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Abstract

Let G be an anisotropic linear algebraic group over a field F which
splits by a field extension of a prime degree. Let X be a projective
homogeneous G-variety such that G splits over the function field of
X. We prove that under certain conditions the Chow motive of X is
isomorphic to a direct sum of twisted copies of an indecomposable mo-
tive RX . This covers all known examples of motivic decompositions of
generically split projective homogeneous varieties (Severi-Brauer va-
rieties, Pfister quadrics, maximal orthogonal Grassmannians) as well
as provides new ones (exceptional varieties of types E6 and E8).

1 Introduction

The history of the subject of the present paper starts with a celebrated result
of M. Rost about motivic decomposition of a Pfister quadric which became
the crucial point in the proof of Milnor conjecture by V. Voevodsky. Briefly
speaking, it says (see [Ro98]) that the Chow motive of a Pfister quadric X
decomposes as a direct sum of (twisted) copies of a certain indecomposable
motive RX . Hence, the motivic (and, hence, cohomological) behavior of X
depends on a rather small object RX . Indeed, over the algebraic closure RX

splits as a direct sum Z ⊕ Z(r) of just two twisted copies of the motive of a
point. As a consequence, it allows to compute and estimate several important
cohomological invariants of X.
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One of the crucial properties of a Pfister quadric is that it becomes hyper-
bolic (totally isotropic) over its function field. In the present paper we deal
only with varieties satisfying the analogous property which we call generically
split. Namely, X is generically split if its Chow motive splits over the generic
point of X as a direct sum of (twisted) copies of the motive of a point.

Note that the discussion about Pfister quadrics and Milnor conjecture
essentially involves the prime p = 2 which is a minimal degree of a field
extension that splits X. One may ask what happens for other primes. Or
more precisely, is there some natural analog of a Pfister quadric which has the
similar motivic decomposition. Observe that this question naturally arises
in the context of Bloch-Kato conjecture (generalization of Milnor conjecture
to other primes).

The goal of the paper is to show that any generically split projective
homogeneous G-variety X provides such an analog, where G is an anisotropic
simple linear algebraic group of inner type which splits by a field extension of
a prime degree p. Observe that the property of being generically split depends
on Tits indices of the group G (see [Ti66]). We prove (see Theorem 3.9) that
the motive of such variety splits as a direct sum of (twisted) copies of a
certain indecomposable motive RX . The prime p here is a torsion prime of
G. In this way we obtain motivic analogs of a Pfister quadric for p = 3
(E6/P6) and p = 5 (E8/P8).

Our work was mostly motivated by the paper of N. Karpenko [Ka01],
where he provided an elementary construction of the motive RX for a Pfister
quadric X. In fact, Theorem 3.9 can be viewed as a further generalization
of Karpenko’s and Rost’s ideas and is based on Rost Nilpotence Theorem.
The key idea is to reduce the problem of decomposing the motive of X to
the problem of providing a certain family of algebraic cycles on X. The
latter turns out to be a purely combinatorial problem related with properties
of characteristic map studied by Grothendieck, Demazure, Karpenko and
Merkurjev (see [Gr58], [De74], [KM05]).

The paper is organized as follows. In section 2 we provide general argu-
ments concerning lifting of idempotents. In section 3 we study Chow mo-
tives of generically split varieties and prove the main result Theorem 3.9. In
the next section 4 we provide properties of projective homogeneous varieties
which will be extensively used in the applications. In particular, we relate
the question of indecomposability of RX with the question of existence of
zero-cycles of degree one on X. In section 5 we provide applications of The-
orem 3.9 to various examples of projective homogeneous varieties. Namely,
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to Severi-Brauer varieties, Pfister quadrics and their neighbors, maximal or-
thogonal Grassmannians, varieties of types G2, F4 and strongly inner E6. In
section 6 we decompose the motive of a variety of type E8 which splits by an
extension of degree p = 5. In the last section we reduce the computations of
motives of general flag varieties to the examples of sections 5 and 6.

2 Decomposition of the diagonal

Let p be an integer (not necessary a prime) and Z → Z/p be a specialization
map. The goal of the present section can be stated as follows. Given a ring
R satisfying certain conditions, its specialization R̄ modulo p and a family
of pair-wise orthogonal idempotents q′i in R̄ such that

∑

i q
′
i = 1R̄, produce

a family of pair-wise orthogonal idempotents qi in R such that q̄i = q′i and
∑

i qi = 1R.

2.1. Let A∗ be a graded commutative ring which is a free Z-module of rank
N . By An we denote the n-th graded component of A (component of codi-
mension n). Fix a homogeneous Z-basis {ek}k=1...N of A which will be called
standard. Assume there is a linear form deg : A → Z together with a (dual)
homogeneous Z-basis {e∨l }l=1...N of A such that

deg(eke
∨
l ) = δk,l for all k and l.

From now on fix an integer p and denote by Ā the reduction of A modulo p.

2.2 Definition. Given an element ρ ∈ Ār of codimension r a family {αi}i∈I

of homogeneous elements in Ā is called ρ-balanced if it satisfies the following
conditions

(a) the set of indices I is equipped with an involution i 7→ i•, p ·#I = N ;

(b) for all m = 0 . . . 2(p − 1) and i, j ∈ I

deg(ρmαiαj•)

{

∈ (Z/p)×, if m = p − 1 and i = j

= 0, otherwise.

To simplify the notation denote Ci = deg(ρp−1αiαi•) ∈ (Z/p)×.

2.3 Lemma. Let {αi}i∈I be a ρ-balanced family of elements in Ā. The
elements ρmαi, m = 0 . . . p − 1, i ∈ I form a homogeneous basis of Ā over
Z/p called a ρ-basis.
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Proof. By 2.2.(b) the elements ρmαi are linear independent. Indeed, if x =
∑

m,i cm,iρ
mαi then cm,i = 1

Ci
deg(xρp−1−mαi•). Therefore, if x = 0 then

cm,i = 0 for all i ∈ I and m = 0 . . . p − 1. Let M be a quotient module of Ā
by a submodule generated by {ρmαi}. Since p · #I = N , M/dM = 0 for all
prime divisors d of p. Therefore M = 0 and the lemma is proved.

2.4. Let {ēk} be the reduction modulo p of the standard basis {ek}. Consider
a ρ-basis {ρmαi} of Ā. Let {ρmαi}

(n) ⊂ Ān be its component of codimension
n. Let D(n) ∈ (Z/p)× be the determinant of the matrix which expresses
{ρmαi}

(n) in terms of the components of the basis {ēk} of codimension n.

2.5 Definition. We say a ρ-balanced family {αi}i∈I is unimodular in codi-
mension n if D(n) ± 1. We say a ρ-balanced family is unimodular if it is
unimodular in all codimensions n.

2.6 Lemma (Basis Lifting Property). Assume there is a basis {f ′
k} of Ān

such that the transition matrix from {ēk}
(n) to {f ′

k} has determinant ±1.
Then there exists a Z-basis {fk} of An such that f̄k = f ′

k, where k = 1 . . . l.

Proof. Since Z/p is a semi-local ring, the group SLl(Z/p) is generated by ele-
mentary matrices. Hence, the reduction map SLl(Z) → SLl(Z/p) is surjective
and the lemma follows.

2.7 Corollary. Assume we are given an unimodular ρ-balanced family of
elements in Ā. Then the respective ρ-basis of Ā can be lifted to a homogeneous
basis of A.

Proof. Apply the lemma to all graded components of the ρ-basis.

2.8 Remark. Observe that for p = 2, 3, 4, 6 any ρ-balanced family of
elements is unimodular. Therefore any ρ-basis can be lifted to a homogeneous
basis over Z.

2.9. We endow the abelian group A ⊗ A with a (graded) ring structure by
means of the composition product (α⊗β)◦(α′⊗β ′) 7→ deg(αβ ′) ·(α′⊗β) and
denote the resulting ring by R. The identity element of R we call a diagonal
and denote it by ∆R. Recall that an element q ∈ R is called an idempotent if
q◦q = q. We say two idempotents q and q′ are orthogonal if q◦q′ = q′◦q = 0.

2.10. Assume we are given an unimodular ρ-balanced family in Ā. Let {um,i}
be a homogeneous Z-basis of A obtained by lifting the ρ-basis {ūm,i = ρmαi}
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according to Corollary 2.7. Let {u∨
m,i} be the respective dual basis, i.e.,

defined by
deg(um,iu

∨
m′,i′) = δm,m′δi,i′. (1)

By 2.2.(b) we obtain that

ū∨
m,i = 1

Ci
ρp−1−mαi• ∈ Ā. (2)

2.11 Proposition. Homogeneous elements qi =
∑p−1

m=0 um,i⊗u∨
m,i, i ∈ I, are

pair-wise orthogonal idempotents in R such that
∑

i∈I qi = ∆R. Moreover,

q̄i = 1
Ci

(

p−1
∑

m=0

ρm ⊗ ρp−1−m) · (αi ⊗ αi•) (3)

Proof. The fact that they are pair-wise orthogonal idempotents follows from
the definition of the composition product and (1). On the other hand, since
∆R is the identity of R, ∆R =

∑

m,i um,i ⊗ u∨
m,i. Formula (3) then follows

from the definition of um,i and (2).

2.12 Remark. Consider an arbitrary ρ-basis. In each codimension n such
that D(n) 6= ±1 choose an element ρmnαin and replace it by 1

D(n) ρ
mnαin .

So obtained family of elements will form a unimodular homogeneous basis
of Ā. Let {vm,i} and {v∨

m,i} be the respective liftings to A. By definition

v̄mn,in = 1
D(n) ūmn,in and v̄∨

mn,in = D(n)ū∨
mn,in . Observe that by means of this

procedure the idempotents q̄i of (3) will not change.

3 Motives of generically split varieties

In the present section we apply the results of the previous section to Chow
motives of generically split varieties. For the definition and properties of
Chow motives we refer to the papers [Ma68] and [Ka01, sect.2].

3.1. Recall that a category of Chow motives is defined as follows. First, we
define the category of correspondences Corr(F ) over a field F . Its objects are
smooth projective varieties over F . For morphisms, called correspondences,
we set Mor(X, Y ) := CHdimX(X × Y ). For any two correspondences α ∈
CH(X × Y ) and β ∈ CH(Y × Z) we define the composition product β ◦ α ∈
CH(X × Z) as

β ◦ α = pr13∗(pr∗12(α) · pr∗23(β)), (4)
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where prij denotes the projection on the i-th and j-th factors of X × Y ×
Z respectively and prij∗

, pr∗ij denote the induced push-forwards and pull-
backs for Chow groups. Taking the pseudo-abelian completion of Corr(F )
we obtain the category of effective Chow motives Choweff(F ). Its objects are
pairs (X, p), where X is a smooth projective variety and p ∈ Mor(X, X) is
an idempotent, that is, p◦p = p. The morphisms between two objects (X, p)
and (Y, q) are the compositions q ◦ Mor(X, Y ) ◦ p. Denote M(X) = (X, id).
Following this definition the motive of a projective line splits as a direct sum
M(P1) = M(pt) ⊕ L of the motive of a point and some motive L called
Lefschetz motive. Formally inverting L one obtains the category of Chow
motives Chow(F ).

By construction, Chow(F ) is a tensor additive category, where the tensor
product is given by the usual product (X, p)⊗ (Y, q) = (X × Y, p× q). For a
given motive M denote by M(k) its twist, i.e., the tensor product M ⊗L⊗k.
For a cycle α denote by αt the corresponding transposed cycle.

3.2 Definition. Let X be a smooth irreducible projective variety over a field
F . We say L is a splitting field of X if the Chow motive M(XL) of the scalar
extension XL = X ×F L is isomorphic to a direct sum of twisted Lefschetz
motives and the natural map resL/F : M(X) → M(XL) is an isomorphism
after tensoring with Q. We say X is generically split over F if its function
field K = F (X) is a splitting field of X.

3.3 Remark. According to Lemma 4.2 any projective homogeneous G-
variety of a linear algebraic group G of inner type over F which splits over
the generic point of X provides an example of a generically split variety.

Let L be a splitting field of X. In view of the notation of the previous
section set A = CH(XL) and denote by Arat the image of the restriction
map resL/F : CH(X) → CH(XL). An element (cycle) of Arat will be called
rational.

3.4. According to [Ma68] and [KM05, Rem. 5.6] the ring A = CH(XL) is a
free Z-module, there is Künneth formula CH(XL×XL) = A⊗A and Poincare
duality. The latter means that for a given basis {ek} of A there is the dual
basis {e∨l } with respect to the degree map deg : CH(XL) → Z. Observe that
the composition product introduced in 2.9 coincides with the composition of
endomorphisms in End(M(XL)), hence, End(M(XL)) = (A ⊗ A)(dimX).

The following facts will be extensively used in the sequel
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3.5 Lemma. Let L be a splitting field of a variety X of finite degree over F .
Then for any α ∈ A we have [L : F ] · α ∈ Arat.

Proof. Choose an element α in A = CH(XL). Since resL/F ⊗ Q is surjective
there exists an element β ∈ CH(X) and a non-zero integer m such that
resL/F (β) = mα. By projection formula

m · cores(α) = cores(res(β)) = [L : F ] · β.

Applying res to both sides we obtain m(res(cores(α))) = m[L : F ] ·α. There-
fore resL/F (cores(α)) = [L : F ] · α and the lemma is proven.

3.6 Lemma. Let X be a generically split variety and L be a splitting field
of X. Let pr1 : (A⊗A)r → Ar be the projection on the first summand in the
direct sum decomposition (A⊗A)r = (Ar ⊗A0)⊕ . . .⊕ (A0 ⊗Ar). Then for
any ρ ∈ Ar there exists a rational preimage of ρ by means of pr1.

Proof. Lemma follows from the commutative diagram

CHr(X × X)
resL/F

//

p∗1
��

CHr(XL × XL)

��

Künneth
(A ⊗ A)r

pr1

��

CHr(XK)
≃

// CHr(XLK)
≃

// Ar

where K is the quotient field of X, the first vertical arrow p∗1 is taken from
localization sequence for Chow groups and, hence, is surjective and the iso-
morphisms come from the fact that L and K are splitting fields of X.

3.7 Lemma (Rost Nilpotence). (see [VZ06]) Let X be a generically split
variety and E/F be a field extension. Then the kernel of the natural map

End(M(X)) → End(M(XE))

consists of nilpotent elements.

3.8 Corollary. Let X be a generically split variety and E/F be a field ex-
tension. Given a direct summand M of M(X) and a family qi ∈ End(ME)
of rational pair-wise orthogonal idempotents with

∑

i qi = ∆E there exist a
family of pair-wise orthogonal idempotents pi ∈ End(M) such that

∑

i pi = ∆
and resE/F (pi) = qi. Moreover, if M , N are direct summands of M(X) and
ϕ is a rational isomorphism between the NE and M(i)E for some i, then
N ≃ M(i).
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Now we are ready to state and prove the main result of this paper

3.9 Theorem. Let X be a generically split variety. Assume there exists a
splitting field L of X of a prime degree p together with an element ρ ∈ Ār =
CHr(XL)/p for some r such that

(i) for all s < r we have Ās = Ās
rat and Ār = 〈Ār

rat, ρ〉;

(ii) there is a unimodular ρ-balanced family {αi}i∈I in Ārat.

Then the Chow motive of X with integral coefficients can be expressed as the
direct sum

M(X) ≃
⊕

i∈I

R(codim αi),

where the motive R is indecomposable if and only if there are no zero-cycles
of degree one on X.

Proof. By Lemma 3.5 all cycles divisible by p are rational. Hence, to prove
that a certain cycle α is rational in R = A ⊗ A is the same as to prove it in
R̄ = Ā ⊗Z/p Ā.

Consider two cycles ρ ⊗ 1 − ε(1 ⊗ ρ), where ε = ±1. We claim that one
of them is rational (cf. [Ka01, Lemma 5.1]). Indeed, since X is generically
split by Lemma 3.6 there exists a rational preimage of ρ ⊗ 1

ρ ⊗ 1 + δ(1 ⊗ ρ) +
∑

k

µk ⊗ νk + 1 ⊗ γ ∈ pr−1
1 (ρ ⊗ 1),

where δ ∈ Z/p, codimensions of µk and νk are less than r and γ ∈ Ār
rat. By

(i) the cycles µk and νk are rational. Therefore τ := ρ⊗1+δ(1⊗ρ) is rational.
If δ = −1 take ε = 1. Otherwise the cycle τ + τ t = (1 + δ)(ρ ⊗ 1 + 1 ⊗ ρ)
is rational and therefore we can take ε = −1. Hence, we obtain a rational
cycle in R̄r(p−1)

σ = (ρ ⊗ 1 − ε(1 ⊗ ρ))p−1 =

p−1
∑

m=0

εm(ρm ⊗ ρp−1−m). (5)

Applying Proposition 2.11 to the unimodular ρ-balanced family {αi} in
Ārat, we obtain the family of pair-wise orthogonal idempotents qi in R with
q̄i given by formula (3). Note that idempotents qi are rational. Indeed, qi =
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q′i ◦ q′i, where q′i =
∑

m εm(um,i ⊗ u∨
m,i) and the reduction q̄′i = 1

Ci
σ · (αi ⊗αi•)

is rational.
Note that the motives (XL, qi) and (XL, qi′)(codim(αi) − codim(αi′)) are

isomorphic by means of an isomorphism ϕi,i′ given by

ϕi,i′ =
∑

m

εmum,i′ ⊗ u∨
m,i. (6)

Observe that ϕ̄i,i′ = 1
Ci

σ · (αi′ ⊗ αi•) and hence ϕi,i′ is rational.
Applying Corollary 3.8 to the idempotents qi and isomorphisms ϕi,i′ we

obtain the desired decomposition with R = (X, pi0), where i0 is a unique
index such that codim(αi0) = 0.

Finally observe that the ring of endomorphisms End(RL) is additively
generated by um,i0 ⊗ u∨

m,i0
, m = 0 . . . p − 1. Assume there is a rational

idempotent q =
∑

m am(um,i0 ⊗u∨
m,i0

). A straightforward computation shows
that am = 0, 1 for all m. Consider the rational cycle q·qt = (

∑

m am)·(pt⊗pt),
where the class pt = up−1,i0 ∈ CH0(XL) is represented by a zero-cycle of
degree one. The push-forward induced by the first projection sends this
cycle to (

∑

m am) · pt. Denote a =
∑

m am. Note that q is non-trivial if and
only if a 6= 0 mod p. Therefore, the motive R is decomposable if and only
if the cycle a · pt is rational, where a 6= 0 mod p. But the cycle p · pt is
rational by Lemma 3.5 and since a and p are coprime, pt must be rational
as well. Conversely, if pt is rational we can take q = 1⊗ pt ∈ End(RL). The
latter implies that the motive of a point Z is a direct summand in R, i.e., R
is decomposable.

3.10 Remark. The fact that p is a prime integer was used in the proof two
times. First, to prove that the cycle σ from (5) is rational. Indeed, to obtain
the formula (5) we used the congruence

(

p−1
i

)

= (−1)i mod p which holds
only if p is prime. Second, to prove that the cycle pt is rational. In fact, we
proved that the cycle g.c.d.(a, p) · pt is rational. Then using the fact that p
is prime and a < p we concluded that g.c.d.(a, p) = 1.

3.11 Remark. If one drops the assumption of unimodularity for the ρ-
balanced family the proof still works by Remark 2.12, excluding the lifting
of isomorphisms (6). So one produces a motivic decomposition M(X) ≃
⊕i∈IRi, where each Ri has a property that modulo p (but not integrally) it
can be identified with Ri ⊗ Z/p ≃ R0(codim αi) ⊗ Z/p.
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3.12 Proposition. Let X and Y satisfy the hypothesis of Theorem 3.9 with
the same splitting field L of a prime degree p and the same codimension r.
Assume that one of two cycles ρX ⊗ 1 − ε(1 ⊗ ρY ) ∈ CHr(XL × YL), ε = ±1
is rational. Then the motives RX and RY appearing in the decomposition of
M(X) and M(Y ) respectively are isomorphic.

Proof. Let {αi}i∈I and {αj}j∈J denote the respective ρX- and ρY -balanced
families. The explicit isomorphism between RX = (X, pi0) and RY = (Y, pj0)
is given by the cycle

ϕi0,j0 =
∑

m

εmum,i0 ⊗ u∨
m,j0,

where um,i and um,j are liftings of the respective ρX - and ρY -basis. Note that
modulo p it coincides with the rational cycle

ϕ̄i0,j0 = 1
Cj0

(ρX ⊗ 1 − ε(1 ⊗ ρY ))p−1 · (αi0 ⊗ αj0•)

and so is rational. It remains to apply Corollary 3.8 to the isomorphism
ϕi0,j0.

3.13 Lemma. Let X and Y satisfy the hypothesis of Theorem 3.9 with the
same splitting field L of a prime degree p and the same codimension r. If
F (Y ) is a splitting field of X and F (X) is a splitting field of Y then the cycle
ρX ⊗ 1 − ε(1 ⊗ ρY ) is rational for some ε ∈ (Z/p)×. In particular, for p = 2
and 3 one of two cycles ρX ⊗ 1 − ε(1 ⊗ ρY ), ε = ±1 is rational.

Proof. The proof is the same as in the beginning of the proof of Theorem 3.9
using a slightly modified version of Lemma 3.6, where instead of the product
A ⊗ A = CH(XL) ⊗ CH(XL) one considers CH(XL) ⊗ CH(YL).

4 Projective homogeneous varieties

In the present section we list several important properties of projective ho-
mogeneous varieties needed to apply Theorem 3.9. From now on we assume
G is a simple linear algebraic group over a field F .

4.1 Lemma. Let X be a projective homogeneous variety of a group of inner
type over a field F then for any field extension E/F the natural map resE/F :
M(X) → M(XE) induces an isomorphism after tensoring with Q.
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Proof. Consider an isomorphism induced by Chern character CH(X)⊗ Q ≃
K0(X) ⊗ Q. According to the results of paper [Pa94] the map resE/F :
K0(X) ⊗ Q → K0(XE) ⊗ Q is an isomorphism. To finish the proof apply
Manin’s identity principle.

4.2 Lemma. Let X be a projective homogeneous G-variety where G is a
group of inner type over F which splits over the function field of X Then X
is generically split.

Proof. Follows from [CGM05, Corollary 7.6] and Lemma 4.1.

4.3 Lemma. Let G be a group of strongly inner type over F and X be a
projective homogeneous G-variety. Then for any splitting field L of X the
natural map resL/F : Pic(X) → Pic(XL) is an isomorphism.

Proof. Since for any field extension E/L the induced map resE/L is an iso-
morphism we may assume L = Fs is the separable closure of F . Consider an
exact sequence from [MT95]

0 → Pic(X)
resL/F
−−−−→ Pic(XL)Γ α

−→ Br(F ), (7)

where Γ denotes the absolute Galois group. For all groups of strongly inner
type the image of α is trivial by [Ti71] and [MT95, Prop. 2.5]. Since G is of
inner type, Γ acts trivially on Pic(XL) and, hence, Pic(XL) ≃ Pic(XL)Γ and
the lemma is proven.

In the case of projective homogeneous varieties we can say more about
the motive R appearing in Theorem 3.9. Namely,

4.4 Proposition. Let X be a projective homogeneous G-variety such that
over its function field the group G splits. Assume we are under the hypothesis
of Theorem 3.9. If the motive R appearing in 3.9 is decomposable then it
decomposes as the direct sum

R ≃

p−1
⊕

m=0

Z(rm).

Proof. Indeed, if X possess a zero-cycle of degree one, then there exists a field
extension E/F of degree l coprime to p such that XE has a rational point. By
[KR94, Thm. 3.10 and Cor. 3.9] since X is generically split, E is a splitting
field of X and, therefore, the cycles lα are rational for all α ∈ CH(XE) by
Lemma 3.5. Since l and p are coprime, all cycles in CH(XE) are rational.
By Rost Nilpotence R ≃

⊕p−1
m=0 Z(rm).
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4.5 Remark. We refer to [To04, Q. 0.2 and Section 9] for the discussion
about existence of zero cycles of degree one on anisotropic projective homo-
geneous varieties.

5 Applications and Examples

As the first application of Theorem 3.9 we obtain the prime degree case of
the main result of paper [Ka96] concerning motives of Severi-Brauer varieties

5.1 Corollary (Karpenko). Let D be a division algebra of a prime degree
p over a field F and SB(Mn(D)) be the Severi-Brauer variety of a central
simple algebra Mn(D). Then

M(SB(Mn(D))) ≃
n−1
⊕

i=0

M(SB(D))(ip),

where M(SB(D)) is indecomposable.

Proof. The variety X is generically split and there is a splitting field L of X
of degree p. Set A = CH(Pnp−1). Set ρ = h to be the class of a hyperplane
section of Pnp−1, I = {0, 1, . . . , n−1}, i• = n−1− i and αi = hpi. Note that
hp is rational since hp = res(j∗(1)), where j : SB(Mn−1(D)) →֒ SB(Mn(D))
is the closed embedding and j∗ is the induced push-forward.

Hence, {αi}i∈I form a ρ-balanced family in Ā. Note that the respective
ρ-basis coincides with the standard basis of A (which consists of powers of
h) and, hence, is unimodular. Applying Theorem 3.9 to the unimodular
ρ-balanced family {αi} we obtain the decomposition

M(SB(Mn(D))) ≃

n−1
⊕

i=0

R(ip)

for some indecomposable motive R.
To show that the motive R is isomorphic to the motive M(SB(D)) we

apply Proposition 3.12 to X = SB(Mn(D)), Y = SB(D) and the rational
cycle hX ⊗ 1 − 1 ⊗ hY which generates the kernel of the map α of the exact
sequence (7), where X is taken to be the product SB(Mn(D)) × SB(D).
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5.2 Remark. In view of Remark 3.10 to prove an arbitrary degree case it is
enough to show that the cycle σ from (5) is rational. In [Ka00, Claim 7.8] it is
shown that σ lies in the subring generated by rational cycles (hX⊗1−1⊗hY ),
ci(TX)⊗1 and 1⊗ci(TY ), where ci(T ) is the i-th Chern class of the respective
tangent bundle, and, therefore, is rational.

As the next application we obtain one of the results of paper [Ro98] about
motives of Pfister quadrics

5.3 Corollary (Rost). Let X be a n-fold Pfister quadric or its maximal
neighbor. Then

M(X) ≃

dimX−r
⊕

i=0

R(i),

where the motive R is decomposable if and only if X is isotropic, and in this
case R ≃ Z⊕Z(r), where r = 2n−1 −1. The motive R is called Rost motive.

Proof. By [EKM, Cor. 9.10] and Lemma 4.2 the variety X is generically split.
Moreover, it is split by a quadratic field extension L/F , i.e., in this case
p = 2. Let A = CH(XL) and Ā be its specialization modulo 2. Set ρ ∈ Ār

to be the class of a maximal totally isotropic subspace of the respective
quadratic space. Set I = {0, 1, . . . , dim X − r} and the involution i 7→
i• = dim X − r − i. By Lemma 4.3 all powers hi, i = 0 . . .dim X of a
class of a hyperplane section h ∈ Ā1 are rational cycles in Ā. Set αi =
hi for i ∈ I. Knowing the multiplicative structure of Ā (see [Ka01]) one
immediately obtains that {αi}i∈I form a unimodular ρ-balance family of
elements. Applying Theorem 3.9 we finish the proof.

The next example deals with maximal orthogonal Grassmannians

5.4 Corollary. Let (V, q) be a quadratic space corresponding to a maximal
n-fold Pfister neighbor q. Let X be the respective maximal orthogonal Grass-
mannian, i.e., the variety of maximal totally isotropic subspaces in (V, q).
Then

M(X) ≃

r(r−1)
2

⊕

i=0

R(i)⊕ai ,

where the motive R is the Rost motive of the maximal n-fold Pfister neighbor
q. In particular, R is decomposable if and only if q is isotropic, and in this
case R ≃ Z ⊕ Z(r), where r = 2n−1 − 1. The integers ai are the coefficients
at ti in

∏r−1
k=1(1 + tk).
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Proof. According to Tits diagrams X is generically split and, moreover, splits
by a quadratic field extension L which splits q. The Chow ring A of XL has
the following presentation (see [EKM])

A = Z[e1, . . . , er]/〈e
2
i = e2i, 2i ≤ r; e2

i = 0, 2i > r〉,

where codim ei = i. For a subset I = {i1, . . . , ik} ⊂ {1, . . . , r} we denote
eI = ei1 . . . eik . The elements eI form an additive basis of A. Moreover, for

two cycles eI , eJ with codim eI + codim eJ = dim X = r(r+1)
2

we have

eIeJ =

{

pt, J = {1, . . . , r} \ I,

0, otherwise.

According to [EKM, Corollary 66.7] the cycles e1, . . . , er−1 are rational. De-
fine ρ = er. Let I be the set of all subsets of {1, . . . , r − 1} with involution
being set-theoretical complement. Set αI = eI , I ∈ I. Observe that {αI}I∈I

form a ρ-balanced family of elements in Ā. Applying Theorem 3.9 we obtain
the desired motivic decomposition.

To show that R is the Rost motive apply Proposition 3.12 and Lemma 3.13
to the variety X and the Pfister quadric Y .

5.5 Remark. In the case r = 3 the proof goes through for the maximal
orthogonal Grassmannian corresponding to a quadratic form q with trivial
even Clifford algebra C0(q).

Next we provide the proof of the main result of paper [Bo03] concerning
motives of G2-varieties.

5.6 Corollary (Bonnet). Let G be a twisted form of a group of type G2.
Consider a projective homogeneous G-variety X corresponding to a maximal
parabolic subgroup of G (there are two such varieties). Then

M(X) ≃

2
⊕

i=0

R(i),

where R is the Rost motive of the maximal 3-fold Pfister neighbor. In par-
ticular, R is decomposable iff X is isotropic, and in this case R ≃ Z⊕Z(3).
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Proof. Again by Tits diagrams X is generically split and there is a quadratic
field extension L/F which splits X, i.e., p = 2. Using Pieri formula 8.4 it
can be shown that the Chow ring Ā of XL modulo 2 is isomorphic to the
Chow ring of the maximal neighbor of the 3-fold Pfister quadric given by the
norm of the underlying octonion algebra. Moreover, since G is of strongly
inner type over F , by Lemma 4.3 the subgroup of rational cycles of Ā is the
same as for the Pfister neighbor. The proof then follows from the proof of
Corollary 5.3. To show that the corresponding motives R are the same for
both varieties of type G2 use Proposition 3.12 and Lemma 3.13 together with
the fact that G splits over the function fields of both.

Now we give a short proof of the main result of paper [NSZ] about the
motives of F4-varieties.

5.7 Corollary. Let G be a twisted form of a split group of type F4 which
splits by a cubic field extension. Let X be a projective homogeneous G-variety
corresponding to a maximal parabolic subgroup of G given by the first or the
last vertex of the Dynkin diagram. Then

M(X) ≃

7
⊕

i=0

R(i),

where the motive R is the same for both varieties. R is decomposable if and
only if X is isotropic, and in this case R ≃ Z ⊕ Z(4) ⊕ Z(8).

Proof. By Tits diagrams X is generically split. Indeed, if GF (X) is not split,
then GF (X) must have Tits index F21

4,1 with anisotropic kernel Spin(q), where
q is a quadratic form of dimension 7. By the hypothesis Spin(q) must split
by a cubic field extension, contradiction.

Let L be a cubic field extension which splits G (p = 3). Since G is of
strongly inner type over F by Lemma 4.3, the class of a hyperplane section
h generating the Picard group Pic(XL) is rational. Consider the Chow ring
Ā modulo 3. Using Pieri formula 8.4 we show that 〈hi〉 = Āi for i < 4 and

h4 = g
(1)
4 + g

(2)
4 is the sum of standard generators of Ā4. Set ρ = g

(1)
4 . Define

I = {0, . . . , 7} and the involution i• = 7 − i, i ∈ I. Set αi = hi. Direct
computations show that the elements {αi}i∈I form a unimodular ρ-balanced
family. Applying Theorem 3.9 we obtain the desired motivic decomposition.

As in the case of G2 observe that the group G splits over the function
fields of both varieties.
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Following the arguments of F4-case one immediately obtains E6-case,
where E6 is of strongly inner type. Namely,

5.8 Corollary. Let G be a strongly inner form of a split group of type E6

which splits by a cubic field extension. Let X be a projective homogeneous
variety corresponding to a maximal parabolic subgroup of G given by the first
or the last vertex of the Dynkin diagram. Then

M(X) ≃
8

⊕

i=0

R(i),

where the motive R is the same as in F4-case. In particular, R is decompos-
able if and only if X is isotropic, and in this case R ≃ Z ⊕ Z(4) ⊕ Z(8).

Proof. By Tits diagrams X is generically split. Indeed, if GF (X) is not split,
then GF (X) must have Tits index 1E28

6,2 with anisotropic kernel Spin(q), where
q is a quadratic form of dimension 8. By the hypothesis Spin(q) must split
by a cubic field extension, contradiction.

Let L be a cubic field extension which splits G (p = 3). Since G is of
strongly inner type over F by Lemma 4.3, the class of a hyperplane section
h generating the Picard group Pic(XL) is rational. Consider the Chow ring
Ā modulo 3. Using Pieri formula 8.4 we show that 〈hi〉 = Āi for i < 4 and

h4 = g
(1)
4 + g

(2)
4 is the sum of standard generators of Ā4. Set ρ = g

(1)
4 . Define

I = {0, . . . , 8} and the involution i• = 8 − i, i ∈ I. Set αi = hi. Direct
computations show that the elements {αi}i∈I form a unimodular ρ-balanced
family. It remains to apply Theorem 3.9.

The motive R is the same as in the F4-case, since X splits over the
function field of the F4-variety Y and vice versa. Indeed, the underlying
Jordan algebra splits over the function fields of X and Y .

6 The case of E8

Let G be a group of type E8, which splits by a field extension of degree 5.
Such a group exists according to [Ga06, A.6.]. Let X be a projective G-
homogeneous variety of parabolic subgroups of type P8. The variety X has
dimension 57 and is the minimal possible E8-variety in the sense of dimension.
In the present section we prove
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6.1 Theorem. The Chow motive of X is isomorphic to

M(X) ≃
⊕

i=0...1,j=0...23

Ri,j,

where the motive Ri,j is decomposable if and only if X has a zero-cycle of
degree one, and in this case Ri,j is isomorphic to the direct sum

Ri,j ≃ (Z ⊕ Z(6) ⊕ Z(12) ⊕ Z(18) ⊕ Z(24))(10i + j).

Moreover, considered with Z/5-coefficients it is isomorphic to

Ri,j ⊗ Z/5 ≃ R0,0(10i + j) ⊗ Z/5.

Proof. Let L be a splitting field of X of degree 5, i.e., p = 5. Since G
is of strongly inner type over F , by Lemma 4.3 the Picard group of XL is
generated by a rational cycle h. Consider the Chow group Ā = CH(XL)/5.
Pieri formula 8.4 shows that Āi = 〈hi〉 for i ≤ 5 and in codimension 6 it
is generated by two elements. One of them is h6 and, hence, is rational.
According to 3.9.(i) we can take any other generator as a cycle ρ. In terms

of the standard basis of Ā6 (see Appendix), h6 = g
(1)
6 + g

(2)
6 and we choose

ρ = g
(1)
6 .

We set I = {0, 1}×{0, . . . , 23} and the involution (i, j)• = (1− i, 23− j).
Define a ρ-balanced family {αi,j}(i,j)∈I as αi,j = ci

10h
j , where c10 is the 10-

th Chern class of the tangent bundle over XL. The choice of the 10-th
Chern class is not accidental. Indeed, this is the next codimension (after 6)
where the number of generators jumps by one. Direct computations (using
formulae from Appendix) show that {α(i,j)}(i,j)∈I is a ρ-balanced family. The
respective ρ-basis is non-unimodular, since there are determinants which are
equal to ±2 mod 5. Applying Theorem 3.9 and Remark 3.11 we finish the
proof of the Theorem.

7 Chow motives of fibered spaces

The main result of paper [CPSZ] says that under certain restrictions the
Chow motive of a twisted flag variety X can be expressed in terms of the
motive of a ’minimal’ flag, i.e., the one which corresponds to a maximal
parabolic subgroup. These restrictions cover almost all twisted flag varieties
corresponding to groups of types An and Bn together with some examples
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of types Cn, G2 and F4. In the present section using the result of Edidin
and Graham [EG97] about cellular fibrations we extend this set of examples
for groups of inner types Cn, Dn and exceptional groups. We also provide
a shortened and uniform proof of the results obtained in [CPSZ]. More
precisely, we prove the following

7.1 Theorem. Let G0 be a split simple linear algebraic group over a field
F and P ⊂ P ′ parabolic subgroups of G0. For a cocycle ξ ∈ Z1(F, G0) let
G = ξG0 denote the twisted form of G0 and X = ξ(G0/P ) and X ′ = ξ(G0/P

′)
the respective twisted flag varieties. If G splits over the generic point of X ′,
then the Chow motive M(X) of X is isomorphic (non-standardly) to a direct
sum of twisted copies of the motive M(X ′), i.e.,

M(X) ≃
⊕

i∈I

M(X ′)(ai).

Proof. Consider the standard map π : X → X ′. Since G splits over F (X ′),
the fiber of π over F (X ′) splits, i.e., is isomorphic to P ′/P . Moreover, there is
an open subset of X ′ over which G splits. Since G acts transitively on X ′, the
map π is a locally trivial fibration whose fiber is isomorphic to P ′/P , i.e., has
a decomposition into affine cells. To finish the proof apply the proposition
below.

7.2 Proposition. Let f : Y → X be a smooth projective locally trivial
fibration with X smooth and projective whose fiber F has a decomposition into
affine cells. Then M(Y ) is (non-standardly) isomorphic to M(X)⊗M(F).

Proof. We follow the proof of [EG97, Prop. 1]. Define the morphism

ϕ :
⊕

i∈I

M(X)(ai) → M(Y )

to be the direct sum ϕ =
⊕

i∈I ϕi, where each ϕi is given by the cycle
[pr∗Y (Bi) ·Γf ] ∈ CH(X×Y ) produced from the graph cycle Γf and the chosen
(non-standard) basis {Bi}i∈I of CH(Y ) over CH(X). The realization of ϕ
coincides exactly with an isomorphism of abelian groups CH(X)⊗CH(F) →
CH(Y ) constructed in [EG97, Prop. 1]. By Manin’s identity principle [Ma68]
ϕ is an isomorphism and we are done.

Let P = PΘ be a standard parabolic subgroup corresponding to a subset
Θ of the Dynkin diagram D and Pk, k ∈ D, stands for the maximal parabolic
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subgroup PD\{k}. Enumeration of roots follows Bourbaki. To simplify the
notation we will write XΘ for the form of G0/PΘ twisted by ξ ∈ Z1(F, G0)
and Xk for the form of G0/Pk respectively. By definition all forms G = ξG0 of
G0 are of inner type over F . Since we are interested in twisted flag varieties
we may assume G0 is adjoint. As an immediate consequence of the theorem
we obtain that

7.3 Corollary. For a group G of inner type D over F and twisted flag
varieties XΘ and Xk there is an isomorphism of Chow motives

M(XΘ) ≃
⊕

i∈I

M(Xk)(ai),

where the number k ∈ D corresponds to a parabolic subgroup Pk containing
PΘ (i.e., k ∈ D \ Θ) and satisfies the following conditions depending on D

An: k is prime to the degree of a splitting field of G (cf. [CPSZ, Thm. 2.1]);

Bn: k = n (cf. [CPSZ, Thm. 2.9]); if G = PGO+(q), where q is a maximal
Pfister neighbor, k is arbitrary;

Cn: k is odd (cf. [CPSZ, Thm. 2.11]);

D2m+1: k = 2m, 2m + 1;

D2m: k = 2m − 1, 2m in the case G = PGO+(q), where q is a non-singular
quadratic form over F ; moreover, if q is a Pfister form, then k is
arbitrary;

G2: k is arbitrary (cf. [CPSZ, Thm. 2.13]);

F4: k 6= 4 or G splits by a cubic field extension (cf. [CPSZ, Thm 2.14]);

E6: k =











3, 5

2, 4 if G is of strongly inner type

1, 6 if G is of strongly inner type and splits by a cubic field extension.

E8: k is arbitrary in the case G splits by a field extension of degree 5.
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Proof. In order to apply the theorem to the fibration XΘ → Xk we need
to assume that the group G splits over the generic point of Xk. The latter
condition can be extracted from the Tits diagrams of G (see [Ti66]). Namely,
it holds if the only Tits diagram of G containing a circled vertex numbered
by k is the split one, i.e., having all vertices circled.

We provide the proof for the most complicated cases G0 = E6 and E8

only. All the other cases can be treated similarly and are left to the reader.
Analyzing Tits diagrams for a general E6 we obtain immediately the cases

k = 3, 5. For strongly inner forms of E6 using the diagrams provided in [Ti90,
5.2] we obtain the cases k = 2, 4. In the cases k = 1, 6 the only possible
non-split diagram is 1E28

6,2 whose anisotropic kernel is Spin(q), where q is a
3-fold Pfister form. But according to Springer’s Theorem q can not split by
a cubic field extension.

In the case of E8 the anisotropic kernel of GF (Xk) is trivial since it can’t
split by a field extension of degree 5 by [To04, Thm. 5.1].

Let S be a coefficient ring such that Krull-Schmidt theorem holds in
the category of Chow motives of projective homogeneous G-varieties. For
instance, S is a field or a discrete valuation ring (see [CM04, Cor. 9.7]). By
M ⊗ S we denote a motive M considered with S-coefficients.

7.4 Corollary. For a group G of inner type D over F there is an isomor-
phism of Chow motives with S-coefficients

M(XΘ) ⊗ S ≃
⊕

i∈I

(R⊗ S)(ai),

where an indecomposable motive R (depending only on G) and the subsets Θ
are taken from the following list

An: For G = PGLn/d(D), where D is a division algebra of index d, take R =
M(SB(D)) and Θ such that gcd(Θ∪{d}) = 1 (cf. [CPSZ, Prop. 2.4]).

Cn: For G = PGU2n/d(D, h), where D is a division algebra of index d = 2r,
with an anti-hermitian form h, take R = M(SB(D)) and Θ such that
D \ Θ contains an odd number.

Bn and Dn: Assume G = PGO+(q), where q is a Pfister form or its max-
imal neighbor. Take R to be the Rost motive corresponding to q and
arbitrary Θ.
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G2: For G = Aut(O), where O is an octonion algebra take R to be the Rost
motive of a maximal Pfister neighbor of NO and arbitrary Θ.

F4: Assume G = Aut(J), where a Jordan algebra J splits by a cubic field
extension. Take R to be the integral motive appearing in the decompo-
sition of Cor. 5.7 and arbitrary Θ.

E6: Assume G = Aut(NJ)ad and J splits by a cubic field extension. Take
the same R as in the F4-case and arbitrary Θ.

E8: Assume G splits by a field extension of degree 5. Take R to be an
integral motive appearing in the decomposition of Theorem 6.1 and ar-
bitrary Θ.

Proof. Consider the variety Xk, where k = 8 if G has a type E8 and k = 1
otherwise. The motive M(Xk) with S-coefficients splits as a direct sum of
copies of R⊗ S by the results of the previous section. Our conditions on G
and Θ imply that G splits over F (XΘ) and over F (Xk). If k ∈ D \ Θ we
apply the previous corollary. Otherwise consider the flag XΘ\{k}. According
to the theorem the motive M(XΘ\{k}) ⊗ S has two different decompositions

⊕

i∈I

M(XΘ)(bi)⊗S ≃ M(XΘ\{k})⊗S ≃
⊕

j∈J

M(Xk)(b
′
j)⊗S ≃

⊕

l∈L

R(b′′l )⊗S.

By Krull-Schmidt Theorem for motives with S-coefficients [CM04, Cor. 9.7]
the motive M(XΘ) ⊗ S has the desired decomposition.

8 Appendix

8.1. Let G0 be a split simple algebraic group of rank n defined over a field
F . We fix a maximal split torus T in G0 and a Borel subgroup B of G0

containing T and defined over F . We denote by Φ the root system of G0, by
Π = {α1, . . . , αn} the set of simple roots of Φ corresponding to B, by W the
Weyl group, and by S = {s1, . . . , sn} the corresponding set of fundamental
reflections. Enumeration of roots follows Bourbaki.

Let P = PΘ be a (standard) parabolic subgroup corresponding to a subset
Θ ⊂ Π, i.e., P = BWΘB, where WΘ = 〈sθ, θ ∈ Θ〉. As Pi we denote the
maximal parabolic subgroup PΠ\{αi}.
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Denote WΘ = {w ∈ W | ∀ s ∈ Θ l(ws) = l(w)+1}, where l is the length
function. The pairing WΘ × WΘ → W with (w, v) 7→ wv is a bijection and
l(wv) = l(w) + l(v). It is easy to see that WΘ consists of all representatives
in the left cosets W/WΘ which have minimal length.

8.2 (Standard basis). Now consider the Chow ring of a projective homo-
geneous variety G0/PΘ. It is well known that CH(G0/PΘ) is a free abelian
group with a basis given by classes of varieties Xw = PwP/P that correspond
to the elements w ∈ WΘ. We call such a basis standard. The codimension of
the basis element [Xw] equals l(wθ) − l(w), where wθ is the longest element

of WΘ. Standard generators of codimension n will be denoted by g
(i)
n .

There exists a natural injective pull-back homomorphism

CH(G0/P ) → CH(G0/B)

[Xw] 7→ [Xwwθ
]

The following results provide tools to perform computations in the Chow
ring CH(G0/PΘ).

8.3 (Poincaré duality). In order to multiply two basis elements h and g of
CH(G0/PΘ) such that codim h + codim g = dim G0/PΘ we use the following
formula (see [Ko91, 1.4]):

[Xw] · [Xw′] = δw,w0w′wθ
· [X1].

8.4 (Pieri formula). In order to multiply two basis elements of CH(G0/B)
one of which is of codimension 1 we use the following formula (see [De74,
Cor. 2 of 4.4]):

[Xw0sα][Xw] =
∑

β∈Φ+, l(wsβ)=l(w)−1

〈β∨, ωα〉[Xwsβ
],

where α is a simple root and the sum runs through the set of positive roots
β ∈ Φ+, sα denotes the simple reflection corresponding to α and ω̄α is the
fundamental weight corresponding to α. Here [Xw0sα] is the element of codi-
mension 1.

8.5 (Characteristic map). Let P = P(Φ) be the weight space. We denote as
ω̄1, . . . ω̄l the basis of P consisting of fundamental weights. The symmetric
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algebra S∗(P) is isomorphic to Z[ω̄1, . . . ω̄l]. The Weyl group W acts on P,
hence, on S∗(P). Namely, for a simple root αi,

wαi
(ω̄j) =

{

ω̄i − αi, i = j,

ω̄j, otherwise.

We define a linear map c : S∗(P)WPΘ → CH∗(G0/PΘ) as follows. For a ho-
mogeneous WPΘ

-invariant u ∈ Z[ω̄1, . . . , ω̄l]

c(u) =
∑

w∈WΘ, l(w)=deg(u)

∆w(u)[Xw0wwθ
],

where for w = si1 . . . sik we denote by ∆w the composition of derivations
∆si1

◦ . . . ◦ ∆sik
and the derivation ∆si

: S∗(P) → S∗−1(P) is defined by

∆si
(u) = u−si(u)

αi
.

8.6 (Tangent bundle). Consider the tangent vector bundle T over G0/PΘ

and observe that
c(T ) = c(

∏

γ∈Σu(PΘ)

(1 + tγ)),

where Σu(PΘ) is the set of (positive) roots lying in the unipotent radical of
the parabolic subgroup PΘ and c(T ) denotes the total Chern class. Since
the tangent vector bundle is rational, the cycles ci(T ) ∈ CHi(G0/PΘ) are
rational.

The formulae above were implemented in Maple package [NS]. Most of the
computations in the paper were performed and checked using this package.
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