) = Tn+b1T
(n−1)+· · ·+bn is the characteristic polynomial of s/f ∈ H0(U,A).

We choose λ such that Yλ satisfies (1), (2) and (3) of Theorem 2.16. Let X̂ be the scheme

X × A1, p : X̂ → X its first projection and t the coordinate on A1. We put L̂ = p∗(L)

and define an ideal in Sym(L̂−1) as follows. Let w1, . . . , wn be n distinct global sections
of L. We choose them in such a way that no function wi/f over U is a zero of Pf,U (T ).

We denote by Û the inverse image of U . For simplicity, we still denote by the same letter
a function (or a section of a bundle, or a polynomial, . . . ) on an open set of X and its

extension to X̂ . Let Îf,U be the ideal of Sym(L̂−1|bU ) generated by Qf,U(t, f−1) where

Qf,U (t, T ) = (1 − t)Pf,U + t(T − w1/f) . . . (T − wn/f) .

If we replace f by another generator g such that g = uf for some invertible function u on

U , then, as in 2.10, we see that Îf,U = Îg,U . Therefore these ideals patch over X and give

rise to an ideal Îs of Sym(L̂−1). We define W as the closed subscheme of Spec
(
Sym(L̂−1)

)

defined by Îs.

The composite

W → Spec
(
Sym(L̂−1)

)
→ X

defines a map g : W → X and the second projection defines a map f : W → A1.
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Proposition 4.1. The triple (W, f, g) satisfies the conditions (2), (3) and (4) of Proposi-
tion 3.1. Furthermore W0 = f−1(0) is a smooth projective surface.

Proof. Property (2) follows from the fact that W is finite, hence proper over X̂ which
is proper over A1. The fibre W1 is locally the spectrum of R[T ]

/
((T − w1/f) . . . (T −

wn/f)) whose irreducible components Spec
(
R[T ]

/
(T − wi/f)

)
have multiplicity 1 and

map isomorphically onto Spec(R) under g. This proves (3). To show (4) let pi be the
generic point of Vi and U = Spec(R) a suitable affine open set such that its inverse image
in W contains pi. Then, locally at pi, W is the spectrum of

S =
(
R[T, t]

/(
(1 − t)Pf,U(T ) + t(T − h1) . . . (T − hn)

))
pi

with hi = wi/f . Since T − hi and 1− t are in pi we have pi = (T − hi, 1− t). We assumed
that P (hi) 6= 0 in K = S/pi, hence piS is generated by T − hi. This proves that W is
normal at the generic point of Vi.

It is clear from the construction that W0 is smooth and projective. It remains to prove
property (1).

The proof of irreduciblility will be completed in §6. We begin with the following lemma.

Lemma 4.2. Let

Φf,U(T ) = TnPf,U (T−1) = 1 + b1T + · · ·+ bnTn ,

Ψf,U (T ) = (1 − (w1/f)T ) · · · (1 − (wn/f)T ) = 1 + c1T + · · ·+ cnT

and

Rf,U(t, T ) = (1 − t)Φf,U(T ) + tΨf,U (T ) = TnQf,U(t, T−1) .

Then Φf,U (f), Ψf,U (f) and Rf,U(t, f) do not depend on f and can be patched to yield
global sections of

O bX ⊕ L̂ ⊕ · · · ⊕ L̂⊗n .

Proof. Since these polynomials are determined by their restrictions to the generic fibre, to
show that they patch it suffices to show that, for a fixed U , they do not depend on the

choice of f . In fact we check that each bif
i patches to yield a sections of L̂⊗i. Let f = ug

for a section g of L|U , u an invertible function on U . By 2.9 we have

Pg,U(T ) = Tn + ub1T
n−1 + · · · + unbn

and therefore

Φg,U (T ) = 1 + b1uT + · · ·+ bnunTn .

The assertion for Φg,U follows from ug = f and the same proof holds for Ψg,U and Rg,U .
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Proposition 4.3. The varieties W , W ⊗k[t] k(t) and W ⊗k[t] k(t) are integral.

We first recall some elementary well-known facts about integral schemes. A scheme is
integral if it is irreducible and reduced. The condition that it is reduced is a local one and
can be checked on each set of an affine open covering. The condition of irreducibility is a
priori a global one. For quasi-projective schemes, though, it can be checked on affine open
sets.

Lemma 4.4. Let X be a scheme such that any two points of X are contained in an
irreducible open affine set. Then X is irredubible.

Proof. Suppose that X = Y ∪Z with Y and Z closed in X and both different fron X . Then
there exist points y ∈ Y \Z and z ∈ Z\Y . Let U be an irreducible affine open set containing
y and z. Then, since z /∈ U ∩ Y and y /∈ U ∩Z, U = (U ∩ Y )∪ (U ∩Z) is a decomposition
of U into two proper subset, which are closed in U , leading to a contradiction.

Lemma 4.5. Let f : Y → X be a flat morphism of quasi projective varieties, with X
integral. Denote by k(X) the field of rational functions on X . The following two conditions
are equivalent:
(1) Y is integral,
(2) Y ×X Spec(k(X)) is integral.

Proof. Suppose that (2) holds. Choose any two points y and z in Y and an affine open
set U ⊂ X that contains f(y) and f(z). The preimage W = f−1(U) of U is a quasi-
projective variety, hence it contains an affine open set V that contains y and z. We prove
that V is integral. The map f : V → U is flat and since the coordinate ring k[U ] of
U injects into k(U), k[V ] injects into k[V ] ⊗k[U] k(U) = k[V ×X Spec(k(X))]. But if
Y ×X Spec(k(X)) is integral, then its open set V ×X Spec(k(X)) is integral as well and
therefore k[V ] ⊂ Spec

(
k[V ×X Spec(k(X))]

)
is integral. We have found an integral affine

open set V containing y and z. By 4.4, Y is irreducible. It is obviously reduced because it
can be covered by affine open sets like V .

Suppose now that (1) holds. Then, for any open affine set V of Y , the ring k[V ]⊗k[U]k(X),
as a localization of k[V ], is integral. Hence every open affine set of Y ×X Spec(k(X) is
integral and, by 4.4, Y ×X Spec(k(X)) is integral.

5. Irreducibility

For proving 4.3 we need a result of [AHS] in a slightly different form. For convenience of
the readers we give the proof, even if it is the same as that of [AHS].

Let A be a noetherian normal affine domain over an algebraically closed field k of character-
isitic zero, and K its field of fractions. Suppose that F (T ) and G(T ) are two polynomials
in A[T ] satisfying the following hypotheses:

(1) F (T ) is of degree n ≥ 1 and generates a prime ideal of A[T ],
(2) F (T ) and G(T ) are coprime in K[T ] with deg(G(T )) ≤ deg(F (T )).

We want to study the irreducibility of the polynomials

F (T ) + λG(T ) , λ ∈ k .
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Note that, since A is normal, irreducibility over A and over K are the same by Gauss’
lemma.

We define the set Π ⊂ A[T ] as the set of polynomials f(T ) ∈ A[T ] for which there exists
a λ ∈ k and a proper factorization

F (T ) + λG(T ) = f(T )g(T ) ,

i.e., f(T ) and g(T ) are not in A.

Let B be the affine domain (
A[T ]

/
(F (T ))

)

and L its field of fractions. For any f ∈ A[T ] we denote by f its image in B.

Lemma 5.1. Let B be an affine domain over k and L its field of fractions. There exists
a finite set of discrete valuations {v1, . . . , vq} such that the only elements b ∈ B for which
v1(b) = · · · = vm(b) = 0 are the elements of k.

Proof. See [AHS], Lemma, page 55.

Let ̟ : L∗ → Zq be defined by ̟(x) = (v1(x), . . . , vq(x)). For elements h ∈ A[T ] we write

̟(h), vi(h) for ̟(h), vi(h).

Lemma 5.2. Assume that F and G satisfy (1) and (2). If F + λG = fg is a proper fac-
torization, then λ is uniquely determined by ̟(f). Thus ̟(Π) can be mapped bijectively
onto the set of λ’s for which F + λG is reducible.

Proof. Suppose that

f1g1 = F + λ1G

and

f2g2 = F + λ2G ,

and that ̟(f1) = ̟(f2) and λ1 6= λ2. Then f1

/
f2 = µ for some µ ∈ k∗. This means that

f1−µf2 ∈ (F ), but F is of higher degree than f1−µf2, hence f1 = µf2. Substituting in the
two equations above and subtracting one from the other we get f2(µg1−g2) = (λ1−λ2)G.
Then f2 divides G and since it divides F + λG it also divides F , which contradicts the
assumption that F and G are coprime. Thus λ1 = λ2.

Corollary 5.3. Under the assumptions (1) and (2), if (1 − λ)F + λG = fg is a proper
factorization, then λ is uniquely determined by ̟(g). Thus, if Λ is the set of proper
factors of (1 − λ)F + λG, then ̟(Λ) can be mapped bijectively onto the set of λ’s for
which (1 − λ)F + λG is reducible.

Proof. This is just a restatement of Lemma 5.2.
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6. Proof of Proposition 4.3

Consider the diagram

W
f

$$II
II

II
II

II

g

zzvv
vv

vv
vv

vv

π
²²

X X ×k A1oo //
A

1 .

The map π is finite and flat because for any f and U the polynomial

Qf,U(t, T ) = (1 − t)Pf,U (T ) + t(T − w1/f) · · · (T − wn/f))

is monic in T . The horizontal maps are clearly flat, hence f and g are flat. We first check
that W is integral. We denote by Qξ(t, T ) the restriction of some Qf,U(t, T ) to the generic
point ξ of X . By 4.5 it suffices to show that W×XSpec(k(X)) = Spec

(
k(X)[T, t]

/
(Qξ(t, T )

)

is integral. Since Pf,U(T ) and (T −w1/f) · · · (T −wn/f)) are coprime in k(X)[T ], Qξ(t, T )
is irreducible.

Since W is flat over A1, 4.3 implies that W ×A1 Spec(k(t)) is also integral.

Consider now W ⊗k[t] k(t) and suppose that it is not integral. This means that Qξ(t, T )

factors in k(X) ⊗k k(t)[T ]: Qξ(t, T ) = Q1(T ) · · ·Qm(T ) with Qi defined and irreducible

over k(X) ⊗k k(t). In this case Qξ(t, T ) already factors in the same way when we replace

k(t) by a finite extension k(t)[w]
/
(Φ(t, w)) of k(t), where Φ(t, w) = c0(t)w

m + · · ·+ cm(t)
with ci(t) ∈ k[t].

There exists g(t) ∈ k[t] such that Qi(T ) ∈
(
k[t, w, 1/g]

/
(Φ(t, w))

)
[T ]. If λ ∈ k is different

from the roots of g(t)c0(t), we can choose a µ ∈ k such that ϕ(λ, µ) = 0. Then, specializing
w to µ and t to λ yields a map

(
k[t, w, 1/g]

/
(Φ(t, w))

)
→ k. Denoting the images under

specialization by “bar” we obtain Qξ(λ, T ) = Q1(T ) · · ·Qm(T ). This shows that Qξ(t, T )
decomposes for all but a finite number of values of t in k. We want to show that this fact
leads to a contradiction.

It suffices to show (by Gauss’ lemma) that, for some U and some f , Qf,U(λ, T ) is irreducible
for almost all λ ∈ k. We now follow the notation of §4. The irreduciblility of Qf,U(λ, T )
is equivalent to the irreduciblility of Rf,U(λ, T ), and the factorization of Qf,U(λ, T ) in
irreducible monic factors yields a similar factorization Rf,U(λ, T ) = R1(T ) · · ·Rm(T ) into
irreducible factors with constant term 1.

We shall use the result of the preceding section with A = H0(U,OX), F = Φf,U and
G = Ψf,U .

We denote by Rξ the restriction of Rf,U (λ, T ) to the generic point ξ of X and by Rξ,i the
restriction to ξ of Ri. It follows from 4.2 that Rf,U(λ, T ) is the restriction of a global section
R of OX ⊕L⊕ · · · ⊕ L⊗n and the sections of this bundle form a finite dimensional vector
space over k. Since the factorization of Rf,U (λ, T ) over k[U ] into factors with constant
term 1 is unique, each factor Rξ,i of Rξ extends to a unique factor of Rf,U for any U over



ALGEBRAS OF PRIME DEGREE ON FUNCTION FIELDS OF SURFACES 15

which L|U is generated by a global section f . By patching, we see that every Rξ,i is the
restriction of a global section of

OX ⊕ L⊕ · · · ⊕ L⊗n .

This shows that the set Λ of proper factors ϕ of the polynomials Rf,U (λ, T ) when λ varies
over k, are contained in a finite dimensional vector space over k. In other words, we can
write any ϕ ∈ Λ as ϕ = µ1h1 + · · · + µrhr for some fixed polynomials h1, . . . , hr. Let
L be the field of fractions of B = k[U ][T ]

/
(Φ) where Φ = TnP (λ, T−1). The image of

Rf,U(λ, T ) in B is the class of λΨf,U (T ) where Ψ is as defined in 4.2. For any discrete k-
valuation v of L we have v(ϕ) ≥ min{v(h1), . . . , v(hr)}, which shows that v(Λ) is bounded
below. But if ϕψ = Rf,U(λ, T ) (necessarily with λ 6= 0 because Φf,U is irreducible) then
−v(ϕ) = v(ψ) − v(Rf,U(λ, T )) = v(ψ) − v(Ψf,U (T )). Since ψ is also in Λ, the value of
v(ϕ) is as well bounded above. This proves that if v1, . . . , vq are the valuations described
in 5.1 (for B = k[U ][T ]

/
(Φ) and F (T ) = Φ(T )), then the image of Λ in Zq obtained by

mapping ϕ ∈ Λ to (v1(ϕ), . . . , vq(ϕ)) is a finite set. We conclude, using 5.3, that Rf,U(λ, T )
is reducible only for finitely many λ ∈ k. Thus Qξ(λ, T ) is irreducible for almost all λ ∈ k,
leading to a contradiction.

This finishes the proof of Proposition 4.3.

7. Galois splittings

We now construct, for any λ ∈ kN , a Galois covering Zλ of X with group G, such that
X = Zλ/G. Notice that, in general, even if Yλ is smooth and Yλ → X is a projective map,
the Galois closure of Yλ is not smooth. Therefore, in order to have Y and Z smooth, we
must construct both at the same time.

We proceed as in the construction of Yλ. Let U ⊂ X be an affine open set for which L|U
is isomorphic to OUf for some section f on U . Let L, s1, . . . , sN ∈ H0(X,A⊗OX

L) and
s = λ1s1+· · ·λnsn be as before. Let Pf,U (T ) = Tn+b1T

n−1+· · ·+bn be the characteristic
polynomial of s/f ∈ A(U). We choose n isomorphic copies L1, . . . ,Ln of L and, for each
i, fi = f the generator of Li|U . Consider

T = Sym
(
L−1

1 ⊕ · · · ⊕ L−1
n

)
.

Writing f−1
i f−1

j instead of f−1
i ⊗OU

f−1
j we shall write the restriction of T to U simply as

⊕
OUf−i1

1 · · · f−in
n .

Note that T |U is isomorphic to OU [T1, . . . , Tn].

For 1 ≤ i ≤ n let σi be the i-th elementary symmetric function in the n variables
T1, . . . , Tn. We define Jf,U ⊂ T |U as the ideal generated by

σi(f
−1
1 , . . . , f−1

n ) − (−1)ibi 1 ≤ i ≤ n .

It corresponds in the polynomial algebra to the ideal generated by

σi(T1, . . . , Tn) − (−1)ibi 1 ≤ i ≤ n .

As in the preceding section, it is easy to check that these ideals do not depend on the choice
of f and can therefore be patched over the various U ’s to obtain a global ideal Jλ ⊂ T .

Let Zλ be the closed subscheme of Spec(T ) defined by Jλ.
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Proposition 7.1. The symmetric group Sn acts on Zλ via its obvious action on T . The
quotient Zλ/Sn coincides with X and Yλ coincides with the quotient Zλ/Sn−1, where Sn−1

is the isotropy group of 1.

Proof. It suffices to deal with the affine case. Let P (T ) = Tn + b1T
n−1 + · · · + bn be a

monic polynomial with coefficients in a ring R and assume (it is the case we are ultimately
interested in) that 2 is invertible in R. Let B be the quotient of R[T1, . . . , Tn] by the ideal
I generated by all polynomials σi(T1, . . . , Tn) − (−1)ibi. Denote by σ′

i(T1, . . . , Tn−1) the
i-th elementary symmetric function in n − 1 indeterminates. To the quotient of Zλ by Sn

corresponds the ring of invariants BSn . Since Sn acts trivially on I and 2 is invertible in
R we have

H1(Sn, I) = Hom(Sn, I) = Hom(µ2, I) = 0 .

Hence (
R[T1, . . . , Tn]

/
I
)Sn

= R[T1, . . . , Tn]Sn
/
ISn = R[σ1, . . . , σn]

/
I = R .

Similarly we obtain

(
R[T1, . . . , Tn]

/
I
)Sn−1

= R[σ′
1, . . . , σ

′
n−1, Tn]

/
I .

The relations

σ1 = σ′
1 + Tn , σi = σ′

i + Tnσ′
i−1 for 2 ≤ i ≤ n − 1 and σn = Tnσ′

n−1

immediately give that R[σ′
1, . . . , σ

′
n−1, Tn]

/
I = R[Tn]

/
(P (Tn)).

Theorem 7.2. Assume that k is of characteristic zero. There exists a nonempty open set
U ⊂ kN such that, for any λ ∈ U , Zλ is a projective smooth surface.

The proof requires some preliminaries. Let Xij with i, j running from 1 to n be indeter-
minates and write P (T ) = Tn + a1T

n−1 + · · ·+ an for the characteristic polynomial of the
generic matrix (Xij). Let A be the polynomial k-algebra in the Xij . Consider another set
T1, . . . , Tn of indeterminates and put

Bn = A[T1, . . . , Tn]
/
I

where I is the ideal generated by all the polynomials σi(T1, . . . , Tn)−(−1)iai for 1 ≤ i ≤ n.
Let Zn = Spec(Bn). We want to determine Sing(Zn).

A k-point of Zn is a pair (α, t) with α ∈ Mn(k) and t = (t1, . . . , tn) ∈ kn such that
t1, . . . , tn are the eigenvalues of α, i.e. the roots of the characteristic polynomial of α,
which we write as

P (α)(T ) = Tn + a1(α)Tn−1 + · · · + an(α) .

Let π : Zn → Spec(A) be the first projection and let S = π(Sing(Zn)). We want to
compute the dimension of S.
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Let (α, t) be a singularity of Zn. Since no σi(T1, . . . , Tn) involves the Xij and no aj

involves the Ti, if we order the Xij lexicographically, the Jacobian matrix of the equations
σi(T1, . . . , Tn) − (−1)iai = 0 is of size (n2 + n) × n and looks as follows:

J =




∂σ1

∂T1

· · · ∂σn

∂T1

...
...

∂σ1

∂Tn
· · · ∂σn

∂Tn

∂a1

∂X11

· · · ∂an

∂X11

...
...

∂a1

∂Xnn
· · · ∂an

∂Xnn




.

By 7.1, π is a finite map and the dimension of Zn is n2. The point (α, t) being a singularity
of Zn, the Jacobian criterion implies that the rank of J at (α, t) is at most n − 1. Thus,
in particular, the determinant δ of the top n × n block of J must vanish at (α, t). It is
well-known (and can be proved by an easy induction on n) that δ = ±

∏
i<j(Ti−Tj). This

shows that α has at least two equal eigenvalues. In other words, denoting by V (–) the
vanishing locus of a given set of polynomials, (α, t) belongs to the vanishing locus V (δ2)
of the discriminant δ2 of P (T ).

Consider now Sing(Zn) ∩ V (a1, . . . , an). Since Sing(Zn) ⊂ V (δ2) we have Sing(Zn ∩
V (a1, . . . , an) = Sing(Zn ∩ V (δ2, a1, . . . , an). But the vanishing of a1, . . . , an−1 and δ2

already implies the vanishing of an; in fact, if Tn − an has a multiple root, then an = 0
(we are in characteristic 0). Thus

Sing(Zn) ∩ V (a1, . . . , an−1) = Sing(Zn) ∩ V (a1, . . . , an)

and therefore dim(Sing(Zn)) ≤ dim(Sing(Zn)∩V (a1, . . . , an))+n−1. The set V (a1, . . . , an)
is the set N of nilpotent matrices. On the other hand, the bottom block of the Jacobian
matrix must have rank at most n − 1, which means that α is a singular point of N . This
shows that Sing(Zn) ∩N ⊆ Sing(N ) and from the previous inequality we obtain the next
result.

Lemma 7.3. The dimension of Sing(Zn) is at most dim(Sing(N )) + n − 1.

We now compute the dimension of Sing(N ). We begin with the computation of the di-
mension of N .

Proposition 7.4. Let N ⊂ Mn denote the variety of nilpotent matrices. Then the
dimension of N is n2 − n.

Proof. Since N is defined by the ideal (a1, . . . , an) of A = k[X11, X12, . . . , Xnn], it suffices
to show that this ideal has height n. Let I be the ideal generated by (a1, . . . an, Xij | i 6= j).
We claim that this ideal has height n2. The ring A/I is isomorphic to k[X11, X2,2, . . . , Xnn]/J
where J is the ideal generated by elementary symmetric functions σ1, . . . , σn in Xii. Since
k[X11, . . . , Xnn] is finite over k[σ1, . . . , σn], the ideal J has height n in k[X11, . . . , Xnn].
Hence I is supported only at closed points. Since the ai are homogeneous, it follows that
the ideal (a1, . . . , an) has height n.
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Lemma 7.5. A nilpotent matrix α whose Jordan form consists of only one cyclic block
is not a singularity of N . More precisely, the determinant of

(
∂ai

∂Xj1

)
is not zero at α.

Proof. Let A be as before and P (T ) = Tn+a1T
n−1+· · ·+an the characteristic polynomial

of the generic matrix (Xij). The variety of nilpotent matrices is N = V (a1, . . . , an). We
show that at

α =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
· · · · · · ·
0 0 0 · · · 0 1
0 0 0 · · · 0 0




the jacobian matrix
(

∂ai

∂Xij

)
has rank n. We compute the n × n matrix

(
∂ai

∂Xj1

)
. The

derivative of ai by Xj1 is the coefficient of Tn−i in ∂P (T )
∂Xj1

. Developing the determinant of

(Xij) − T In along the first column we find

±P (T ) = (X11 − T )P1(T ) + X2,1P2(T ) + · · · + Xn,1Pn(T )

where Pi(T ) is the determinant of an (n − 1) × (n − 1) matrix Mi. At (Xij) = α we find

Mi(α) =

(
B1 0
0 B2

)

with

B1 =




1 0 0 · · · 0 0
−T 1 0 · · · 0 0
0 −T 1 · · · 0 0
· · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · −T 1




of size j − 1 and

B2 =




−T 1 0 · · · 0 0
0 −T 1 · · · 0 0
0 0 −T · · · 0 0
· · · · · · ·
0 0 0 · · · −T 1
0 0 0 · · · 0 −T




of size n − j. Thus Pj(T ) = ±Tn−j and ∂ai

∂Xj1
(α) is ±1 for j = i and zero otherwise. This

proves the lemma.

Lemma 7.6. The set N2 of nilpotent matrices whose Jordan form has exactly two cyclic
blocks are dense in the set of nilpotent matrices whose Jordan form has two or more blocks.

Proof. Let α = diag(B1, B2, . . . , Bm) be a nilpotent matrix which we can assume to be in
Jordan form with blocks B1, . . . ,Bm, m ≥ 3. Let g 6= 0 with g ∈ A define a neighbour-
hood of α. We can find constants ǫ2, . . . , ǫm−1 such that replacing the zeros between the
superdiagonals of B2 and B3, between the superdiagonals B3 and B4 and so on, by the ǫi

we obtain a matrix α′ such that g(α′) 6= 0. Clearly α′ has two cyclic blocks.
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Lemma 7.7. If α ∈ N has a Jordan form with two or more cyclic blocks, then α is a
singularity of N .

Proof. We may assume that α is in Jordan form and can be written as α = diag(B1, B2, . . . , Bm)
where m ≥ 2, each Bi is a cyclic Jordan block, B1 is of size p and B2 of size q. We can
write the generic matrix as (Xij) = (α + Yij). Then ∂ai

∂Xij
(α) = ∂ai

∂Yij
(0). But in the matrix

α+(Yij) the p-th line and the (p+q)-th line are linear homogeneous in the Yij , hence devel-
oping the determinant of α + (Yij) along these two lines we see that an(Yij | 1 ≤ i, j ≤ n)

has no constant and no linear term. This shows that all the derivatives ∂an

∂Yij
vanish at the

origin and therefore the Jacobian matrix ∂ai

∂Yij
cannot be of rank n.

Corollary 7.8. The set N2 is dense in Sing(N )

The set N2 is the union of the GLn(k)-orbits Sp,q of all the matrices of the form β =
diag(Bp, Bq) where Bp is the nilpotent cyclic Jordan block of size p and Bq the nilpotent
cyclic Jordan block of size q = n−p. In particular, it is the finite union of the constructible
sets Sp,q. The dimension of Sp,q is n2 − s where s is the dimension of the isotropy group
of β

Lemma 7.9. For n ≥ 3 the dimension of the isotropy group of diag(Bp, Bq) is n +
2 min(p, q). In particular it is always at least n + 2.

Proof. Let Γ ⊂ GLn(K) be the isotropy group of β = diag(Bp, Bq). Let

γ =

(
A B
C D

)

be an element of Γ, written with blocks A, B, C, D of suitable sizes. The condition
γβγ−1 = β is equivalent to the conditions

ABp = BpA , DBq = BqD , BBq = BpB , CBp = BqC .

We compute the dimension of the linear subspace Γ0 of Mn(K) consisting of matrices that
satisfy the four conditions above.

An explicit matrix computation shows that the first condition gives

A =




a1 a2 a3 · · · ap−1 ap

0 a1 a2 · · · ap−2 ap−1

0 0 a1 · · · ap−3 ap−2

· · · · · · · ·
0 0 0 · · · a1 a2

0 0 0 · · · 0 a1




A similar result holds for D, hence the matrices diag(A, D) in Γ0 span a linear space of
dimension p + q = n.
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Assume now that p ≤ q. An explicit computation shows that the third condition gives

B =




0 · · · 0 b1 b2 b3 · · · bp−1 bp

0 · · · 0 0 b1 b2 · · · bp−2 bp−1

0 · · · 0 0 0 b1 · · · bp−3 bp−2

· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
0 · · · · · · · · · · b1 b2

0 · · · · · · · · · · 0 b1




A similar result holds for C, hence, when p ≤ q the dimension of Γ0 is n + p + p =
n + 2 min(p, q) and clearly this is also the dimension (as a variety) of Γ.

Proposition 7.10. For n ≥ 3 the dimension of Sing(N ) is n2 − n − 2.

Proof. By 7.8 and 7.9, dim(Sing(N )) = dim(N2) = n2 − minp,q(dim(Sp,q)). The isotropy
group of minimal dimension is S1,n−1 which has dimension n + 2. Thus dim(N2) = n2 −
(n + 2).

Theorem 7.11. For n ≥ 3 the dimension of Sing(Zn) is at most n2 − 3

Proof. This immediately follows from 7.3 and 7.10.

Proof of Theorem 7.2. If n = 2 then U = kN and for any λ ∈ kN , Zλ = Yλ. We therefore
assume that n ≥ 3. In this case the proof is on similar lines as the proof of Theorem 2.11.

We extend the base to X̃ = X×AN where AN = Spec (k[t1, . . . , tN ]) and define Ã, L̃ and L̃i

for 1 ≤ i ≤ n as the inverse images of A, L and the Li’s under the projection π : X̃ → X .
Repeating the construction of Jλ we obtain an ideal Jt, where t = (t1, . . . , tN ), which

specializes to Jλ when we specialize t to λ. The scheme Z̃ is the closed subscheme of

Spec(T̃ ) = Spec
(
Sym

(
L̃1

−1
⊕ · · · ⊕ L̃n

−1))

defined by Jt.

Look at the diagram

Z̃

p
{{www

wwwwwww

π
²²

q

$$HHHHHHHHHH

X X × ANoo //
AN

The map π is clearly finite and flat and the two projections from X ×A
N are flat, hence p

is flat. By 2.12 the singularities of Z̃ are contained in the union of the singularities of the
fibers of p. Since, by Theorem 7.11, the singularities of the closed fibres of p are at worst
in codimension 3, we can argue exactly as in the proof of Theorem 2.11 and conclude that
q is generically smooth, from which the assertion of Theorem 7.2 immediately follows.

In general the fibre Zλ is not integral. This happens, for instance, if Y is already a Galois
covering of X . But if we choose Zλ smooth, then it will be a disjoint union of irreducible
smooth varieties and picking one of them (which we call Z) we obtain a Galois covering
π : Z → X . Let G be the Galois group of k(Z)/k(X), |G| its order and H ⊂ G the Galois
group of k(Z)/k(Y ). Clearly H is of index n in G.
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Proposition 7.12. Suppose that n ≥ 3 and let x ∈ X be a closed point. Then
(a) if x has n preimages in Y , then π : Z → X is étale at x;
(b) if x has n−1 preimages y1, . . . , yn−1 corresponding to the roots τ1, . . . , τn−1 of P (x, T )
and τ1 is the unique double root of P (x, T ), then πZ : Z → Y is étale at y1;
(c) the fibre π−1(x) in Z consists of |G|/2 points and each of them has multiplicity 2.

Proof. If the point x has n distinct preimages y1, . . . , yn in Y , then clearly πZ is étale at y.
We can identify each yi with a root τi of P (x, T ) and we can identify every point z of π−1(x)
with a permutation (σ(τ1), . . . , σ(τn)) where σ ∈ G and πZ maps z to its first coordinate
σ(τ1). Since locally at y1 the map Z → Y is Galois with group H, the fibre of y1 consists
of |H| = |G|/n points (τ1, σ(τ2), . . . , σ(τn)) where σ ∈ H. When τ1 = τ2 and τi 6= τ1 for
i 6= 1, 2, the fibre of y1 = y2 still consists of |H| distinct points (τ1, σ(τ2), . . . , σ(τn)), hence
πZ is étale at y1. This proves (b) and shows that every z ∈ π−1

Z (y1) has multiplicity 2 in
π−1(x). Since G operates transitively on π−1(x), this is true of all the points in the fibre,
whence (c).

Theorem 7.13. Let X be a projective smooth surface over an algebraically closed field k
of characteristic zero and A an Azumaya algebra over X . Suppose that Ak(X) is a division
algebra of prime degree l. Then there exist smooth integral projective surfaces Y and Z
and finite flat maps

Z
πZ−−→ Y

πY−−→ X

such that

(1) π∗
Y A is trivial in the Brauer group of Y ;

(2) the composite Z
πZ−−→ Y

πY−−→ X is a (ramified) Galois covering;

(3) the degree of πY is l and the degree of πZ is prime to l;

(4) there are only finitely closed point on X which have fewer that l − 1 preimages in Y ;

(5) if πY is ramified at y ∈ Y and πY (y) has l − 1 preimages in Y , then πZ is étale at y.

8. General sections of a very ample line bundle.

For a finite map f : V → W of varieties we shall always denote by ∆(V/W ) the ramification
locus of f in V and by δ(V/W ) = f(∆(Y/W )) the ramification locus of f in W , both
understood with their reduced structure.

Let Y
πY−−→ X be a map of smooth projective surfaces satisfying (1), (2), and (4) of 2.16.

We put ∆ = π−1
Y (δ) the set-theoretical preimage of δ(Y/X) in Y . Note that ∆(Y/X) ⊂ ∆.

We recall the local structure of πY . The construction of Y in §2 shows that, locally on X ,
Y is isomorphic to the spectrum of an extension S = R[T ]

/
(P (T )), where R = OX,x is the

local ring of the closed point x = πY (y) of X and P (T ) = Tn + b1T
n−1 + · · · + bn is the

characteristic polynomial of a generic element of an Azumaya algebra over R. We denote
by mx the maximal ideal of R and by my the maximal ideal of S corresponding to y.

Let L be a very ample line bundle on Y , generated by N global sections s1, . . . , sN . We
say that a general section s of L satisfies a certain property if there exists a Zariski open
dense set U ⊂ kN such that, for every λ = (λ1, . . . , λN ) ∈ U , s =

∑
i λisi satisfies the

property.
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We want to show that a general global section s of L has a smooth vanishing locus V (s)
whose image πY (V (s)) has no singularity on δ(Y/X). We begin with a result of Colliot-
Thélène ([CT], Lemma 3.1) . We set V (s) = D and πY (V (s)) = C.

Proposition 8.1. If s is a general section of L, then every point of C ∩ δ(Y/X) has at
most one preimage on D

Proof. We essentially reproduce the proof given in [CT]. Consider the open set of ∆×X ∆

U =
{
(y1, y2) ∈ ∆ ×k ∆ | y1 6= y2, πY (y1) = πY (y2)

}
.

Let H = H0(Y, L) and Z a closed set in U ×k H defined by

Z =
{
(y1, y2, s) | s(y1) = s(y2) = 0

}
.

Since U is a one-dimensional scheme and the fibres of the projection Z → U have dimension
dim(H)−2, the dimension of Z is dim(H)−1. Hence the projection of Z into H is contained
in a proper closed subset and any section in the complementary open set has the required
property.

A general section s of L has smooth vanishing locus D which crosses ∆ transversally. With
such a choice of s, our next step is to insure that, if y is in D ∩ ∆(Y/X), then for some
open neighbourhood U of y the restriction of πY to D ∩U has a smooth image. Let ϕ = 0
be a local equation of D in a neighbourhood of y. The point y corresponds to a (multiple)
root τ ∈ k of P (x, T ) and the function ϕ can be lifted to a polynomial Φ ∈ R[T ].

Proposition 8.2. Suppose that y is a closed point of ∆(Y/X) ∩ D, πY (y) = x and
π−1

Y (x) = {y, y2, . . . , yr} where y2, . . . , yr are not on D. Suppose further that

(⋆)
∂Φ(x, T )

∂T
(τ) 6= 0 .

Then πY induces an isomorphism OC,x → OD,y. Thus, D being smooth at y, C is smooth
at x.

Proof. Note that by 8.1 every x ∈ δ(Y/X) ∩ C has exactly one preimage in D. Let R
be the local ring OX,x of X at x. Let y, y2, . . . , yr be the preimages of x in Y . Since
x ∈ C ∩ δ(Y/X) has exactly one preimage y on D, the points y2, . . . , yr do not lie on
D.The homomorphism π∗

Y : OC,x → OD,y is the finite extension

χ : R
/
(P, Φ) ∩ R −→ R[T ]

/
(P, Φ) .

We may assume, by a change of variable, that y ∈ Spec(R[T ]) corresponds to the maximal
ideal my = (mx, T ). Denoting by “bar” the reduction modulo mx, we have P (T ) =

T eP1(T ) with e ≥ 2, P1(0) 6= 0, and Φ(T ) = TΦ1(T ). By (⋆) we have Φ1(0) 6= 0. Hence
R[T ]

/
(P, Φ, mx) = k. By Nakayama’s lemma this implies that χ is an isomorphism.

It remains to show that the condition (⋆) can be realized at every point of ∆(Y/X) ∩ D.
We can translate it in terms of sections in the following way. Let s ∈ H0(Y, L). Let y ∈ ∆
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be a closed point at which the section s vanishes, x = πY (y) and L(y) the fibre of L at y.
We define (∂s/∂T )(y) ∈ L(y) as follows. Let R = OX,x, OY,π−1

Y
(x) = R[T ]/(P (T )) and let

e be a generator of L at OY,π−1

Y
(x). Let s = ϕe with ϕ ∈ OY,π−1

Y
(x). Then, ϕ(y) = 0. Set

(∂s/∂T )(y) = (∂Φ
/
∂T )(y) · e(y) where Φ ∈ R[T ] represents ϕ and e(y) the image of e in

L(y). This definition is independent of the choice of e and Φ since P ′(T ) vanishes at y.
The condition (⋆) is equivalent to (∂s/∂T )(y) 6= 0.

Lemma 8.3. For every closed point y ∈ ∆(Y/X) there exists s ∈ H0(Y, L) such that if
s(y) = 0, then (∂s/∂T )(y) 6= 0.

Proof. Let H0(Y, L)y be the vector space of all sections vanishing at y. By Bertini’s
theorem ([Ha1], Ch. II, 8.18) the map H0(Y, L)y → my/m2

y sending s = ϕe to the class of
ϕ is surjective. The maximal ideal my at y of R[T ]/(P (T )) is generated by (mx, (T −α)),

where mx is the maximal ideal of R and α a repeated root of P (T ) in k. By the surjectivity
assertion in the theorem of Bertini stated above, there exists s ∈ H0(Y, L)y such that
s = ϕe with ϕ − (T − α) ∈ m2

y . For this choice of s, (∂s/∂T )(y) = e(y) 6= 0.

Proposition 8.4. For a general s ∈ H0(Y, L), V (s) is smooth, irreducible, intersects ∆
transversally and avoids the ramification locus of πY |∆ : ∆ → δ(Y/X); further, for each
intersection y of V (s) with ∆(Y/X), πY (V (s)) is smooth at πY (y).

Proof. The set of singular points of ∆ and the ramification locus of πY |∆ : ∆ → δ(Y/X)
form a finite set Σ of closed points of ∆. By Bertini’s theorem, for a general s ∈ H0(Y, L),
s(y) 6= 0 for y ∈ Σ and V (s) is smooth, irreducible and intersects ∆ transversally. We show
that for a general s ∈ H0(Y, L), s(y) = 0 implies that (∂s/∂T )(y) 6= 0. Let s1, s2, . . . , sN

be a set of generators of the k-vector space H0(Y, L). Let s =
∑

Xisi where Xi are
indeterminates and let s be the restricition of s to ∆ × A

n. We look at the closed set
V (s, ∂s/∂T ) ⊂ ∆ × AN . We claim that the dimension of V (s, ∂s/∂T ) is at most N − 1.
We check this at every smooth point y ∈ ∆. Let B be the local ring of ∆ at y. Let
e a local generator of s at y and si = fie, ∂fi/∂T = gi. We need to show that the
dimension of B[X1, . . . , XN ]/(

∑
fiXi,

∑
giXi) is at most N − 1. Suppose this dimension

is greater than N − 1. In this case the height of the ideal (
∑

fiXi,
∑

giXi) is at most
1. Since B is a discrete valuation ring, there exists a, b, h ∈ B[X1, . . . , XN ] such that∑

fiXi = ah,
∑

giXi = bh. Suppose that h does not belong to B. Degree considerations
show that a belongs to B and, if a is not a unit in B, it divides each fi. Thus the si’s
vanish at y, contradicting the fact that they generate the sections of L globally. Therefore,
a is a unit in B and

∑
giXi = ba−1

∑
fiXi. There exists by 8.3, λ = (λ1, . . . , λN )

such that sλ(y) = 0 and ∂sλ/∂T (y) 6= 0 where sλ =
∑

λisi. This contradicts the equality∑
giXi = ba−1

∑
fiXi. The case h ∈ B is dealt with in the same way. Thus the dimension

of V (s, ∂s/∂T ) is at most N −1. Under the projection ∆×AN → AN , the set V (s, ∂s/∂T )
maps into a proper closed subset of AN . Thus for an open set of λ ∈ AN , sλ has the
property that if sλ(y) = 0 for y ∈ ∆Y , then ∂sλ

∂T 6= 0. By 8.2 πY (V (s)) is smooth at π(y).

Proposition 8.5. For a general section s of L each point of πY (V (s)) has at least l − 1
distinct preimages in Y .

Proof. Since under πY : Y → X there only are finitely many points of X with fewer that
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l − 1 preimages (condition (4) of 2.16), if s is chosen such that V (s) avoids the preimages
of these finitely many points, then s satisfies the condition of the proposition.

Theorem 8.6. Let Z
πZ−−→ Y

πY−−→ X be maps of smooth projective surfaces as in Theorem
7.13. Let L be a very ample line bundle on Y , generated by global sections s1, . . . , sN .
Assume that π∗

ZL is very ample. For any λ = (λ1, . . . , λN ) set sλ = λ1s1 + · · · + λNsN .
Let Dλ be the vanishing locus of sλ and Cλ = πY (Dλ) be the image of Dλ in X . Let DZ,λ

be the vanishing locus of π∗
Z(sλ) on Z.

There exists a dense open subset U ⊂ kN such that for every λ ∈ U the following five
conditions are satisfied:

(1) Dλ is irreducible, smooth and intersects ∆ transversally;

(2) Dλ avoids the ramification locus of πY |∆ : ∆ → δ(Y/X);

(3) every point of Cλ has at least n − 1 preimages in Y ;

(4) no singularitiy of Cλ lies on δ(Y/X);

(5) DZ,λ is smooth and irreducible.

Proof. Conditions (1) and (2) follow from 8.4. Condition (3) is a consequence of 8.5. Let
x be in Cλ ∩ δ(Y/X) and let y be its unique preimage in D. If y ∈ ∆(Y/X), then Cλ is
smooth at x by 8.4. If y belongs to ∆ \ ∆(Y/X) then Cλ is smooth at x because Dλ is
smooth, πY is étale at y and y is the unique preimage of x in D. Thus (4) is satisfied.
To see condition (5) note that π−1

Z (Dλ) is the vanishing locus of the section
∑

i λiπ
∗
Zsi of

π∗
ZL; since π∗

ZL is very ample we can apply Bertini’s theorem ([Ha1], Ch. II, 8.18).

9. Extracting a root from a bundle

The main result of this section is the following theorem.

Theorem 9.1. Let Z
πZ−−→ Y

πY−−→ X be maps of smooth projective surfaces satisfying (2)
to (5) of Theorem 7.13. Suppose that n is equal to a prime l. Given a line bundle LY on
Y with its class in

Pic(Y )
/
l · Pic(Y ) ⊂ H2(Y, µl)

a pull-back of a class ζ ∈ H2(X, µl), there exists a map hX : X̃ → X which is proper,
generically cyclic of degree l and such that

(1) the normalization Ỹ of Y ×X X̃ is smooth,

(2) if hY : Ỹ → Y is the natural map, then h∗
Y (LY ) vanishes in

Pic(Ỹ )
/
lPic(Ỹ ) + π∗

eY
(Pic(X̃)) .

This section is entirely dedicated to the proof of this theorem.

For any pair of morphisms W → V and Spec(A) → V we denote the fibre product
W ×V Spec(A) by WA.

Let Z1(V ) denote the free abelian group on codimension 1 cycles of any variety V . For a
codimension 1 closed set W ⊂ V we denote by {W} the cycle in Z1(V ) corresponding to
W and by [W ] the class of W in the divisor class group of V .
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By modifying LY by the ln-th power of an ample line bundle L0 we may assume that LY

is very ample. Since the pull-back of an ample line bundle by the finite map πZ is ample
([Ha2], I, 4.4) we may further assume that π∗

zL is very ample. By the previous section there
exists a smooth connencted curve DY on Y such that LY = OY (DY ) and DY satisfies
conditions (1) to (5) of Theorem 8.6.

Let πY (DY ) = DX . We have (πY )∗([DY ]) = r[DX ]. Note that r is the degree of k(DY )
over k(DX) and thus r ≤ l. If r = l, DY is the only divisor on Y lying over DX , it is not
ramified at its generic point, and π∗

Y [DX ] is [DY ]. Therefore LY = (πY )∗(OX(DX)). In

this case we can take X̃ = X and Ỹ = Y .

Assume now that r < l. By assumption we have [LY ] = (πY )∗(ζ) ∈ Pic(Y )/l ⊆ H2(Y, µl).
Then r[DX ] = (πY )∗(πY )∗(ζ) = lζ = 0 in H2(X, µl). Since r < l this implies [DX ] = 0 in
Pic(X)/l. Let L1 be a line bundle on X for which there is an isomorphism ϕ : OX(DX) →
L⊗l

1 . Choosing a section s : OX → L⊗l
1 vanishing precisely along DX we can define, using

the dual map
(
L−1

1

)⊗l
→ OX (see [BPV], I, §17), an OX -algebra structure on

S = OX ⊕ L−1
1 ⊕ · · · ⊕

(
L−1

1

)⊗(l−1)
.

Let X ′ = Spec(S) and gX : X ′ → X the map giving the OX -algebra structure on S.
Note that locally on X the scheme X ′ looks like the spectrum of R[t]

/
(tl − f), f a local

equation of DX . This map is a cyclic cover of degree l, ramified precisely along DX . In
particular (gX)∗{DX} = l{D′}, where D′ is an effective Cartier divisor on X ′. We put
Y ′ = Y ×X X ′, Z ′ = Z ×X X ′ and denote by πY ′ : Y ′ → X ′, πZ′ : Z ′ → Y ′ the obvious
projections. We have a commutative diagram

Z ′
πZ′

//

gZ

²²

Y ′

gY

²²

πY ′

// X ′

gX

²²
Z

πZ // Y
πY // X

Let π = πY ◦ πZ and π′ = πY ′ ◦ πZ′ .

Proposition 9.2. The schemes Z ′, Y ′ and X ′ are irreducible and normal. In particular,
they have a finite number of singular points. Further, Sing(X ′) ∩ δ(Y ′/X ′) = ∅ and
Sing(Y ′) ∩ ∆(Y ′/X ′) maps under πY gY to δ(Y/X) ∩ DX .

Proof. Since the ramifications δ(Y/X) and δ(X ′/X) = DX have no common component,
k(Z) and k(Y ) are disjoint from k(X ′) over k(X). The maps π and πY are flat, hence
by 4.5, Z ′ and Y ′ are integral. By construction X ′, Y ′ and Z ′ are locally of the form
Spec(S) where S = R[t]

/
(tl − f) and R is a regular ring. Thus X ′, Y ′ and Z ′ are locally

complete intersections and to show that they are normal it suffices to show that they are
nonsingular in codimension 1 ([Ha1], Ch. II, 8.23). The singularities of X ′ are at most
over the singularities of DX (see [BPV], Ch. I, §17), which by condition (4) of 8.6 are away
from δ(Y/X). Thus Sing(X ′) is finite and Sing(X ′) ∩ δ(Y ′/X ′) = ∅.

We now prove that Sing(Y ′) is finite. The proof for Z ′ is similar. Let (a, b) ∈ Sing(Y ′) ⊂
Y × X ′ with c = πY (a) = gX(b) ∈ X . If c /∈ δ(Y/X), then πY is étale at a and therefore
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b ∈ Sing(X ′) which is finite. If c /∈ DX , then gX is étale at b and hence gY is étale at
(a, b). Since Y is smooth, Y ′ is smooth at (a, b) and therefore the remaining singularities
can only be among the finitely many points of Y ′ that lie over δ(Y/X) ∩ DX . Thus
Sing(Y ′) is the disjoint union of Sing(Y ′) ∩ ∆(Y ′/X ′) and Sing(Y ′) ∩ π−1

Y ′ (Sing(X ′)) and
Sing(Y ′) ∩ ∆(Y ′/X ′) maps to δ(Y/X) ∩ DX .

We have
g∗

X{DX} = l{D′}

for some curve D′ and therefore π∗
Y ′g∗

X{DX} = l{D1} for some {D1} ∈ Z1(Y ′). On the
other hand, π∗

Y {DX} = {DY }+ {D2} for some {D2} ∈ Z1(Y ). Since DY has no common
component with the discriminant, {D2} has no component equal to {DY } and therefore
the same is true of g∗

Y {DY } and g∗
Y {D2}. Thus

(†) π∗
Y ′g∗

X{DX} = l{D1} = g∗
Y π∗

Y {DX} = g∗
Y {DY } + g∗

Y {D2} .

We conclude that g∗
Y {DY } = l{DY ′} for some {DY ′} ∈ Z1(Y ′). The difficulty is that

{DY ′} is a Weil divisor but not necessarily a Cartier divisor. The rest of the proof consists
in trying to replace it by a Cartier divisor.

We start by replacing X ′ by a smooth surface X̂ and discuss the singularities of Ŷ =

Y ×X X̂. Let ψX : X̂ → X ′ be a resolution of singularities of X ′; ψX is a proper

birational morphism which is an isomorphism outside Sing(X ′) and with X̂ smooth. We

set Ŷ = Y ×X X̂, Ẑ = Z ×X X̂ and consider the commutative diagram

Ẑ
π bZ //

ψZ
²²

Ŷ

ψY
²²

πbY // X̂

ψX
²²

Z ′
πZ′

// Y ′
πY ′

// X ′ .

We set π̂ = πbY π bZ . Since Ŷ is étale over X̂ away from δ(Ŷ /X̂) and X̂ is smooth, Ŷ is

smooth away from δ(Ŷ /X̂). Since ψX is an isomorphism outside Sing(X ′), and Sing(X ′)∩
δ(Y ′/X ′) = ∅, ψX and ψY are isomorhisms along δ(Y ′/X ′) and ∆(Y ′/X ′) respectively.

Thus ψY maps Σ = Sing(Ŷ ) bijectively onto Sing(Y ′) ∩ ∆(Y ′/X ′) which is finite and lies

over to δ(Y/X) ∩ DX in X by 9.2. Similar arguments lead to the fact that Sing(Ẑ) lies
over δ(Y/X) ∩ DX . We set Σ0 = πbY (Σ) and Σ1 = π̂−1(Σ0). We denote by
A = O bX,Σ0

the semilocal ring at Σ0,

Ah the henselization of A at its radical,
and by
Ah

x = Oh
bX,x

the factor of Ah corresponding to a point x ∈ Σ0.

Similarly, we define the rings B, C, and so on, by

Spec(B) = Ŷ × bX Spec(A),

Spec(C) = Ẑ × bX Spec(A),

Spec(Bh) = Ŷ × bX Spec(Ah),
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Spec(Ch) = Ẑ × bX Spec(Ah)
and further, for any x ∈ Σ0,
Bx = B ⊗A Ax,
Cx = C ⊗A Ax,
Bh

x = B ⊗A Ah
x,

Ch
x = C ⊗A Ah

x,
and similarly By, Cz and Bh

y , Ch
z when y ∈ Σ and z ∈ Σ1.

We further denote by R the semilocal ring of X at the image of Σ0, by Rx the local ring
of X at the image of an x ∈ Σ0, and by Rh and Rh

x their respective henselizations.

Lemma 9.3. Let z be a point of Σ1, y = π bZ(z) and x = π̂(z).

(a) The singular locus of Ẑ is Σ1.

(b) If y is in Σ then Ah
x → Bh

y is a quadratic extension, Bh
y → Ch

z is an isomorphism and

Bh
x ≃ Bh

y × (Ah
x)l−2.

(c) If y is not in Σ then Ah
x → Bh

y is an isomorphism, Bh
y → Ch

z is a quadratic extension

and Bh
x ≃ (Ah

x)l.

(d) The Ah
x-algebra Ch

x is a product of |G|/2 quadratic extensions of Ah
x.

(e) Denoting by Cl(−) the class group, if y ∈ Σ we have

Cl(B) = Cl(Bx) = Cl(By) = Cl(Cz) ⊆ Cl(Ch
z ) = Z/l .

In particular Cl(B) is either zero or Z/l.

Proof. In a suitable neighbourhood of Σ the map π bZ : Ẑ → Ŷ coincides with πZ′ : Z ′ → Y ′

which, by 7.12, is étale at every y ∈ Σ. Hence over every x ∈ Σ0 there is a singularity z of

Ẑ which clearly is in Σ1. Since G acts transitively over Σ1, we have Sing(Ẑ) = Σ1. This
proves (a).

Let u be a semilocal equation of DX in R. Since ψX and ψY are isomorphisms along Σ0

we have

B =
R[T, t]

(P (T ), tl − u)
=

A[T ]

(P (T ))
.

We know by 8.6 that P [T ] has one double root and l − 2 simple roots at every x ∈ Σ0,
hence we may assume that

Rh[T ]

(P (T ))
≃

Rh[T ]

(T 2 − θ)
×

∏

x∈Σ0

(
Rh

x

)l−2

where θ is a semilocal equation of δ(Y/X) at the image of Σ0. Note that locally θ must
be a regular parameter because Rh[T ]

/
(P (T )) is regular. Extending scalars to Ah

x we find

Bh
x =

Ah
x[T ]

(T 2 − θ)
×

∏

x∈Σ0

(
Ah

x

)l−2
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from which we see that if y corresponds to the double root, then Bh
y = Ah

x[T ]
/
(T 2 −θ) is a

quadratic extension of Ah
x. In this case we know that πZ is étale at z, hence the extension

Bh
y → Ch

z is an isomorphism. This proves (b).

If y /∈ Σ then πY is étale at y and therefore the extension Ah
x → Bh

y is an isomorphism. On

the other hand, because of the Galois action, all the extensions Ah
x → Ch

σ(z) are isomorphic

to each other, therefore they are all quadratic. This proves (c).

It follows from (b) and (c) that the Galois extension Ah
x → Ch

x =
∏

z Ch
z is a product of

quadratic extensions and since Ch
x is of rank |G| over Ah

x, the assertion (d) follows.

Let f ∈ B be a semilocal equation of DY at Σ. By the construction of DY made in §8
(see Lemma 8.3), in Ah[T ]

/
(T 2 − θ) we can write f = aT − π where a is a unit of Ah and

π ∈ Ah is a semilocal parameter (that is a parameter of Ah
x for every x ∈ Σ0). Further,

u = NY/X(f) = π2−a2T 2 = π2−a2θ = fg for g = −aT −π. Then, at any y ∈ Σ, we have

Bh
y ≃

Rh
x[T ]

(T 2 − θ, tl − a2T 2 + π2)
=

S[t]

(tl − fg)

where x is the image of y in Σ0 and S = Ax[T ]
/
(T 2−θ) is a regular 2-dimensional henselian

ring. Its maximal ideal is (f, g) because DY and ∆(Y/X) meet transversally and they are
defined, respectively, by f and T .
The class group of Bh

y is Z/l generated by the prime p(y) = (t, aT − π) = (t, f) or by
the prime q(y) = (t, g) whose class is the inverse of the class of p(y) . Since p(y) comes
from By, it follows that Cl(By) is generated by the ideal p(y) ∩ By, which we still denote
by p(y)). Since Cl(B) →

∏
y∈Σ Cl(By) is injective, inverting t we obtain a factorial ring

B[1/t] and therefore Cl(B) is generated by those prime ideals of height 1 that contain t.
Two of them are p = (t, f) and q = (t, g). Any other one must coincide with p or q at a
given y ∈ Σ and therefore it must coincide with p or q because B is a domain. At every
y ∈ Σ the class of p is the inverse of the class of q, the divisor class group of B is generated
by each of them and is, therefore, zero or Z/l. The rest of the proposition follows from
the fact that the maps induced on divisor class groups are surjective for localizations and
injective for henselizations of local rings.

We now look at the pull-back under ψY and ψX of the Cartier divisors occurring in (†).
We have

ψ∗
Y g∗

Y {DY } + ψ∗
Y g∗

Y {D2} = l · ψ∗
Y π∗

Y ′{D′} .

Since the centres of the blow-up for ψY are away from ∆(Y ′/X ′) and since g∗
Y {DY } and

g∗
Y {D2} have no common composnents in Y ′ and meet only along ∆(Y ′/X ′), it follows

that ψ∗
Y g∗

Y {DY } and ψ∗
Y g∗

Y {D2} have no common component in Ŷ . Therefore

ψ∗
Y g∗

Y {DY } = l{DbY }

for some DbY on Ŷ and
ψ∗

Zg∗
Z{DZ} = l{DbZ}

where DbZ = π∗
bZ
(DbY ). We shall now construct maps X̃ → X̂ and Ỹ → Ŷ satisfying the

conditions of Theorem 9.1.

We recall a result of Abhyankar and Manish Kumar:
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Lemma 9.4. Let R be a 2-dimensional complete local domain which is regular, with
quotient field K. Let L be a quadratic extension of K and S the normalization of R in L.
Suppose that the extension L/K is defined by z2 = uxiyj where (x, y) = m is the maximal
ideal of R, u is a unit and 0 ≤ i, j ≤ 1. If (i, j) 6= (1, 1) then S is regular. Suppose
(i, j) = (1, 1) and let X → Spec(R) be the blow-up of Spec(R) at the closed point. Then
the normalization of X in L is regular.

Proof. See [AMK], §2.

Let y be a singular point of Ŷ mapping to x ∈ X̂, to x0 in X and to y0 in Y . We note
that x0 ∈ δ(Y/X) ∩ DX .

Let ÔbY ,y and Ô bX,x be the completions of ObY ,y and O bX,x respectively. By condition (3) of

Theorem 8.6 the image x0 of y in X has l−1 preimages in Y , hence Y ×X Spec(ÔX,x0
) splits

as a disjoint union of l − 2 copies of Spec(ÔX,x0
) and one degree 2 extension Spec(ÔY,y0

)

of Spec(ÔX,x0
). It follows by base change that ÔbY ,y is a degree 2 extension of Ô bX,x.

Let Σ0 be the image of Σ in X̂ . Clearly Σ0 ⊂ δ(Ŷ /X̂). Let ϕ1 : X̃1 → X̂ be a proper
birational morphism which is an isomorphism outside Σ0 and such that the total transform

of δ(Ŷ /X̂) has normal crossings over Σ0. Let Σ̃0 ⊂ X̃1 be the image of the set of singular

points of the normalization of Y × X̃1. Let ϕ2 : X̃ → X̃1 be the blow-up at Σ̃0 and
ϕX = ϕ2ϕ1. We have a commutative diagram

Z ×X X̃ //

ϕZ

²²

Y ×X X̃

ϕY

²²

// X̃

ϕX

²²

Ẑ
πZ // Ŷ

πY // X̂

Let nY : Ỹ → Y ×X X̃, nZ : Z̃ → Z×X X̃ be the normalization maps. We claim that Ỹ and

Z̃ are smooth. Outside Σ0, ϕX is an isomorphism and hence ϕY is also an isomorphism

outside π−1
bY

(Σ0) ⊃ Σ = Sing(Ŷ ). Let y be a singular point of Y ×X X̃. The image of y in

Ŷ is contained in π−1
bY

(Σ0) which maps to δ(Y/X) ∩ DX in X . Thus the image x0 of y in

X belongs to δ(Y/X) ∩ DX . The point x0 has l − 1 preimages in Y in view of condition

(3) of 8.6. Let x be the image of y in X̃ .

Let OeY ,x be the semilocal ring of Ỹ at π−1
eY

(x) and OeY ,x be its integral closure in k(Ỹ ). Let

Ô eX,x and ÔeY ,y denote respectively the completion of O eX,x and OeY ,y. Then OeY ,x ⊗OeX,x

Ô eX,x splits as a product

ÔeY ,y × Ô eX,x × · · · × Ô eX,x .

Since OeY ,x is finite over O eX,x, the tensor product OeY ,x ⊗OeX,x
Ô eX,x is the completion

of OeY ,x with respect to its radical and hence, by [ZS], Ch. VIII, §30, Theorem 32, it is

normal. Clearly it is the normalization of

OeY ,x ⊗OeX,x
Ô eX,x = ÔeY ,y × Ô eX,x × · · · × Ô eX,x .
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Let ÔeY ,y denote the normalization of ÔeY ,y. By construction the ramification divisor on

Ô eX,x for the extension Ô eX,x → ÔeY ,y has normal crossings and further ÔeY ,y is regular

by 9.4. It follows that OeY ,x ⊗OeX,x
Ô eX,x is regular and hence OeY ,x itself is regular. This

shows that Ỹ is smooth. Exactly the same argument shows that Z̃ is smooth because, by
8.3, Z → Y is étale at the image of y in Y .

We thus have a commutative diagram

Z̃ π eZ

//

fZ

²²

π̃
((

hZ

%%

Ỹ

fY

²²

πeY

// X̃

fX

²²
hX

yy

Ẑ πbZ

//

gZψZ

²²

Ŷ

gY ψY

²²

πbY

// X̂

gXψX

²²
Z

πZ //

π

66Y
πY // X

where the undefined maps are the obvious ones, fZ = ϕZnZ , fY = ϕY nY and fX = ϕX .

The surfaces X̃ , Ỹ and Z̃ are smooth, π̃ is finite, and Z̃ is Galois over X̃ with group
G = Gal

(
k(Z)

/
k(X)

)
.

Proposition 9.5. The line bundle (hZ)∗(OZ(DZ)) belongs to

l · Pic(Z̃) + π̃∗(Pic(X̃))

To prove 9.5 we need several preliminaries. By construction ϕX is an isomorphism outside

Σ0, hence ϕZ is an isomorphism outside Z ×X Σ0. It follows that Z ×X X̃ is smooth —in
particular normal— outside Z ×X Σ0, hence the normalization map nZ is an isomorphism
outside Σ1. It follows that fz = ϕZnZ is an isomorphism outside Σ1.
We denote by
F1 = f−1

Z (Σ1) the exceptional fibre for fZ ,

F = f−1
Y (π−1

bY
(Σ0)) the exceptional fibre for fY

F0 = f−1
X (Σ0) the exceptional fibre for fX .

To simplify notation we write F, F1 instead of FB , (F1)C etc.

Let L̃ be the line bundle h∗
Z(OZ(DZ)). Since Ẑ \ Σ1 is smooth, the restriction DbZ

∣∣
bZ\Σ1

is a Cartier divisor and defines a line bundle L0 on Z̃ \ F1 ≃ Ẑ \ Σ1. We have an exact
sequence

0 → PicF1
(Z̃) → Pic(Z̃) → Pic(Z̃ \ F1) → 0

where PicF1
(Z̃) is the subgroup generated by the irreducible components of F1. Thus there

exists a line bundle L̃0 on Z̃ whose restriction to Z̃ \F1 is isomorphic to f∗
Z(L0). The line
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bundle L̃(L̃−1
0 )⊗l restricted to Z̃ \ F1 is trivial and hence its class belongs to PicF1

(Z̃).

We fix a point x ∈ Σ0 and let z1, . . . , zm ∈ Σ1 be the preimages of x in Ẑ. Let Fx be

the fibre of x in X̃ and, for 1 ≤ j ≤ m, let Fj be the fibre of zj in Z̃. By Zariski’s main
theorem ([Ha1], Ch. III, Cor. 11.4) the curves Fx and F1, . . . , Fm are connected. Let E
be an irreducible component of Fx and Dk

j , k = 1. . . . , mj the irreducible components of

Fj mapping to E. The class
[
L̃

(
L̃−1

0

)⊗l]
is the class of a divisor

∑

x∈Σ0

∑

E

∑

j

rk
j Dk

j

as E runs over the irreducible components of Fx. Denoting Ch
zj

by Ch
j and, as usual,

Z̃ ×bZ Ch
j by Z̃Ch

j
and so on, we have a commutative diagram with exact rows

0 // Pic
(
Z̃Ch

j

)/
l //

αZ

²²

H2
(
Z̃Ch

j
, µl

)

β
²²

0 // Pic(Fj)/l // H2(Fj , µl).

By the proper base change theorem ([Mi], Ch. VI, 2.7) β is an isomorphism and by
[CTOP], Th. 1.7, (c) αZ is surjective, hence αZ is an isomorphism. Further, for any
connected curve C the inclusion Cred →֒ C induces an isomorphism Pic(C) → Pic(Cred).
We thus have isomorphisms

αZ : Pic
(
Z̃Ch

j

)/
l ≃ Pic((Fj)red))

/
l

and, similarly,

αX : Pic
(
X̃Ah

x

)/
l ≃ Pic((Fx)red))

/
l .

By a result of Artin ([Ar], §1) the degree map yields identifications

Pic((Fx)red))
/
l =

⊕

E

Z
/
l and Pic((Fj)red))

/
l =

⊕

E

⊕

Dk
j

Z
/
l

where E runs over the irreducible components of Fx and Dk
j runs over the irreducible

components of Fj mapping to E. We have a commutative diagram

Pic
(
X̃Ah

x

)/
l

π̃∗
//

αX

²²

⊕

j

Pic
(
Z̃Ch

j

)/
l

αZ

²²⊕

E

Z
/
l

θ //
⊕

E

⊕

Dk
j

Z
/
l
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where the vertical isomorphisms are obtained by associating to a divisor its intersection
multiplicity with each E and Dk

j respectively and θ =
(
θE,Dk

j

)
where θE,Dk

j
is the degree

of k(Dk
j ) over k(E). Since the Galois action transitively permutes the Dk

j ’s lying over
E, these degrees are all equal to some fE . Since, for x ∈ Σ0, gX(x) is in DX ⊂ X , by

8.6 x has at least l − 1 ≥ 2 preimages in Ŷ and therefore the preimage of E in Ỹ has

at least two components. Since the degree of Ỹ → X̃ is l and the degree of Z̃ → Ỹ is

prime to l, this implies that fE is prime to l. The Galois action on Pic(Z̃) transitively
permutes the components in

⊕
Dk

j
Z
/
l. Hence θ maps

⊕
E Z

/
l isomorphically onto the

subgroup of
⊕

E

⊕
Dk

j
Z
/
l consisting of all the elements fixed by the Galois action and

the same is true of π̃∗. Since [DZ ] ∈ Pic(Z)
/
l is the pull-back of an element in H2(X, µl)

under π, it is Galois invariant; its pull-back in Pic(Z̃)
/
l and its restriction to Pic(Z̃Ah)

/
l

are again Galois invariant. Thus
[∑

E

∑
j rk

j Dk
j

]
belongs to the image of π̃∗. We claim

that
[ ∑

E

∑
j rk

j Dk
j

]
is of the form π̃∗(

∑
rE [E]), where E varies in the exceptional fibre

of X̃ → X̂.

Since X̂ is smooth at x, Ah
x is regular and we have an exact sequence

0 → PicFx

(
X̃Ah

x

)
→ Pic

(
X̃Ah

x

)
→ Pic

(
X̃Ah

x
\ Fx

)
→ 0

with Pic
(
X̃Ah

x
\ Fx

)
= Pic

(
Spec(Ah

x) \ {x}
)

= 0. The claim follows.

Let M be the line bundle on X̃ representing the class of
∑

x∈Σ0

∑
E rE [E]. We claim that

N = L̃
(
L̃−1

0

)⊗l
π̃∗(M−1), which belongs to PicF1

(Z̃), is an l-th power in Pic(Z̃). We note

that, by construction, it maps to zero in Pic
(
Z̃Ah

x

)/
l for all x ∈ Σ0.

Lemma 9.6. The map

PicF1

(
Z̃A

)
→ PicF1

(
Z̃Ah

)

is an isomorphism.

Proof. We have a commutative diagram

H0(Z̃A, Gm)
γ0 //

²²

H0(Z̃A \ FA, Gm)
δ0 //

²²

H1
F1

(Z̃A, Gm)
ϕ0 // //

²²

PicF1
(Z̃A)

²²

H0(Z̃Ah , Gm)
γ

// H0(Z̃Ah \ FAh , Gm)
δ // H1

F1
(Z̃Ah , Gm)

ϕ
// // PicF1

(Z̃Ah)

with exact rows (see [Mi], III, 1.27 and the correction in [CTO], Proposition 4.4) and where

ϕ0 and ϕ are surjective. Since Z̃A → ẐA is proper and birational we have Gm(Z̃A) =

Gm(ẐA). For the same reason, Gm(Z̃Ah) = Gm(ẐAh). Since Z̃A \ F1 ≃ ẐA \ Σ1 and

Z̃Ah \ F1 ≃ ẐAh \ Σ1 we have

Gm(Z̃A \ F1) = Gm(ẐA \ Σ1) and Gm(Z̃Ah \ F1) = Gm(ẐAh \ Σ1).
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Since ẐA is a 2-dimensional connected scheme and Σ1 a finite set of closed points of Ẑ,

Gm(ẐA \ Σ1) = Gm(ẐA) and Gm(ẐAh \ Σ1) = Gm(ẐAh).

Thus γ and γ0 are isomorphisms. and therefore ϕ and ϕ0 are isomorphisms.

Let h : Z̃Ah → Z̃A be the projection. We note that h∗Gm = Gm, hence by étale excision

using a limit argument [Mi] the map H1
F1

(Z̃A, Gm) → H1
F1

(Z̃Ah , Gm) is an isomorphism
and the lemma is proved.

To complete the proof of Theorem 9.1 we may assume that Cl(B) = Z/l, because if B is
factorial then Weil divisors coincide with Cartier divisor and there is nothing to prove.

Proposition 9.7. Identifying Cl(B) with a subgroup of Cl(C) under the pull-back map,
Cl(C) is generated by the Galois conjugates of π∗

bZ
(Cl(B)) in Cl(C).

Proof. We know by 8.6 (5) that the inverse image of DY in Z is an irreducible smooth
curve DZ . Let h be a local equation of DZ on Σ1. Then for every z ∈ Σ1 we can choose
a σ ∈ G for which σ(z) lies over a singular y ∈ Σ. From Ch

z ≃ Bh
y it follows that Cl(Ch

z )
is generated by the ideal (t, σ(h)). This shows that Cl(C) is generated by the primes
containing some σ(h) and the argument used in the proof of 9.3 shows that Cl(C) is
generated by the Galois conjugates of π∗

bZ
(Cl(B)).

Lemma 9.8. The group Pic
(
Z̃Ch

)
has no l-torsion.

Proof. Using the fact that Pic
(
Z̃Ch \ F1

)
= Cl(Ch), we have the exact sequence

(†) 0 → PicF1

(
Z̃Ch

)
→ Pic

(
Z̃Ch

)
→ Cl(Ch) → 0

where PicF1

(
Z̃Ch

)
is the subgroup of Pic

(
Z̃Ch

)
generated by the irreducible components

of F1. Suppose that their number is r. Then they generate a free abelian group isomorphic

to Zr because PicF1

(
Z̃Ch

)
carries a nondegenerate quadratic form given by intersection

multiplicities ([Mu], §1). It follows that Pic
(
Z̃Ch

)
is a finitely generated group of rank r,

of the form Zr ⊕ T , where T is its torsion subgroup. Since Cl(Ch) is l-torsion, T can only
be l-torsion, but we have seen that

PicF1

(
Z̃Ch

)/
l ≃ (Z/l)r

hence T must be zero.

Corollary 9.9. The group Pic
(
Z̃C

)
has no l-torsion.

Proof. The corollary follows from the commutative diagram with exact rows

0 // PicF1

(
Z̃C

)
//

≃α
²²

Pic
(
Z̃C

)
//

²²

Cl(C)
²²

β
²²

// 0

0 // PicF1

(
Z̃Ch

)
// Pic

(
Z̃Ch

)
// Cl(Ch) // 0

using that α is an isomorphism by 9.6 and that β is injective.
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Lemma 9.10. We have (
Cl(C)

)G
=

(
Cl(Ch)

)G
= 0.

Proof. It suffices to show that
(
Cl(Ch)

)G
= 0. We have

Ch =
∏

z∈Σ1

Ch
z

and each factor on the right is isomorphic to

Rh
x[T, t]

(T 2 − θ, tl − a2T 2 + π2)
.

The isotropy group Gz ⊂ G of z acts by changing the sign of T and therefore maps the
class of the prime t, aT − π to the class of (t,−at − π) which is its inverse and is distinct

from the class of (t, at − π) because l is at least 3. Hence
(
Cl(Sh

z )
)Gz

= 0. From this the
claim follows.

Proposition 9.11. The map

PicF1

(
Z̃Ch

)
→֒ Pic

(
Z̃Ch

)

induces an injection (
PicF1

(
Z̃Ch

)/
l
)G

→֒
(
Pic

(
Z̃Ch

)/
l
)G

Proof. From the exact sequence (†) used for proving 9.8, using multiplication by l and the
snake lemma we get a long exact sequence

lPic
(
Z̃Ch

)
→ Cl(Ch) → PicF1

(
Z̃Ch

)/
l → Pic

(
Z̃Ch

)/
l.

By Lemma 9.8, Pic
(
Z̃Ch

)
has no l-torsion, hence we have an exact sequence

0 → Cl(Ch) → PicF1

(
Z̃Ch

)/
l → Pic

(
Z̃Ch

)/
l

from which the assertion immediately follows, since, by Lemma 9.10,
(
Cl(Ch)

)G
= 0.

Proof of Proposition 9.5. Since Z̃C \(Z̃C \F1) → F1 is an isomorphism, we have a patching
diagram [Jo]

Z̃C \ F1
//

²²

Z̃C

²²

Z̃ \ F1
// Z̃
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and an exact sequence

(⋆⋆) 0 → Pic(Z̃) → Pic(Z̃C) ⊕ Pic(Z̃ \ F1) → Cl(C) → 0.

Surjectivity on the right is due to the the fact that Pic(Z̃ \F1) surjects onto Cl(C). From

this sequence, multiplying by l, using the snake lemma and remembering that lPic(Z̃C) = 0
and that Cl(C) is l-torsion, we obtain a long exact sequence

(‡)
0 → lPic(Z̃) → lPic(Z̃ \ F1) → Cl(C) →

→ Pic(Z̃)
/
l → Pic(Z̃C)

/
l → Pic(Z̃ \ F1)

/
l

We now distinguish two cases:

I. Suppose that lPic(Ỹ \ F ) → Cl(B) is surjective. Consider the commutative diagram

Pic(Ỹ \ F )

(fY )∗
²²

i

%%KKKKKKKKKK

0 // Pic(Ŷ ) // Cl(Ŷ )
j

// Cl(B) // 0

Recall that g∗
Y {DY } = l{DbY } for some Weil divisor DbY . By assumption j{DbY } = i(γ)

for some γ ∈ lPic(Ỹ \F ). Then, since j({DbY } − (fY )∗(γ)) = 0, there exists a γ′ ∈ Pic(Ŷ )
such that {DbY } = (fY )∗(γ)) + γ′. We conclude that ψ∗

Y g∗
Y {DY } = l{DbY } = lγ′ because

lγ = 0. From this it follows that h∗
Z{DZ} is divisible by l in Pic(Z̃).

II. Suppose that lPic(Ỹ \ F ) → Cl(B) is not surjective, in which case, since Cl(B) = Z/l,

it is the zero map. By Proposition 9.7, lPic(Z̃ \ F1) → Cl(C) is also zero, hence from the

exact sequence (‡) we conclude that the map lPic(Z̃) → lPic(Z̃ \ F1) is an isomorphism.
In this case the exact sequence

0 → PicF1
(Z̃) → Pic(Z̃) → Pic(Z̃ \ F1) → 0

yields that PicF1
(Z̃)

/
l →֒ Pic(Z̃)

/
l is injective. The element [N ] ∈ PicF1

(Z̃) is Galois

invariant in Pic(Z̃)
/
l and hence, because of this injection, it is in

(
PicF1

(Z̃)
/
l
)G

. From
the exact sequence

0 → PicF1
(Z̃C) → Pic(Z̃C) → Cl(C) → 0

multiplying by l, using the snake lemma and remembering that lPic(Z̃C) = 0 we get the
exact sequence

0 → Cl(C) → PicF1
(Z̃)

/
l → Pic(Z̃C)

/
l.

Taking invariants under G and using the fact that Cl(C)G = 0 (Proposition 9.10) we see

that [N ] ∈
(
PicF1

(Z̃)
/
l
)G

. On the other hand, we know that [N ] is zero in Pic(Z̃Ch)
/
l,

hence by Proposition 9.11 it is zero in PicF1
(Z̃Ch)

/
l. Noting that Z̃C = Z̃ ×bZ Spec(C) =
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Z̃ ×hx Spec(A) = Z̃A, 9.6 implies that [N ] vanishes in PicF1
(Z̃C)

/
l. Since the map

PicF1
(Z̃) → PicF1

(Z̃C) is surjective, there exists N1 ∈ PicF1
(Z̃) such that NN⊗l

1 maps

to zero in Pic(Z̃C). The element NN⊗l
1 also maps to zero in Pic(Z̃ \ F1). By the exact

sequence (⋆⋆), NN⊗l
1 is zero in Pic(Z̃), completing the proof of the proposition.

We now complete the proof of Theorem 9.1 which says that the class of h∗
Y (OY (DY )) in

Pic(Ỹ ) belongs to

l · Pic(Ỹ ) + π∗
eY
Pic(X̃).

This immediately follows from 9.4 and the fact that π eZ is a finite map of degree dividing
(l − 1)! which is coprime to l.

10. Proof of the main theorem

Theorem 10.1. Let X be a smooth projective surface over an algebraically closed field
k of characteristic zero. Let D be a central division algebra of prime degree l over k(X).
Then D is cyclic.

Proof. If l = 2 then D is a quaternion algebra and every quadratic extension in D is cyclic.
If l = 3 then D is cyclic by a result of Wedderburn [W]. However we show for all primes

l ≥ 3 that the cyclic extension k(X̃) of k(X) of degree l splits D.

Suppose first that D is unramified over X . By §1 the class of D is equivalent to an Azumaya
algebra of rank l2 over X . Let η ∈ H2(X, µl) be an element mapping to the class of D in
H2(X, Gm). Let πY : Y → X be a generic splitting of D as in Theorem 7.13. The class
π∗(η) ∈ H2(Y, µl) maps to zero in H2(Y, Gm) since the map H2(Y, Gm) → H2(k(Y ), Gm)
is injective, Y being smooth. In view of the Kummer exact sequence

1 → µl → Gm → Gm → 1

we have the exact sequence

0 → Pic(Y )
/
l → H2(Y, µl) → H2(k(Y ), Gm)

from which we see that there exists a line bundle L on Y such that π∗(η) = [L] in Pic(Y )
/
l.

By Theorem 9.1 there exists a map hX : X̃ → X which is proper, generically cyclic of

degree l and such that the normalization Ỹ of Y ×X X̃ is smooth; further if hY : Ỹ → Y
is the natural map, then h∗

Y (LY ) vanishes in

Pic(Ỹ )
/
lPic(Ỹ ) + π∗

eY
(Pic(X̃)) .

We show that k(X̃) splits D. Let h∗
Y (L) = L⊗l

1 ⊗O
Ỹ

π∗
eY
(M) where M is a line bundle on

X̃. The element ξ = η+[M−1] ∈ H2(X̃, µl) maps to the class of A in H2(X̃, Gm). Further

π∗
eY
(ζ) is zero in H2(Ỹ , µl).

Let W and the maps f : W → A1, g : W → X be as constructed in §4. Let P (T )
be the characteristic polynomial of a general element of Dk(X) defining k(Y ). We have
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already seen in 9.2 that P (T ) is irreducible over k(X̃) = k(X ′). Repeating the proof of the

irreducibility of W over k(t) we see that W ′ = W ×X X̃ is integral and remains irreducible

over k(t). Let f ′, g′ denote the base changes of f , g to X̃. Then W ′
0 = (f ′)−1(0) = Y ×X X̃

and g′|W ′ : W ′
0 → X̃ is finite. Further, W ′

1 = (f ′)−1(1) has l irreducible components V ′
i ,

and g′|V ′

i
: V ′

i → X̃ is a birational isomorphism (in fact an isomorphism). It is also clear

that W ′ is normal at the generic point of V ′
i . Let I be the ideal of OY ×X

eX such that the

normalization map Ỹ → Y ×X X̃ is the blow up at I ([Ha1], Ch. II, Th. 7.17 ). Let W̃

be the blow up of W ′ at the ideal (I, t) and f̃ , g̃ the obvious maps from W̃ to A1, X̃.

The fibre W̃0 = Ỹ and W̃ is birational to W ′ away from W̃0. We have g̃∗(ζ)|fW0

= 0 in

H2(W̃0, µl). Thus conditions (1) to (5) of 3.1 are satisfied by W̃ , f̃ , g̃. Hence the class of

B in Br(k(X̃)), which is the same as the class of D, is zero.

Suppose now that D is ramified on X . The proof in this case consists in a reduction to
the unramified case, which is described in de Jong’s paper [dJ], §1. We follow de Jong’s
notation.

Let A be an Azumaya algebra over k(X). Let h = (g, f) : W → X × P1 be the map
constructed in [dJ], satisfying

(1) Wξ is smooth, where ξ is the geometric generic point of P1.

(2) The extension of A to the function field Lξ of Wξ is unramified on Wξ.

(3) The fiber of f at infinity has l components of multiplicity 1, each birationally isomorphic
to X under g.

By the unramified case, there exists an element a ∈ Lξ such that D ⊗ Lξ(a
1/l) is split.

There is a finite map p : C → P1 with C a smooth affine curve such that a belongs to the
fraction field LC of W ×P1 C and D ⊗ LC is split by LC(a1/l) and hence is cyclic. The

map p extends to p̃ : C̃ → P1 where C̃ is a smooth projective curve containing C as an

open set. Let ∞′ be a point of C̃ mapping to the point ∞ of P1. The discrete valuation of
k(X × P1) corresponding to a the generic point of X ×∞ extends to a discrete valuation

of M = k(W ×P1 C̃), with the same residue field. Let R be the corresponding discrete
valuation ring. The algebra D extended to M being cyclic, is given by a symbol (u, v)ζ,
where ζ is a primitive l-th root of 1 in k. Since it is unramified at R, we may assume, by

the following lemma that u and v are units of R̂, the completion of R. Its specialization
to the residue field of R is therefore cyclic and coincides with the class of D.

Lemma 10.2. Let R̂ be a complete discrete valuation ring with quotient field K. Assume
that K contains a primitive 2l-th root of 1. Then a cyclic algebra of index l over K and

unramified at R̂ is represented by a symbol (u, v)ζ with u and v units of R̂.

Proof. We fix ζ and write (−,−) for (−,−)ζ . Let the κ be the residue field of R. Let A
be represented by the symbol (utm, vtn) ∈ H2(K, µl). Since A is unramified the residue
of (utm, vtn) is zero. Since κ contains µl this residue is 1 = (un

/
vm) ∈ κ∗

/
(κ∗)l. Thus we

have
(utm, vtn) = (u, v) + (u, tn) + (tm, v) + (tm, tn) .


