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Abstract. We give a short proof of Totaro’s theorem that ev-
ery E8-torsor over a field k becomes trivial over a finite separable
extension of k of degree dividing d(E8) = 26325.

1. Introduction

In the paper we give a short proof of the following theorem due to
B. Totaro [7].

Theorem 1.1. Let k be an arbitrary field. Then every E8-torsor de-
fined over k becomes trivial over a finite separable extension of k of
degree dividing d(E8) = 26325.

Note that in a second paper on E8-torsors [8], Totaro showed that
the bound 26325 is exact, i.e. there is an E8-torsor that can not be split
by an extension whose degree is a proper divisor of 26325.

The original proof of Theorem 1.1 is based on an analysis of the
subgroup structure of the Weyl group of type E8, Brauer’s theory of
blocks, Aschbacher’s theorem on the maximal subgroups of the classical
groups over finite fields, and the classification of solvable primitive
linear groups. Moreover, some of the computations in [7] were made
with the aid of a computer. The aim of the present paper is to simplify
the proof. Eventually following the main Totaro’s idea on considering
Galois orbits in the corresponding root system Σ(E8) we give a short
straightforward proof of Theorem 1.1.

2. Generic case and possible bad cases

Let G0 be a split group of type E8 over k. Let ξ ∈ Z1(k,G0), and let
G = ξG0 be the corresponding twisted group. Consider a maximal k-
defined torus T ⊂ G. Let E/k be a minimal finite extension splitting T .
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The extension K/k is necessarily Galois, and its Galois group Γ acts in
a natural way on the root system Σ = Σ(G, T ) of G with respect to T .
This gives rise to a canonical embedding Γ ↪→ W where W = W (E8) is
the corresponding Weyl group. If we choose a base of Σ, then the action
of Γ on Σ induces an action of Γ on the set R = Σ/(±1). This set has
120 elements, and we always choose positive roots as representatives of
the elements of R.

The case of “generic” E8-torsors is easy.

Lemma 2.1. Assume that Γ has an orbit on R of size dividing 120 =
23 ·3·5. Then there is a finite separable extension L/k of degree dividing
d(E8) such that G splits over L.

Proof. Let α ∈ R be such that |Γ(α)| divides 120. Let StabΓ(α) be the
stabilizer of α in Γ, and consider the subfield L1 ⊂ E corresponding
to StabΓ(α). Taking an extension L2/L1 of degree 2 if necessary, we
may assume that Σ has a root α stable with respect to an (absolute)
Galois group of L2. The centralizer Σ′ of α in Σ is the subsystem of
type E7 which is stable with respect to the Galois group of L2. If
H ⊂ G is the subgroup in G of type E7 corresponding to Σ′, then
H is L2-defined and, by a result of Tits [6], splits over a separable
extension L3/L2 of degree dividing 223. Clearly L3 also splits G, and
[L3 : k] = [L3 : L2][L2 : L1][L1 : k] divides (223)2(120) = 26325, as
required. ¤

If Σ contains a proper subroot system stable with respect to Γ, then
using known results on groups of classical types and Tits results [6] on
splitting fields of groups of types G2, F4, E6, E7, it is easy to conclude
that G splits over a finite separable extension of k of degree dividing
d(E8). Thus, we may henceforth assume without loss of generality that
Σ does not contain root subsystems stable with respect to Γ. In this
case, possible “bad” orbit decompositions are given by the following:

Lemma 2.2. ( [7], Lemma 4.1) If Γ has no orbits on R of size dividing
120, then the orbit sizes of Γ are either
(a) 64+ ( multiples of 7 summing to 56);
(b) 50+ (multiples of 7 summing to 70);
(c) 45+ (multiples of 25 summing to 75);
(d) 36+ (multiples of 7 summing to 84) or
(e) (multiples of 16 summing to 48) + (multiples of 9 summing to 72).

For convenience of the reader we give a sketch of the proof due to
Totaro. It is based on the following result.
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Lemma 2.3. (i) A 7-Sylow subgroup of W has only one fixed point in
R.
(ii) A 5-Sylow subgroup of W has 4 orbits of size 25 and 4 orbits of
size 5 in R.

Proof. This is easy to check by direct inspection. ¤
Proof of Lemma 2.2. Let us first assume that 7 divides |Γ|. Then, by
Lemma 2.3, all orbits of Γ in R have sizes divisible by 7 except for one
whose size is ≡ 1 modulo 7. The size of this exceptional orbit is either
36, 50 or 64, since by our assumption there is no orbit of size dividing
120. Thus, assuming that |Γ| is a multiple of 7 we have cases (a), (b),
(d).

Assume next that |Γ| is not divisible by 7, but divisible by 25. Since
the sum of sizes of all orbits of Γ in R is 120, and sizes of orbits do
not divide 120 we find, by Lemma 2.3, that all orbits of Γ have size
divisible by 25 except for one whose size is 45. Hence we have case (c).

Finally, assume that the order of Γ is divisible by neither 7 nor 25.
Recall that |W | = 21435527. Since there is no orbit of Γ whose size
divide 120, all of them have sizes a multiple of 16 or 9. The only way
it can happen is case (e). Lemma 2.2 is proved. ¤

By [7], Lemma 6.1, cases (b), (c) are impossible. By [7], Lemma 4.2,
in case (a) the complementary subset to the orbit of size 64 forms a
subsystem of type D8. The remaining cases (d) and (e), which caused
most of the complications in [7], will be dealt with in a simple fashion
in the following two sections.

For later use, we need the following fact related to the Rost invariant
for E7. For the definition and properties of the Rost invariant RG of
an algebraic group G we refer to [4].

Proposition 2.4. Let H0 be a split simple simply connected algebraic
group of type E7 defined over an arbitrary field K, and let

RH0 : H1(K,H0)→ H3(K,Q/Z(2))

be the Rost invariant of H0. Let ξ ∈ H1(K,H0) be such that the 3-
component of RH0(ξ) is trivial. Then there is a separable extension
L/K of degree dividing 4 such that ξ is trivial over L.

Proof. By [6], there is a quasi-split subgroup H ′ ⊂ H0 of type E6

such that ξ is in the image of H1(K,H ′) → H1(K,H0). Taking a
proper quadratic extension E/K if necessary, we may assume that H ′

is split over E. One knows that for a split group H ′E of type E6 the 2-
component of RH′(ξE), where ξE is the image of ξ under the restriction
map H1(K,H0) → H1(E,H0), is a symbol. Taking again a separable
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quadratic extension L/E killing this symbol we may assume that the 2-
component of RH′(ξL) is trivial over L. Then ξL ∈ KerRH′ . It remains
to observe that KerRH′ = 1, by [3] (see also [2]). ¤

3. An orbit of size 36

Let R1 ⊂ R be an orbit of Γ of size 36, and let R2 = R \ R1. Take
a positive root α ∈ R1 and consider Γ1 = StabΓ(α). Note that in
the definition of Γ1, α is viewed as an element of R, but not of Σ. Let
E ′1 ⊂ E be the subfield corresponding to Γ1. Taking a proper quadratic
extension E1/E

′
1 if necessary, we may assume that α viewed as a root

in Σ is stable with respect to an (absolute) Galois group of E1. Since
|R1| = 36, the index [E1 : k] is either 2232 or 2332.

Lemma 3.1. If the 3-component of RG0([ξ]) is trivial over E1, then
there is a separable extension E2/k of degree dividing 2532 which kills
ξ.

Proof. Let Σ′ be the root subsystem of Σ consisting of roots orthogonal
to α. Consider the subgroup H of G corresponding to Σ′. It has type
E7 and is defined over E1 since so is α. Since H contains a semisimple
anisotropic E1-kernel of G, by a result due to R. Steinberg (cf. [2],
Theorem 3.2), there is a cocycle ξ1 ∈ Z1(E1, H0), where H0 ⊂ G0 is a
canonical E1-split subgroup of type E7, such that ξ is equivalent to ξ1

over E1. Note that RG0(ξ) = RH0(ξ1). Then, by Proposition 2.4, there
is a separable extension E2/E1 of degree dividing 4 which kills ξ1, and
hence ξ. Its degree over k divides 4(2332), as required. ¤

By Lemma 3.1, we may henceforth assume without loss of generality
that the 3-component of RG0([ξ]) is nontrivial over E1.

Lemma 3.2. Let β ∈ R2. Then |Γ1(β)| is multiple of 21.

Proof. Since Γ1 contains a 7-Sylow subgroup of W , the size of Γ1(β) is
divisible by 7 by Lemma 2.3 (i). Assume that |Γ1(β)| is not divisible
by 3. Take the extension E2/E1 of degree prime to 3 corresponding to
the stabilizer Γ2 = StabΓ1(β). By a counting argument, there are at
least two roots in R2 different from β whose Γ2-orbits have sizes not
divisible by 3. Repeating the above construction 2 times, we can find
a finite extension E/E1 of degree prime to 3 with the property that
an (absolute) Galois group of E stabilizers α and at least 3 roots in
R2. Then it follows from Tits’ classification [5] that the E-rank of G
is at most 5. Again, by Tits’ classification, all simple groups which
could appear in a semisimple E-anisotropic kernel of G have trivial 3-
components of the Rost invariant, implying therefore that RG0(ξE) has
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also trivial 3-component. On the other hand, since [E : E1] is prime to
3, the 3-component of RG0(ξE) is still nontrivial – a contradiction. ¤

Recall that we assumed that Σ has no subroot systems stable with
respect to Γ; in particular we may assume that R1 is not a subroot
system. It follows that there is δ ∈ R1 such that either α + δ or α− δ
is a root, call it β = α ± δ, belonging to R2. Since the size of Γ1(β) is
divisible by 21, so is |Γ1(δ)|. Since R1 consists of 36 elements, the size
of Γ1(δ), hence that of Γ1(β), is exactly 21.

Let R′1 = Γ1(δ), R′′1 = R1 \ R′1, R′2 = Γ1(β), R′′2 = R2 \ R′2. Recall
that we denote the subsystem of Σ of type E7 consisting of all roots in
Σ orthogonal to α by Σ′.

Lemma 3.3. ±R′′2 coincides with Σ′.

Proof. Since (α, β) = ±1 and (α, δ) = ±1, the intersection of Σ′/ ± 1
with R′1 and R′2 is empty, hence

(Σ′/± 1) = ((Σ′/± 1) ∩ R′′1) ∪ ((Σ′/± 1) ∩R′′2 .)
The order of (Σ′/± 1)∩R′′2 being Γ1-stable is divisible by 21. Since R′′1
has order 16 and |Σ′/± 1| = 63, we have (Σ′/± 1) ∩ R′′1 = ∅. ¤

As a direct consequence of the above lemma we have

Corollary 3.4. (i) (α, γ) = ±1, if γ ∈ R1 and γ 6= α.
(ii) α± γ1 ∈ R′′1, if γ1 ∈ R′′1 .
(iii) (γ1, γ2) = ±1, if γ1, γ2 ∈ R1, γ1 6= γ2.

Proof. Properties (i) and (ii) are clear since (Σ′/± 1) ⊂ R2. Property
(iii) follows from (i), since α was an arbitrary root in R1. ¤
Lemma 3.5. ±R′′1 is a subroot system of Σ.

Proof. Let γ ∈ R′′1 . We have to show that γ ± γ ′ ∈ R′′1 for all γ′ ∈ R′′2
different from γ. Arguing as above, we see that there exists a subset
R′1,γ of R1, with 21 elements, comprised of roots whose sum with γ is
in R2. By Corollary 3.4, the remaining 14 roots in R1 \R′1,γ have sum
with γ in R1 \R′1,γ. We will be finished if we show that R′1,γ = R′1.

Let δ ∈ R′1. By Corollary 3.4 (iii), either γ + δ or γ − δ is a root.
Call it β. Since (α, β) ≡ 0 modulo 2, we have either α = ±β or
β ∈ Σ′ = R′′2. The first case is impossible, since the Γ1-orbits of δ and
γ consist of 21 and at most 14 elements respectively. Then β ∈ R2, so
that δ ∈ R′1,γ. ¤

To finish the consideration of orbits of size 36, it remains to note
that the subroot system R′′1 is Γ1-stable, hence it has an automorphism
of order 7. However the minimal simple root system having an auto-
morphism of order 7 has type A6 and consists of 42 elements.
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4. An orbit of size a multiple of 16

We start with an explicit description of a 3-Sylow subgroup of W ,
denoted below by Ψ, and its action on the root system Σ. Recall that
|Ψ| = 35. Let Π = {α1, . . . , α8} be a fixed basis of Σ. Here and below
we label roots as in [1]. Consider the subroot system of type E6×A2 in
Σ generated by Σ1 = 〈α1, . . . , α6 〉 and Σ2 = 〈α8,−α 〉 where α is the
highest root of Σ+. Comparing the orders of the Weyl groups of type
E6, A2, E8, we find that the direct product Ψ = Ψ1 × Ψ2 of 3-Sylow
subgroups Ψ1 of W (E6) and Ψ2 of W (A2) is a 3-Sylow subgroup of W .

Recall that Ψ2 has order 3. As for Ψ2, we choose the subgroup in
W (A2) generated by the element e which takes α8 into −α and −α
into −(α8 − α).

The root system Σ1 contains a subroot system Σ3 of type A2×A2×A2

generated by the roots 〈α1, α3〉, 〈α5, α6〉 and 〈α2,−β〉 respectively,
where β is the positive root of maximal length in Σ1 with respect to
the basis α1, . . . , α6. Let w0, w1 ∈ W (E6) be the elements of maximal
length with respect to the bases {α1, . . . , α6} and {α1, α3, α4, α2,−β, α5}
respectively. Let d = w0w1. It is easy to see that d has order 3 and
takes the roots α1, α3, α5, α6, α2,−β into α6, α5, α2,−β, α3, α1 respec-
tively. Therefore d permutes the components of Σ3 and their Weyl
groups.

Let a be an arbitrary element of order 3 in the Weyl group of the
first component of Σ3. Denote b = dad−1 and c = dbd−1. Clearly, a, b, c
commute and d permutes them. Consider the subgroup Ψ1 in W (E6)
generated by a, b, c, d. Since Ψ1 has order 34, it is a 3-Sylow subgroup
of W (E6).

One easily checks that there are 4 orbits of Ψ on R which are as
follows. The Ψ-orbit of α7 consists of 81 elements in Σ+ \ {Σ+

1 ∪ Σ+
2 }.

The Ψ-orbit of α1 consists of 9 elements and coincides with Σ+
3 . The

Ψ-orbit of α8 consists of 3 elements in Σ+
2 = {α8, α, α − α8}. Lastly,

the Ψ-orbit of α4 consists of the remaining 27 elements in Σ+
1 \ Σ+

3 .
We also need information about the stabilizer StabΨ(β) of a root

β ∈ R. It is easy to see that for each root β ∈ Ψ(α7) = Σ+ \{Σ+
1 ∪Σ+

2 }
one has StabΨ(β) ⊂ 〈 a 〉∪〈 b 〉∪〈 c 〉. Furthermore, for each β ∈ Ψ(α4),
StabΨ1(β) has order 3 and is generated by an element of the form
daε1bε2cε3 where εi is 0, 1 or 2.

Let R1 and R2 be unions of orbits of Γ whose sizes are divisible by
16 and 9 respectively. Let Γ3 ≤ Γ be a 3-Sylow subgroup. Without
loss of generality we may assume that Γ3 is a subgroup of Ψ.

Lemma 4.1. |Γ3| ≤ 33.
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Proof. If |Γ3| = 35, then Γ3 = Ψ and hence Γ3 has the orbit Γ3(α7) =
Ψ(α7) of size 81; which is impossible.

Assume that |Γ3| = 34 = 81. Then Γ3 is a normal subgroup in Ψ
and hence Ψ acts in a natural way on Γ3-orbits. Since Ψ has the orbit
Ψ(α7) of size 81, Γ3 has at least three orbits of size 27. Since R1 and
R2 contain at most one and two orbits of size 27 respectively, we find
that Γ3 has exactly 3 orbits of size 27 and their union is necessarily
Σ+ \ {Σ+

1 ∪ Σ+
2 }. It follows that for each β ∈ Σ+ \ {Σ+

1 ∪ Σ+
2 } we

have StabΨ(β) ⊂ Γ3 and this implies 〈 a, b, c 〉 ⊂ Γ3. But then the orbit
Γ3(α4) contains at least 27 elements giving thus the fourth orbit of size
27 – a contradiction. ¤

We are ready to finish the proof. Since |Γ3| ≤ 27, the Γ3-orbits of
roots in R2 have sizes divisible by 9 or 27. Since |R2| = 72, there is at
least one β ∈ R2 such that the size of its Γ3-orbit is not divisible by
27. As in § 3, consider Γ′ = StabΓ(β) and let E1 ⊂ E be the subfield
corresponding to Γ′. If the 3-component of RG0(ξ) is trivial over E1,
then the same argument as in Lemma 3.1 completes the proof. Thus
we may assume without loss of generality that |Γ3| = 27, and that for
each root β ∈ R2, whose Γ3-orbit has size divisible by 9 but not by 27,
the 3-component of RG0(ξ) is nontrivial over the corresponding field
E1.

Note that in this possible “bad” case we have that StabΓ3(β), being
a group of order 3, is a 3-Sylow subgroup of Γ′. By arguing as in
Lemma 3.2, we may therefore additionally assume that a nontrivial
x ∈ StabΓ3(β) has at most 3 invariant positive roots with respect to
the canonical action of Γ3 ⊂ W on Σ. In particular, this assumption
implies that for each root in R2 ∩ (Σ+ \ {Σ+

1 ∪ Σ+
2 }) its Γ3-orbit has

size 27, hence that β with the above property is in Σ+
1 . We also have

e 6∈ Γ3, since each root in Σ1 is stable with respect to e.
Consider the canonical morphism

f : Ψ→ Ψ/〈 e 〉 ' Ψ1 = 〈 a, b, c, d 〉.
Since e 6∈ Γ3, the image f(Γ3) has order 27, hence it is a normal
subgroup in Ψ1. As in Lemma 4.1, we find that Ψ1 acts on Γ3-orbits
of Γ3 on Σ+

1 . Thus Σ+
1 \ Σ+

3 , being a unique Ψ1-orbit of size 27, is a
disjoint union of 3 Γ3-orbits of size 9. Then for each root β ∈ Σ+

1 \Σ+
3 ,

StabΨ1(β), being a group of order 3, is contained in Γ3. However it
is easy to see that all such stabilizers generate Ψ2, whose order is 34.
This contradicts our assumption that |Γ3| = 27.
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simples, C. R. Acad. Sci. 315 (1992), 1131–1138.

[7] B. Totaro, Splitting fields for E8-torsors, Duke Math. J. 121 (2004), no. 3,
425–455.

[8] B. Totaro, The torsion index of E8 and other groups, Duke Math.J. 129 (2005),
219–248

Department of mathematical sciences, University of Alberta, Ed-
monton, Alberta, Canada T6G 2G1

E-mail address : chernous@math.ualberta.ca


