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Abstract. The present paper deals with algebraic tori and essential dimension
but in three unrelated contexts. After a recollection on essential dimension and
generic torsors we explicitly construct a generic torsor for PGLn, n ≥ 5 odd. We
also discuss the so called “tori method” which gives a geometric proof of a result
of Ledet on the essential dimension of a cyclic group (see [4, 5]). In the last section
we compute the essential dimension of the functor K 7→ H1(K,GLn(Z)) that is
the isomorphism classes of n-dimensional K-tori.
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Introduction

The notion of essential dimension has been first defined by Buhler and Reichstein in
[3] for finite groups and by Reichstein in [11] for algebraic groups. Since then many
authors attempted to compute this number for specific algebraic groups. In this
paper we are mainly concerned with upper bounds. The best known upper bounds
for many algebraic groups have been performed by considering group actions on
certain lattices. This can be seen in the work of Ledet ([4]), Lemire ([6]), and the
joint work by Lorenz, Reichstein, Rowen and Saltman ([7]).

A portion of this paper is dedicated to a more geometrical and unified approach
to these results using the language of tori. We discuss and reobtain here the result
on the essential dimension of PGLn, for n ≥ 5 odd, namely

edk(PGLn) ≤ (n− 1)(n− 2)
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which was obtained in [7]. We also recover the result

edQ(Z/pnZ) ≤ ϕ(p− 1)pn−1

where p is an odd prime. The proofs are considerably shorter and more conceptual
than the original versions. Our approach gives also a purely cohomological descrip-
tion of a versal PGLn-torsor for n ≥ 5 odd. It also has the advantage to give the
result of Ledet concerning edk(Z/pnZ) without the assumption char(k) = 0 on the
ground field (see Theorem 4.1 below).

The last part of the paper is devoted to the computation of edk(GLn(Z)). It is well-
known that H1(K,GLn(Z)) classifies n-dimensional K-tori up to isomorphism,
hence we compute essential dimension of tori viewed as forms of Gnm. Note also
that there is no generic torsor for GLn(Z) and thus the standard techniques of
essential dimension do not apply in this case.

In the following k will denote an arbitrary ground field. By a k-variety we mean
a reduced separated scheme of finite type over k. An algebraic group is a group
scheme over k which is smooth and of finite type.
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1. Recollections on actions, torsors and essential dimension

Let G be a group scheme over a scheme S and let X be an S-scheme. A (right)
action of G on X is a morphism of S-schemes

G×S X −→ X

(g, x) 7−→ x · g
which satisfy the categorical conditions of a usual (right) group action. It follows
in particular that for any morphism T → S there is an action of the group G(T )
on the set X(T ).

Recall that a group G acts freely on a set X if the stabilizer of any point of X
is trivial. We say that a group scheme G acts freely on a scheme X if for any
S-scheme T −→ S the group G(T ) acts freely on the set X(T ). If there exists a
dense open G-invariant subset U of X such that G acts freely on U , we say that
the action of G is generically free. Recall also that an action is said to be faithful
if the induced map G→ Aut(X) is injective.

Lemma 1.1. Let A be a finite group scheme over a field k acting on a geometrically
irreducible k-variety X. Then the action of A is generically free if and only if it
is faithful.

Proof. The implication ⇒ is obvious and holds for any group A, not necessarly
finite. Suppose that the action of A on X is faithful. To check that there exists
an open set on which A acts freely is enough to find a point x ∈ X such that
A acts trivially on it since the subset of such points is open in X . We can thus
suppose k algebraically closed. For any element a ∈ A(k), let Xa be the closed
subvariety of X consisting of a-invariant elements. The Xa form a finite family of
proper subvarieties of the irreducible variety X , hence their union cannot be the
total space. ¤

Lemma 1.2. Let G be a connected algebraic k-group, H a closed subgroup of G
and A a finite k-group, acting on G by group automorphisms (say, on the left),
and fixing H. Then, the action of H o A on G is generically free if and only the
action of A on H\G is faithful.

Proof. It follows from the fact that HoA acts generically freely on G if and only
if A acts generically freely on H\G and from Lemma 1.1. ¤
In the sequel we will consider a base scheme S and we will deal with the finitely
presented faithfully flat1 topology on the category Sch/S of schemes over S.

1fppf in the sequel according to the french tradition.
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Definition 1.3. Let G be a fppf group scheme over Y . We say that a morphism
of schemes X → Y is a G-torsor over Y if G acts on X, the morphism X → Y is
fppf, and the map ϕ : G×Y X → X ×Y X defined by

G×Y X → X ×Y X
(g, x) 7→ (x, x · g)

is an isomorphism.

This condition is equivalent to the existence of a covering (Ui → Y ) for the fppf
topology on Y such that X ×Y Ui is isomorphic to G ×Y Ui for each i (see [9],
Chapter III, Proposition 4.1). This means that X is “locally” isomorphic to G
for the fppf topology on Y . When the group G is smooth over Y it follows by
faithfully flat descent that X is also smooth.

A morphism between two G-torsors f : X → Y and f ′ : X ′ → Y defined over the
same base is simply a G-equivariant morphism ϕ : X → X ′ such that f ′ ◦ ϕ = f .
Again by faithfully flat descent it follows that any morphism between G-torsors is
an isomorphism.

Let G act on a S-scheme X . A morphism π : X −→ Y is called a categorical
quotient of X by G if π is (isomorphic to) the push-out of the diagram

G×S X //

pr2

²²

X

X

In general such a quotient does not exist in the category of schemes. When it
exists the scheme Y is denoted by X/G. We will not give a detailed account on the
existence of quotients. We will only need the existence of a generic quotient, that
is a G-invariant dense open subscheme U of X for which the quotient U −→ U/G
exists. Moreover, we will need one non-trivial fact due to P. Gabriel (see [1] Exposé
V, Théorème 8.1) which asserts the existence of a generic quotient which is also a
G-torsor.

Theorem 1.4. Let G act freely on a S-scheme of finite type X such that the
second projection G ×S X → X is flat and of finite type. Then there exists a
(non-empty) G-invariant dense open subscheme U of X satisfying the following
properties:

i) There exists a quotient map π : U −→ U/G in the category of schemes.

ii) π is onto, open and U/G is of finite type over S.

iii) π : U −→ U/G is a flat G-torsor.

Definition 1.5. Let G act on X. An open subscheme U which satisfies the con-
clusion of the above theorem will be called a friendly open subset of X.

Definition 1.6. Let k be a field, G be a linear algebraic group k and Y a k-scheme
of finite type. A G-torsor f : X −→ Y over Y is called generic for G (or versal,
or classifying) if, for every extension k′/k, with k′ infinite, and for every G-torsor
P ′ −→ Spec(k′), the set of points y ∈ Y (k′) such that P ′ ' f−1(y) is dense in Y .
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Remark 1.7. Such a torsor always exists : Indeed embed G in S = GLn for n big
enough. Then the exact sequence 1 → G → S → S/G → 1 gives, for all k′/k, an
exact sequence of pointed sets

G(k′)→ S(k′)→ S/G(k′)→ H1(k′, G)→ 1.

The application ∂ : S/G(k′)→ H1(k′, G) is given by taking the fiber of S → S/G
at a k′-rational point of S/G. Thus any G-torsor over Spec(k′) is isomorphic to
the fiber of a point y ∈ S/G(k′). Moreover if y′, y ∈ S/G(k′) are in the same
S(k′)-orbit, then f−1(y) = f−1(y′). If k′ is infinite, S(k′) is dense in S and so is
the S(k′)-orbit of y in S/G.

Definition 1.8. Let G be a linear algebraic group over k. The smallest dimension
dim(Y ) of a generic G-torsor X −→ Y is called the essential dimension of G.

Definition 1.9. Let f : X → Y and f ′ : X ′ → Y ′ two G-torsors. We say that f ′

is a compression of f if there is a commutative diagram

X

f

²²

g //___ X ′

f ′

²²
Y

h
//___ Y ′

where g and h are G-equivariant, rational, dominant morphisms.

Lemma 1.10. If f : X → Y is a generic G-torsor then so is any compression of f .

Proof. See [2] Lemma 6.13. ¤

We would like to state a proposition that ensures the existence of versal torsors of
“small” dimension, under certain conditions. We first need a general lemma which
is better stated in a wider background.

Let G → S be a fppf group scheme. As before we consider the finitely presented
faithfully flat topology (fppf-topology) on the category Sch/S of schemes over S.
If X −→ S is a S-scheme we will still denote by X the fppf-sheaf represented
by X , that is the sheaf which sends Y −→ S to HomS(Y,X). In this setting a
(left) G-torsor is a fppf-sheaf P : Sch/S → Sets, endowed with a (left) G-action,
such that, locally for the fppf-topology, this sheaf is G-isomorphic to G itself. In
particular, in this definition, we do not worry about torsors to be representable.
However the usual properties of torsors hold, for example P ' G if and only if P
has an S-point. If s : S′ −→ S is a morphism of schemes there is the pullback
functor s∗ which sends G-torsors to G×S S′-torsors as usual.

For a right G-torsor P and a left G-torsor Q, we define the contracted product

P
G∧ Q to be the sheaf associated to the presheaf defined by

T 7→ (P (T )×Q(T ))/{(xg, y) = (x, gy), g ∈ G(T )}
for any S-scheme T . For any right G-torsor P we define its opposite (denoted
by P o) to be the left G-torsor where the action is given by g ∗ p = pg−1. For any

right G-torsor P we have the following simple rules: P
G∧ P o ' G and P

G∧ G ' P .

Moreover, for any morphism s : S ′ → S one has s∗(P
G∧ Q) ' s∗(P )

s∗(G)
∧ s∗(Q).
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Lemma 1.11. Let S be a scheme and G → S be a faithfully flat group scheme of
finite presentation over S. Let f : S ′ → S be a morphism of schemes. For any
S-scheme T , let T ′ = T ×S S′. Assume we are given a G-torsor P −→ S and
a G′-torsor Q −→ S′. Assume there exists a section s : S → S ′ of f . Then, P

is G-isomorphic to s∗(Q) if and only if the contracted product Q
G′∧ P ′o has an

S
s→ S′-point.

Proof. We know that P is G-isomorphic to s∗(Q) if and only if

(s∗(Q)
G∧ P o)(S) 6= ∅.

On the other hand, to say thatQ
G′∧ P ′o has an S

s→ S′-point is equivalent to saying

that s∗(Q
G′∧ P ′o) has an S-point. But the S-sheaf s∗(Q

G′∧ P ′o) is canonically

isomorphic to s∗(Q)
G∧ P o, whence the claim. ¤

If now G→ S acts on the left on some S-scheme X , for any (right) G-torsor P as
above one can define the twist of X by P to be the fppf-sheaf associated to the
presheaf

T 7→ (P (T )×X(T ))/{(pg, x) = (p, gx), g ∈ G(T )}.
This will be denoted by PX . Even in the case where S = Spec(k) and even if both
P and X are representable this sheaf might not be representable. However, in the
case where X is a quasi-projective k-variety and when P is a usual (representable)
G-torsor, it is well-known that PX is representable by a k-variety (see [15] Chap. I,
§3.1 for example).

Proposition 1.12. Let k be a field and G be a linear algebraic group over k.
Assume we are given a quasi-projective k-variety X, together with a generically
free action of G on X. Suppose further that, for every extension k′ of k with k′

infinite, and for every G-torsor P over k′, the twist of X ×k k′ by P has a dense
subset of k′-rational points. Let U be a friendly open subset of X for the action
of G. Then the G-torsor U −→ U/G is versal.

Proof. This is an easy consequence of Lemma 1.11. Indeed, let k′/k be a field
extension with k′ infinite. Let U ′ = U ×k k′. Let P be a G-torsor over k′. We
apply the lemma to the case S = Spec(k′), S′ = U ′/G and Q = U ′. Let V ′ be the
twist of U ′ by P o. The lemma tells us that, for any point v ∈ V ′(k′), the pullback
of the G-torsor U ′ −→ U ′/G by the image of v in (U ′/G)(k′) is isomorphic to P .
According to the hypothesis, there is a dense set of such points in (U ′/G)(k′),
which concludes the proof. ¤

Corollary 1.13. The notations and hypothesis being those of Proposition 1.12,
the torsor U −→ U/G is versal if one of the following holds:

i) X is an affine space on which G acts linearly (this is well-known, see [2]
Proposition 4.11 for example),

ii) X is a reductive linear algebraic group and G = Y oH is the semi-direct
product of an algebraic k-group H, acting by group automorphisms on X,
by an H-invariant subgroup Y of X, acting on X by left translations, such
that the following holds: for each field extension k′/k with k′ infinite, and

for each H-torsor P over k′, if we denote by Ỹ and X̃ the respective twists

of Y ×k k′ and X ×k k′ by P , the map H1(k′, Ỹ ) 7→ H1(k′, X̃) is trivial.
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Proof. Case i) simply follows from Hilbert’s Theorem 90 for GLn. To see ii) let
k′/k be a field extension with k′ infinite and let P/k′ be a G-torsor. We would

like to describe X̂, the twist of X ×k k′ by P . It is obtained as follows. Let

G
π−→ H be the natural projection, and s its canonical section. Consider the G-

torsor Q = (s ◦ π)∗(P ) (change of group). Its is immediate that π∗(P ) and π∗(Q)

are canonically isomorphic H-torsors. Let Ỹ be the (outer) twist of Y ×k k′ by Q.

Then, there exists a Ỹ -torsor R such that P is G-isomorphic to R
eY∧ Q. Hence,

by associativity of the twist, X̂ is obtained by first twisting X over G with Q (the

result being a group X̃), and then twisting X̃ over Ỹ with R. But by assumption,

this last twist is isomorphic to X̃ itself, and hence X̂ ' X̃ is a reductive group,
with a dense set of k′-rational points, by [14] Corollary 13.3.9. ¤

We also recall here Merkurjev’s definition of essential dimension which will be used
in section 5.

Let k be a field. We denote by Ck the category of field extensions of k. We will
consider covariant functors F : Ck → Sets from Ck to the category of sets.

Definition 1.14. Let F : Ck → Sets be a covariant functor, K/k a field extension
and a ∈ F(K). For n ∈ N, we say that the essential dimension of a is ≤ n (and
we write ed(a) ≤ n) if there exists a subextension E/k of K/k such that:

i) the transcendence degree of E/k is ≤ n,

ii) the element a is in the image of the map F(E) −→ F(K).

We say that ed(a) = n if ed(a) ≤ n and ed(a) 6≤ n − 1. The essential dimension
of F is the supremum of ed(a) for all a ∈ F(K) and for all K/k. The essential
dimension of F will be denoted by edk(F).

Lemma 1.15. For an algebraic group G defined over k, the essential dimension
of the Galois cohomology functor K 7→ H1(K,G) is equal to edk(G) as defined in
Definition 1.8.

Proof. See [2] Corollary 6.16. ¤
For a more detailed account on the notion of essential dimension of algebraic
groups see for instance [2, 3, 8] or [11, 12].

2. Recollections on tori

Let G be any algebraic group over k. We will denote by G∗ its character module
and by G∗ its cocharacter set. Recall that G∗ is defined as

G∗ = Homks(Gks ,Gm,ks),

where ks denotes a separable closure of k. We will denote by Γk (or simply Γ)
the absolute Galois group of k. There is a standard Γ-action on G∗ and every
character module will always be considered as a (continuous) Γ-module. Similarly
G∗ is defined as G∗ = Homks(Gm,ks , Gks) and will also be viewed as a Γ-set. When
G is abelian G∗ has a Γ-module structure as well.

Recall that an algebraic group T over k is called a k-torus if Tks ' Gnm,ks for
some integer n. There is a well-known correspondence between k-tori and Z-free
continuous Γk-modules of finite rank:
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Theorem 2.1. The correspondence T 7→ T ∗ establishes an anti-equivalence be-
tween the category of k-tori and the category of Z-free continuous Γk-modules of
finite rank. If M is such a module the corresponding torus is given by Spec(A)
where A = ks[M ]Γk . Moreover an exact sequence of k-tori

1→ T1 → T2 → T3 → 1

is exact if and only if the sequence of character modules

1→ T ∗3 → T ∗2 → T ∗1 → 1

is exact.

For any algebraic group there is the well-known pairing G∗ × G∗ → Z given by
composition

Homks(Gm,ks , Gks)×Homks(Gks ,Gm,ks)→ Homks(Gm,ks ,Gm,ks) ' Z

which gives a duality between characters and cocharacters of k-tori. In particular,
the statement of the above theorem holds also for cocharacter modules.

If T is a torus with character module T ∗ the torus those character module is
∧k

T ∗

will be denoted by
∧k

T .
For any commutative finite dimensional k-algebra A and for an algebraic group G
over A there is the so-called Weil restriction which is an algebraic group over k
denoted by RA/k(G). Recall that, by definition, for a commutative k-algebra R
one has RA/k(G)(R) = G(R⊗k A) and that the equality

H1(A,G) = H1(k,RA/k(G))

holds when A is étale (and for higher cohomology groups). One sees that if H is
any subgroup of Autk−alg(A), then H acts on both A and RA/k(G). For a finite
dimensional étale algebra the group RA/k(Gm) is a k-torus. Tori of this kind are
called quasi-trivial. They have trivial cohomology and moreover they correspond
to so-called permutation modules, that is their character module has a Z-basis
which is permuted by the Galois group Γk.

Lemma 2.2.

(1) Let T be a k-torus, G be an algebraic group over k acting on T and P any

G-torsor over k. Then for any integer k one has P (
∧k

T ) ' ∧k(PT ).
(2) Let A be a finite dimensional étale k-algebra and G be a subgroup of

Autk−alg(A). Then for any G-torsor P over k the twist of RA/k(Gm)
by P is isomorphic to RA′/k(Gm) where A′ is the k-algebra obtained by
twisting A by P .

Proof. Left to the reader. ¤

We also remind that for a k-torus T there is a minimal Galois finite extension L/k
which splits T , that is such that T ×k L ' Gnm×k L. Such an extension is given as
follows: take the homomorphism Γk → GL(T ∗) given by the Γ-action on T ∗ and
let H its kernel. Then L = kHs .
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3. A versal torsor for PGLn, n ≥ 5 odd

In this section, we will give a purely cohomological description of a versal torsor
for PGLn, n odd. As a corollary, we recover a result due to Lorenz, Rowen,
Reichstein and Saltman (see [7]). To begin with, let us introduce some notations.

Let X be a finite set of cardinality n. Denote by PGLX the group PGL(kX). Let
TX be the diagonal maximal torus of PGLX (with cocharacter module canonically
isomorphic to ZX/Z); its normalizer is the group NX = TX o SX , where SX is
the symmetric group of X . It is well-known that the map

H1(K,NX) −→ H1(K,PGLX)

is surjective for any K (this hold for any reductive group G, and follows from the
existence of maximal K-tori in every inner twist of G, cf. [13], III.4, Lemme 6).
Thus, for finding a versal torsor for PGLX , it is enough to find one for NX . Recall
that we have the canonical Koszul complex (more precisely, its dual)

0 −→ Z −→ ZX −→ ∧2 ZX −→ · · · −→ ∧n ZX −→ 0,

where the maps are just given by wedging (say, on the right) by
∑

x∈X
x. In partic-

ular, for any action of a group G on X , this complex is G-equivariant. Let us cut
the first part of this complex in two short exact sequences

0 −→ Z −→ ZX −→ (TX)∗ −→ 0

and

0 −→ (TX)∗ −→
∧2 ZX −→ QX −→ 0.

Let RX be the k-torus with cocharacter module QX and let SX the k-torus with

cocharacter module
∧2 ZX ; i.e. RX = Spec(k[QX ]) and SX = Spec(k[

∧2 ZX ]).
The last exact sequence gives a canonical sequence of k-tori

1 −→ TX −→ SX −→ RX −→ 1.

Theorem 3.1. Assume n ≥ 5 is odd. Then, the natural action of NX on SX is
generically free, and gives rise to a versal torsor for NX .

Proof. Let us first check the first claim. By Lemma 1.2, it suffices to see that the
action of SX on RX is faithful. But the character module of RX is just the kernel
of the map ∧2 ZX −→ ZX ,

x ∧ y 7−→ x− y.
Assume σ ∈ SX acts trivially on this kernel. Then, let x, y, z ∈ X be three distinct
elements. The element x ∧ y + y ∧ z + z ∧ x (which lies in the kernel) must be
σ-invariant. Hence, σ permutes x, y, z, for any choice of those three elements. But
if n ≥ 4, it is easily seen that this implies that σ is the identity. Thus, there exists
U ⊂ SX a friendly open subset (for the action of NX). To see that the torsor
U −→ U/NX is versal, we use Corollary 1.13. We have to see that, for any field
extension K/k, and for any SX -torsor P , the map

H1(K, PTX) −→ H1(K, PSX)

is zero. Let L/K be the étale algebra obtained by twisting KX by P . Then,
the torus PTX is nothing else than RL/K(Gm)/Gm by Lemma 2.2. In the same
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way PSX '
∧2

RL/K(Gm). Furthermore, by considering the exact cohomology
sequence associated to the short exact sequence

1 −→ Gm −→ RL/K(Gm) −→ RL/K(Gm)/Gm −→ 1,

we find that H1(K,RL/K(Gm)/Gm) = ker(Br(K) −→ Br(L)). This implies, by

the standard restriction-corestriction argument, that H1(K,RL/K(Gm)/Gm) is
killed by n. Because n is odd, to prove that the map

H1(K,RL/K(Gm)/Gm) −→ H1(K,
∧2

RL/K(Gm))

is zero, it is enough to show that the group on the right is killed by 2. This is seen
as follows. Consider the injection

i :
∧2 ZX −→ ZX

2

.

x ∧ y 7−→ (x, y)− (y, x)

Define r : ZX2 −→ ∧2 ZX by r((x, y)) = x ∧ y. We have r ◦ i = 2 Id. Viewing

ZX
2

as the cocharacter module of RL⊗KL/K(Gm), we can see i as an injection

1 −→ ∧2
RL/K(Gm) −→ RL⊗KL/K(Gm). The composite

r ◦ i :
∧2

RL/K(Gm) −→ ∧2
RL/K(Gm)

is multiplication by 2, and induces the trivial map on the H1 level, because of
Hilbert’s Theorem 90 applied to RL⊗KL/K(Gm). This finishes the proof. ¤

Corollary 3.2 (see [7], Theorem 1.1). Assume n ≥ 5 is odd. Then,

edk(PGLn) ≤ (n− 1)(n− 2)

2
.

Proof. This follows from the fact that dim(RX) = (n−1)(n−2)
2 , which is an easy

calculation left to the reader. ¤

4. The tori method for cyclic groups

In this section, we give a geometric proof of a result originally due to Ledet (see
[5]) which can also be found in [4]. Note that our proof works also for finite fields.
The proof of the case r = 1 of the theorem was communicated to us by Serre.

Theorem 4.1. Let k be a field, p > 2 a prime number and r a positive integer.
Assume p is not the characteristic of k. Let l/k be the field generated by pr-th
roots of unity, and G its Galois group, of order t = pdq, where q divides p−1. We
then have

edk(Z/prZ oG) ≤ ϕ(q)pd.

Proof. Choose a primitive pr-th root of unity ξ, which enables us to identify µpr

with Z/prZ. Choose also a generator g of the cyclic group G. Consider the torus
T = Rl/k(Gm). Its character module is isomorphic to Z[X ]/(X t−1), where g acts
by multiplication by X . We have an obvious action of Z/prZ oG on T . We will
see later that this action is generically free. For a field extension k′/k, the twist
of T ×k k′ by a G-torsor P is just Rl′/k′ (Gm), where l′/k′ is the G-Galois étale
k′-algebra obtained by twisting l ⊗k k′ by P . Hence this twist is a quasi-trivial
torus with trivial H1 according to Hilbert’s Theorem 90. We therefore see that
the hypothesis of Corollary 1.13 ii) hold. Thus, if U ⊂ T is a friendly open subset
for the action of Z/prZ oG on T ; the Z/prZ oG-torsor

U −→ U/(Z/prZ oG)
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is versal. We will find a compression of this torsor. To do this, define

Ψ(X) =

d∏

i=0

Φpiq(X),

where Φn(X) is the n-th cyclotomic polynomial, and consider the k-torus T ′ with
character module Z[X ]/Ψ(X). As before, the action of g on this module is just
multiplication by X . The natural injection

Z[X ]/Ψ(X) −→ Z[X ]/(X t − 1)

which is multiplication by (X t − 1)/Ψ(X), gives a surjection T −→ T ′. To finish
the proof, it remains to show that the action of Z/prZoG on T ′ (and hence on T )
is generically free. We first check that the composite map Z/prZ −→ T −→ T ′ is
injective. Denote by α the element of (Z/prZ)∗ such that the action of g on Z/prZ
is given by multiplication by α. At the level of characters, we have to see that the
map

Z[X ]/Ψ(X) −→ Z/prZ,

given by 1 7→ ((X t − 1)/Ψ(X))(α), is a surjection. Let β be the image of α in
Z/pZ via the natural map Z/prZ −→ Z/pZ; this is an element of multiplicative
order q. It remains to check that β is not a root (in Z/pZ) of the polynomial

(Xt − 1)/Ψ(X) =
∏

i,u

Φpiu(X),

where i ranges from 0 to d and u ranges over the divisors of q distinct from q itself.
But in Z/pZ, we have

Φpiu(X) =
∏

λ

(X − λ)ϕ(pi),

where λ ranges over the elements of Z/pZ of order u. Therefore β, being of order q,
is not a root of (X t− 1)/Ψ(X). This proves that the map Z/prZ −→ T ′ is indeed
an injection. We check that the action of Z/prZoG on T ′ is generically free using
Lemma 1.2, that is we only have to check that G acts faithfully on T ′/(Z/prZ).
We first show that the action of G is faithful on T ′ and reduce to this case. If
the G-action on T ′ was not faithful, then Ψ(X) (and hence Φt(X)) would divide
Xu− 1 for some divisor u of t distinct from t itself, which does not hold. Suppose
now that there is γ ∈ G such that γx = ξxx for all x ∈ T ′, where ξx is a pr-th root
of unity. For a pr-th root of unity ξ let Xξ be the closed subvariety of T ′ defined
by

Xξ = {x ∈ T ′ | γx = ξx}.
Since T ′ is irreducible and since the finite union of Xξ covers T ′, there exists ξ
such that Xξ = T ′. But taking x = 1 this gives ξ = 1 and it contradicts the fact
that the action of G on T ′ is faithful. We have thus proved that the action of
Z/prZ oG on T ′ gives rise to a versal torsor; we therefore have

edk(Z/prZ oG) ≤ dim T ′ = deg Ψ = ϕ(q) +

d∑

i=1

ϕ(q)(pi − pi−1) = ϕ(q)pd.

¤
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5. The essential dimension of GLn(Z)

In this section, we compute the essential dimension of the functor

K 7→ H1(K,GLn(Z)).

Recall that H1(k,GLn(Z)) classifies the isomorphism classes of n-dimensional k-
tori. In a similar way H1(k,SLn(Z)) classifies isomorphisms classes of pairs (T, φ)
where T is an n-dimensional k-torus and φ is an isomorphism

∧n
T → Gm. Let

K/k be a field extension. In this section, by the essential dimension (over k)
of a K-torus T , we understand the essential dimension of the class of T in
H1(K,GLdimT (Z)) as defined in Section 1, Definition 1.14. This number will
be denoted by ed([T ]) where [T ] denotes the isomorphism class of the torus T .
Unfolding the definition, ed([T ]) is the minimal transcendance degree over k of
an intermediate extension K/K ′/k such that there exists a K ′-torus T ′ together
with an isomorphism T ′ ×K′ K ' T . Notice that K ′ can always be chosen to be
algebraically closed in K; this will be important in the sequel. We shall first need
a little lemma.

Lemma 5.1. Let Γ −→ Γ′ be a surjection of profinite groups, with kernel H. Let
M,N be two free abelian groups of finite rank, endowed with a continuous action
of Γ′. We have HomΓ(M,N) = HomΓ′(M,N) and Ext1

Γ(M,N) = Ext1
Γ′(M,N).

Proof. The first assertion is a triviality. For the second, we may assume that Γ
is finite. Then, embed N (viewed as a Γ-module) into an exact sequence

0 −→ N −→ F −→ Q −→ 0,

where F is Γ-free. Because H1(H,N) = Hom(H,N) = 0, we also have the exact
sequence

0 −→ N −→ FH −→ QH −→ 0,

where FH is Γ′-free. Looking at the associated long exact sequences in cohomology,
we find that:

Ext1
Γ(M,N) = HomΓ(M,Q)/HomΓ(M,F )

= HomΓ′(M,QH)/HomΓ′(M,FH)

= Ext1
Γ′(M,N).

¤
In terms of essential dimension of tori, this lemma has the following nice conse-
quence:

Proposition 5.2. Let K/k be a field extension, and 1 −→ T ′ −→ T −→ T ′′ −→ 1
an exact sequence of K-tori. We then have ed([T ]) ≤ ed([T ′]) + ed([T ′′]).

Proof. Let K/K ′/k be an intermediate field extension, with K ′ algebraically
closed in K. It is enough to show that, if T ′ and T ′′ can be defined over K ′, then
so can T . But this is exactly the content of Lemma 5.1, with Γ (resp. Γ′) the
absolute Galois group of K (resp. of K ′), and M (resp. N) the character module
of T ′ (resp. of T ′′). ¤
Let K/k be a field extension. For a separable field extension L/K of degree n
we will consider its essential dimension (denoted by ed(L/K)) to be the essential
dimension of its class in H1(K,Sn).
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Theorem 5.3. Let K/k be a field and T be a K-torus. Then ed([T ]) = ed(L/K)
where L/K is the minimal Galois splitting field of T . Moreover, If k has charac-
teristic not 2, we have edk(GLn(Z)) = n, and n− 1 ≤ edk(SLn(Z)) ≤ n.

Proof. Recall that the Galois group G of L/K is the quotient of ΓK by the kernel
of the map

ΓK
fT−→ GL(T ∗).

Assume there exists a subextension K/K ′/k, with K ′ algebraically closed in K,
and a K ′-torus T ′, such that T ′ ×K′ K is isomorphic to T . Let L′/K ′ be the
minimal Galois splitting field of T ′ of Galois group G′. Then L′ ⊗K′ K/K is a
Galois field extension, with Galois group G′, which splits T . By minimality of
L/K, we have that L is isomorphic to a subfield of L′ ⊗K′ K/K, and G is a
quotient of G′. By Galois theory, there exists an intermediate field L′/M ′/K ′,
with Galois group G, such that M ′ ⊗K′ K/K is isomorphic to L/K. This proves
that edk(L/K) ≤ edk([T ]).
For the converse inequality, assume there exists an intermediate field extension
K/K ′/k, and a Galois field extension L′/K ′, of group G, such that L′ ⊗K′ K/K
is isomorphic to L/K. Consider the map f ′ which is obtained by composing the
map fT : G −→ GL(T ∗) with the projection ΓK′ −→ G. Let T ′/K ′ be the torus
defined by f ′. It is clear that T ′×K′K is isomorphic to T . The desired inequality
follows.

Let us now show that edk(GLn(Z)) = n. We know that edk((Z/2Z)n) = n (see
[2] Corollary 3.9 for example). Let then K/k be a field extension and L/K a
Galois field extension of Galois group G = (Z/2Z)n such that edk(L/K) = n.
Consider the K-torus T , with character module Zn, on which G acts via the
natural diagonal embedding G −→ GLn(Z). The minimal Galois splitting field of
T is L/K. By what we have just proven, it follows that ed([T ]) = ed(L/K) = n.
This proves that edk(GLn(Z)) ≥ n. Let us prove the reverse inequality. It suffices
to show that, if G is a finite subgroup of GLn(Z) (think of G as the Galois group
of the minimal splitting field of some torus), we have edk(G) ≤ n. Assume that
k has characteristic zero. Then G is a subgroup of GLn(k), and we have that
edk(G) ≤ n (this is a consequence of Corollary 1.13 i) for example). If k has finite
characteristic p 6= 2, by a lemma of Minkowski (see [10] p. 213), the composite

G −→ GLn(Z) −→ GLn(Z/pZ)

is still an injection, and hence G is a subgroup of GLn(k) as well, and the result
follows as before. It remains to be shown that

n− 1 ≤ edk(SLn(Z)) ≤ n.
Let K/k be a field extension, and (T, φ) be a pair, with T an n-dimensional k-torus
and φ an isomorphism

∧n T −→ Gm. Assume there exists an intermediate field
extension K/K ′/k, with K ′ algebraically closed in K, and a K ′-torus T ′, together
with an isomorphism T ′ ×K′ K −→ T . Because of Lemma 5.1 (applied to M = Z
and N =

∧n(T ′∗)), we see that φ is already defined over K ′. This implies that
ed([T, φ]) ≤ ed([T ]) ≤ n. For the other inequality, consider the natural diagonal
embedding

ker
(
(Z/2Z)n

aug // Z/2Z
)

// SLn(Z).

Following the same method we used for GLn(Z), we obtain the desired inequality.
¤
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Corollary 5.4. Let K/k be a field extension, and L/K a finite separable field
extension. We have

ed([RL/K(Gm)]) = ed([R1
L/K(Gm)]) = ed([RL/K(Gm)/Gm]) = ed(L/K).

Proof. Considering the two exact sequences

1 −→ R1
L/K(Gm) −→ RL/K(Gm) −→ Gm −→ 1

and
1 −→ Gm −→ RL/K(Gm) −→ RL/K(Gm)/Gm −→ 1,

this is an easy consequence of Proposition 5.2 and of Theorem 5.3. ¤
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