
RATIONAL SURFACES AND CANONICAL DIMENSION OF

PGL6
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Summary : The “canonical dimension” of an algebraic group over a field by
definition is the maximum of the canonical dimensions of principal homogenous
spaces under that group. Over a field of characteristic zero, we prove that the
canonical dimension of the projective linear group PGL6 is 3. We give two
distinct proofs, both of which rely on the birational classification of rational
surfaces over a nonclosed field. One of the proofs involves taking a novel look
at del Pezzo surfaces of degree 6.

1. Introduction

Let F be a field and let C be a class of field extensions of F . A field E ∈ C
is called generic if for any L ∈ C there is an F -place of E with values in L.

Example 1.1. Let X be a variety over F and let CX be the class of field
extensions L of F such that X(L) 6= ∅. If X is a smooth irreducible variety,
the field F (X) is generic in C by [7, Lemma 4.1].

The canonical dimension cdim(C) of the class C is the minimum of tr. degF E
over all generic fields E ∈ C. If X is a variety over F , we write cdim(X) for
cdim(CX) and call it the canonical dimension of X. If X is smooth irreducible
then by Example 1.1,

(1) cdim(X) ≤ dimX.

If X is smooth, proper and irreducible, the canonical dimension of X is the
least dimension of a closed irreducible subvariety Y ⊂ X such that there exists
a rational dominant map X 99K Y [7, Cor .4.6].

Example 1.2. Let A be a central simple F -algebra of degree n. Consider the
class CA of all splitting fields of A. Let X be the Severi-Brauer variety SB(A)
of right ideals in A of dimension n. We have dimX = n− 1. Since A is split
over a field extension E/F if and only if X(E) 6= ∅, we have CA = CX and
therefore cdim(CA) = cdim(X).

Let A be a central simple F -algebra of degree n = q1q2 . . . qr where the qi
are powers of distinct primes. Write A as a tensor product A1 ⊗A2 ⊗ . . .⊗Ar,
where Ai is a central simple F -algebra of degree qi. A field extension E/F
splits A if and only if E splits Ai for all i. By Example 1.2, the varieties
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SB(A) and Y := SB(A1) × SB(A2) × · · · × SB(Ar) have the same classes of
splitting fields and hence

(2) cdim SB(A) = cdim(Y ) ≤ dim(Y ) =

r∑

i=1

(qi − 1)

by inequality (1).
It looks plausible that the inequality in (2) is actually an equality. This is

proven in [2, Th. 11.4] in the case when r = 1, i.e., when deg(A) is power of a
prime.

In the present paper we prove the equality in the case n = 6.

Theorem 1.3. Let A be a division central algebra of degree 6 over a field of
characteristic zero. Then cdim SB(A) = 3.

The proof builds upon the classification of geometrically rational surfaces.
Starting from this classification, we give two independent proofs of the the-
orem, each of which seems to have its own interest. The first proof uses a
novel approach to del Pezzo surfaces of degree 6 (Section 4). The second proof
involves a systematic study of the kernel of the map from the Brauer group of
a field F to the Brauer group of the function field of a geometrically rational
surface over F (Section 5).

Let G be an algebraic group over F . The canonical dimension of G is the
maximum of cdim(X) over all G-torsors X over all field extensions of F .

Corollary 1.4. The canonical dimension of PGL6 over a field of character-
istic zero is equal to 3.

Proof. Isomorphism classes of PGL6-torsors over a field extension E/F are in
1-1 correspondence with isomorphism classes of central simple E-algebras of
degree 6. Moreover, if a torsor X corresponds to an algebra A then the classes
of splitting fields of X and A coincide. Therefore cdim(X) = cdim SB(A) ≤ 3.
There is a field extension E/F possessing a division E-algebra A of degree 6.
By Theorem 1.3, cdim SB(A) = 3 and therefore, cdim(PGL6) = 3. �

Remark 1.5. In view of results of Berhuy and Reichstein [2, Rem. 13.2]
and Zainoulline [18], Corollary 1.4 completes classification of simple groups
of canonical dimension 2 in characteristic zero. Those are SL3m /µ3 with m
prime to 3.

Let F be a field, F an algebraic closure of F . An F -variety, or a variety
over F , is a separated F -scheme of finite type. Let X be an F -variety. We let
X = X ×F F .

We shall use the following notation. For a variety X over a field F we write
nX for the index of X defined as the greatest common divisor of the degrees
[F (x) : F ] over all closed points x ∈ X. If there exists an F -morphism X → Y
of F -varieties then nY divides nX . If X is a nonempty open set of a smooth
integral quasi-projective F -variety Y then nX = nY (this may be proved by
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reduction to the case of a curve). Thus if X and Y are two smooth, projective,
integral F -varieties which are F -birational, then nX = nY (see also [13, Rem.
6.6]).

2. Rational curves and surfaces

We shall need the following

Theorem 2.1. Let X be an integral projective variety of dimension at most
2 over a perfect field F . Then there is a smooth integral projective variety X ′

over F together with a birational morphism X ′ → X.

This special case of Hironaka’s theorem has been known for a long time. In
dimension 1, it is enough to normalize. Modern proofs in the two-dimensional
case ([10] [11] [1]) handle arbitrary excellent, noetherian two-dimensional in-
tegral schemes: given such a scheme X they produce a birational morphism
X ′ → X with X ′ regular. A regular scheme of finite type over a perfect field
F is smooth over F .

In this paper an integral variety X over F is called rational, resp. unirational
if there exists a birational, resp. dominant F -rational map from projective
space PnF to X, for some integer n. A geometrically integral F -variety X is
called geometrically rational, resp. geometrically unirational, if there exists a
birational, resp. dominant F -rational map from projective space Pn

F
to X, for

some integer n. Rational integral varieties are unirational. For varieties of
small dimension the converse holds under mild assumptions as the following
two well known statements show.

Theorem 2.2 (Lüroth). A unirational integral curve X over F is rational,
i.e., X is birationally isomorphic to P

1
F .

Theorem 2.3 (Castelnuovo). A unirational integral surface X over an alge-
braically closed field field F of characteristic zero is rational, i.e., X is bira-
tionally isomorphic to P2

F .

Proof. See [9, III.2, Theorem 2.4 p. 170] , or [3]. The assumption on charF
is necessary (cf. [9, p. 171] ). Surfaces given by an equation zp = f(x, y) in
characteristic p are unirational but in general not rational. �

The following theorem has its origin in a paper of F. Enriques ([5], 1897).
The theorem as it stands was proved by V. A. Iskovskikh (1980) after work by
Yu. I. Manin (1966, 1967). A proof of the theorem along the lines of modern
classification theory (the cone theorem) was given by S. Mori (1982).

For a smooth F -variety X one lets K = KX ∈ PicX denote the class of the
canonical bundle.

A smooth proper F -variety X if called F -minimal if any birational F -
morphism from X to a smooth proper F -variety is an isomorphism. By Castel-
nuovo’s criterion, a smooth projective surface over a perfect field F is not
F -minimal if and only if X contains an exceptional curve of the first kind.
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Theorem 2.4 (Iskovskikh, Mori). Let X be a smooth, projective, geometrically
integral surface over a field F . Assume that X is geometrically rational. The
group PicX is free of finite type. Let ρ denote its rank. One of the following
statements holds:

(i) The surface X is not F -minimal.
(ii) We have ρ = 2 and X is a conic bundle over a smooth conic.
(iii) We have ρ = 1 and the anticanonical bundle −KX is ample.

Proof. See [6], [15, Thm. 2.7] and [9, Chapter III, Section 2]. See also the
notes [3] (where characteristic zero is assumed). �

Smooth projective surfaces whose anticanonical bundle is ample are known
as del Pezzo surfaces. They automatically are geometrically rational. Let X/F
be a del Pezzo surface and d = deg(K2

X). In particular, nX divides d. We have
1 ≤ d ≤ 9. For all this, see [12], [9, Chap III.3], [3].

Over a separably closed field F , a del Pezzo surface is either isomorphic to
P1 ×F P1 or it is obtained from P2 by blowing up a finite set of points (at most
8, in general position). The Picard group of P2 is Zh, where h is the class of a
line, and K = −3h. The Picard group of P

1 ×F P
1 is Ze1 ⊕ Ze2, where e1 and

e2 are the classes of the two rulings, and K = −2e1−2e2. Given the behaviour
of the canonical class under blow-up [12, Chap. III, Prop. 20.10] we therefore
have:

Lemma 2.5. Let X/F be a del Pezzo surface over a separably closed field F .
Then one of the following mutually exclusive possibilities holds:

(i) X is isomorphic to P2.
(ii) X is isomorphic to P1 ×F P1.
(iii) The canonical class KX is not a proper mutliple of another element in

PicX.

3. Reduction to a problem on rational surfaces

Lemma 3.1. Let W be a regular, proper, geometrically unirational variety over
a field F of characteristic 0. Assume that the canonical dimension cdim(W ) =
d ≤ 2. Then there exists a geometrically rational closed F -subvariety X ⊂ W
of dimension d and a dominant rational map W 99K X.

Proof. By a property of canonical dimension recalled at the very beginning of
this paper, there exist a closed irreducible F -subvariety X ⊂ W of dimension
d and a dominant rational map W 99K X. By assumption W and therefore X
are geometrically unirational. By Theorems 2.2 and 2.3, X is a geometrically
rational variety. �

Proposition 3.2. Let A be a division central algebra of degree 6 over a field
F of characteristic zero. Write A = C ⊗ D, where C and D are central
simple F -algebras of degree 2 and 3 respectively. Consider the Severi-Brauer
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varieties Y = SB(C) and Z = SB(D) of dimension 1 and 2 respectively. As-
sume cdim(SB(A)) ≤ 2. Then there exists a geometrically irreducible smooth
projective F -surface X such that

(i) X is F -minimal.
(ii) nX is divisible by 6.
(iii) X has a point over F (Y ×F Z).
(iv) Y ×F Z has a point over F (X).

Proof. Since cdim(Y ×F Z) = cdim(SB(A)) ≤ 2, then by Lemma 3.1, there
exist a geometrically rational closed F -subvariety X1 ⊂ Y ×Z of dimension at
most 2 and a dominant rational map Y ×F Z 99K X1. By Theorem 2.1, there is
a birational F -morphism X2 → X1 with X2 smooth and projective. Note that
since A is a division algebra, we have nY×Z = 6. Since we have F -morphisms
X2 → X1 → Y ×F Z, the numbers nX1

and nX2
are divisible by 6. There is a

dominant rational map Y ×F Z 99K X2.
Suppose that dimX2 = 1, i.e., X2 is a geometrically rational curve. Then

X2 is a conic curve (twisted form of the projective line) and nX2
divides 2, a

contradiction. It follows that X2 is a surface. Let X2 → X be a birational
F -morphism with X an F -minimal smooth projective surface. Since both X2

and X are smooth projective we have nX = nX2
. �

4. Del Pezzo surfaces of degree 6

In this Section, F is an arbitrary field.
Let us first recall a few facts about del Pezzo surfaces of degree 6. We refer

to [12] for background and proofs.
Let us first assume that F is algebraically closed. A del Pezzo surface of

degree 6 is the blow-up of P2 in 3 points not on a line. Because PGL3 acts
transitively on the set of 3 noncolinear points in P2, all del Pezzo surfaces of
degree 6 are isomorphic. A concrete model is provided by the surface S in
P2 ×F P2 with bihomogeneous coordinates [x0 : x1 : x2; y0 : y1 : y2] defined
by the system of bihomogeneous equations x0y0 = x1y1 = x2y2. Projection of
S onto either P

2 identifies S with the blow-up of P
2 in the 3 points [1 : 0 :

0], [0 : 1 : 0] and [0 : 0 : 1]. There are 6 “lines” (exceptional curves of the first
kind) on S, the inverse images E1, E2, E3 of the 3 points on the first P2 and the
inverse images F1, F2, F3 of the 3 points on the second P2. The configuration
of these lines is that of a (regular) hexagon : two curves Ei do not meet, two
curves Fi do not meet, and (Ei.Fj) = 1 if i 6= j, while (Ei.Fi) = 0.

The torus T = (Gm)3/Gm over F where Gm is diagonally embedded in
(Gm)3 acts on P2 ×F P2 in the following manner: (t0, t1, t2) sends [x0 : x1 :
x2; y0 : y1 : y2] to [t0x0 : t1x1 : t2x2; t

−1
0 y0 : t−1

1 y1 : t−1
2 y2]. This action induces

an action on S ⊂ P2 × P2. The torus T sends each line into itself. The action
of T on the complement U of the 6 lines in S is faithful and transitive. If
one identifies U with T by the choice of a rational point in U , the variety S
with its open set U = T has the structure of a toric variety. The symmetric
group S2 = Z/2 acts on S ⊂ P

2 ×F P
2 by permuting the factors. This globally
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preserves the lines, the generator of S2 induces on the hexagon of lines the
permutation of each Ei with each Fi, i.e. opposite sides of the hexagon are
exchanged. The group S3 acts on S ⊂ P2 ×F P2 by simultaneous permutation
on each factor. This globally preserves the lines. The actions of S2 and S3

commute. The induced action of the group H := S2 × S3 on the hexagon of
lines realizes the automorphism group of the hexagon.

Let the group H act on T = (Gm)3/Gm in such a way that the generator
of S2 sends t ∈ T to t−1 and S3 acts by permutation of the factors. Let T ′

be the semidirect product of T and H with respect to this action. The above
construction yields an isomorphism from T ′ to the algebraic group Aut(S) of
automorphisms of the surface S. Indeed any σ in Aut(S) may be multiplied
by an element of H so that the action on the hexagon becomes trivial. By
general properties of blow-ups, this implies that any of the projections S → P

2

factorizes through the contraction S → P2, i.e. comes from an automorphism
of P2 which respects each of the points [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1]. Any
such automorphism is given by an element of T .

Let now F be an arbitrary field and S a del Pezzo surface of degree 6 over
F . Over a separable closure F of F the del Pezzo surface S = S ×F F is
split, i.e. isomorphic to the model given above by [4]. Since the 6 lines are
globally stable under the action of the Galois group, there exists a Zariski
open set U ⊂ X whose complement over F consists of the 6 lines. The Galois
action on the 6 lines induces an automorphism of the hexagon of lines, hence
a homomorphism Gal(F/F ) → H = S2 × S3. There is thus an associated
étale quadratic extension K/F and an étale cubic extension L/F . Let T be
the connected component of identity in the F -group Aut(S). Then T is an
algebraic torus and U is a principal homogeneous space under T as they are
so over F . The group of connected components of Aut(S) is a twisted form of
S2×S3 : it is the F -group of automorphisms of the finite F -scheme associated
to the configuration of the 6 lines on F . The F -torus T will be identified below
(Remark 4.4).

Let K be an étale quadratic F -algebra and B an Azumaya K-algebra of
rank 9 over K with unitary involution τ trivial on F [8, §2.B]. Thus B is a
central simple K-algebra of dimension 9 if K is a field, or B is isomorphic to
the product A×Aop, where A is a central simple F -algebra of dimension 9 and
Aop is the opposite algebra if K ≃ F × F .

We consider the F -subspace of τ -symmetric elements

Sym(B, τ) = {b ∈ B such that τ(b) = b}

of dimension 9.

Lemma 4.1. For a right ideal I ⊂ B of rank 3 over K, the F -subspace(
I · τI

)
∩ Sym(B, τ) of Sym(B, τ) is 1-dimensional. The correspondence I 7→(

I · τI
)
∩ Sym(B, τ) gives rise to a closed embedding of varieties

sB,τ : RK/F SB(B) → P
(
Sym(B, τ)

)
.
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Proof. It is sufficient to prove the lemma in the split case, i.e., when

B = End(V ) × End(V ∗),

where V is a 3-dimensional vector space over F , and τ is the exchange involu-
tion τ(f, g∗) = (g, f ∗) for all f, g ∈ End(V ) (cf. [8, Prop. 2.14]). We identify
Sym(B, τ) with End(V ) via the embedding f 7→ (f, f ∗) into B.

A right ideal I of B of rank 3 over K = F × F is of the form

I = Hom(V, U) × Hom(V ∗,W ∗),

where U and W are a subspace and a factor space of V of dimension 1 respec-
tively. We have

τI = Hom(W,V ) × Hom(U∗, V ∗),

and

I · τI = Hom(W,U) × Hom(U∗,W ∗).

The F -space (
I · τI

)
∩ Sym(B, τ) = Hom(W,U)

therefore is 1-dimensional. Under the identification ofRK/F SB(B) with P(V )×
P(V ∗), the morphism sB,τ takes a pair of lines (U,W ∗) to Hom(W,U) = U ⊗
W ∗, i.e., it coincides with the Segre closed embedding

P(V ) × P(V ∗) → P(V ⊗ V ∗) = P(End(V )). �

Let Trd : B → K be the reduced trace linear form. For any x, y ∈ Sym(B, τ)
we have

τ Trd(xy) = Trd(τ(xy)) = Trd(τ(y)τ(x)) = Trd(yx) = Trd(xy),

hence Trd(xy) ∈ F . We therefore have an F -bilinear form b(x, y) = Trd(xy)
on Sym(B, τ). The form b is non-degenerate as it is so over F .

Let L be a cubic étale F -subalgebra of B that is contained in Sym(B, τ).
Write L⊥ for the orthogonal complement of L in Sym(B, τ) with respect to
the form b. As L is étale, we have L ∩ L⊥ = 0. Consider the 7-dimensional
F -subspace F ⊕ L⊥ of Sym(B, τ) and set

S(B, τ, L) = s−1

B,τ (P(F ⊕ L⊥)).

Thus S(B, τ, L) is a closed subvariety of RK/F SB(B) (cf. [16]).
An isomorphism between two triples (B, τ, L) and (B′, τ ′, L′) is an F -algebra

isomorphism f : B
∼
→ B′ such that f ◦ τ = τ ′ ◦ f and f(L) = L′. The auto-

morphism group of (B, τ, L) is a subgroup of the algebraic group Aut(B, τ).
The construction of the scheme S(B, τ, L) being natural, an automorphism

of a triple (B, τ, L) induces an automorphism of S(B, τ, L), i.e., we have an
algebraic group homomorphism

(3) µ : Aut(B, τ, L) → Aut
(
S(B, τ, L)

)
.



8 J-L. COLLIOT-THÉLÈNE, N. KARPENKO, AND A. MERKURJEV

Theorem 4.2. Let F be an arbitrary field. Let B be a rank 9 Azumaya algebra
with unitary involution τ over a quadratic étale algebra K over F and a cubic
étale F -subalgebra L of B contained in Sym(B, τ).

(i) The variety S(B, τ, L) is a del Pezzo surface of degree 6.
(ii) Any del Pezzo surface of degree 6 over F is isomorphic to S(B, τ, L) for

some B, τ and L.
(iii) Two surfaces S(B, τ, L) and S(B′, τ ′, L′) are isomorphic if and only if

the triples (B, τ, L) and (B′, τ ′, L′) are isomorphic.
(iv) The homomorphism µ is an isomorphism.
(v) The étale quadratic algebra K/F and the étale cubic algebra L/F are

naturally isomorphic to the ones associated to the Galois action on the lines
of the del Pezzo surface S(B, τ, L) over F .

Proof. (i): We may assume that F is separably closed. We claim that any
triple (B, τ, L) is isomorphic to the split triple

(
M3(F )×M3(F ), ε, F 3

)
, where:

(1) ε(a, b) = (bt, at), (t denotes the transpose matrix), in particular
Sym

(
M3(F ) ×M3(F ), ε

)
consists of matrices of the shape (a, at);

(2) F 3 is identified with the subalgebra of diagonal matrices in
Sym

(
M3(F ) ×M3(F ), ε

)
, i.e. those of the shape (a, a) with a diagonal;

(3) K = F × F ⊂ M3(F ) ×M3(F ) is the obvious map from F × F to the
center of M3(F ) ×M3(F ).

Indeed, as K and B are split, (B, τ) is isomorphic to
(
M3(F ) ×M3(F ), ε

)

by [8, Prop. 2.14]. Let L′ ⊂ M3(F ) × M3(F ) be the image of the (split)
étale cubic subalgebra L under this isomorphism. In particular, (B, τ, L) ≃(
M3(F )×M3(F ), ε, L′

)
. Any of the two projections to M3(F ) identifies L′ with

a split étale cubic subalgebra of M3(F ). Any two split étale cubic subalgebras
of M3(F ) are conjugate, i.e., there is an a ∈ M3(F )× such that aL′a−1 = F 3.
Then the conjugation by (a, (a−1)t) yields an isomorphism between

(
M3(F )×

M3(F ), ε, L′
)

and
(
M3(F ) ×M3(F ), ε, F 3

)
. The claim is proved.

So we may assume that (B, τ, L) is the split triple. Then F ⊕ L⊥ is the
space of all pairs (b, bt) with a matrix b all diagonal elements of which are
equal. Let [x0 : x1 : x2; y0 : y1 : y2] be the projective coordinates in P2 ×F P2.
The Segre embedding sB,τ takes [x0 : x1 : x2; y0 : y1 : y2] to the point
of P(M3(F )) given by the matrix (xiyj)i,j=1,2,3 (we here identify an element
(a, at) ∈ Sym

(
M3(F ) ×M3(F ), ε

)
with a ∈ M3(F )).

Therefore S(B, τ, L) is a closed subvariety of P2×F P2 given by the equations
x0y0 = x1y1 = x2y2, that is a split del Pezzo surfaces of degree 6.

(iv): We may assume that F is separably closed and hence we are in the split
situation of the proof of (i). Let the torus T , the semidirect product T ′ and
the split del Pezzo surface S be as in the initial discussion of del Pezzo surfaces
of degree 6. We let T ′ act on B by F -algebra automorphisms as follows. The
groups T , respectively S3, act on B by the formula x(a, b) = (xax−1, (x−1)tbxt),
where x is in T , respectively is the monomial matrix corresponding to an
element of S3. The generator of S2 takes a pair (a, b) to (b, a). The action
of T ′ defined this way commutes with τ and preserves L elementwise and
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therefore induces an algebraic group homomorphism ϕ : T ′ → Aut(B, τ, L).
The composite map of ϕ with the homomorphism

Aut(B, τ, L) → Aut(K) ×Aut(L) = S2 × S3.

is a surjective homomorphism which coincides with the one described at the
beginning of this section. We claim that ϕ is an isomorphism. Let G be the
kernel of the above homomorphism. It suffices to show that the restriction
ψ : T → G of ϕ is an isomorphism. We view G as a subgroup of the connected
component Aut(B, τ)+ of identity in Aut(B, τ). We have an isomorphism
between PGL3 and Aut(B, τ)+ taking an a to the conjugation by (a, (a−1)t)
(cf. [8, §23]). The composite map

T
ψ
−→ G →֒ Aut(B, τ)+ ∼

→ PGL3

identifies T with the maximal torus T̃ of the classes of diagonal matrices in
PGL3. The image of G in PGL3 coincides with the centralizer of T̃ in PGL3,

hence it is equal to T̃ . Thus ψ is an isomorphism. The claim is proved.
The composite map

T ′ ϕ
−→ Aut(B, τ, L)

µ
−→ Aut

(
S(B, τ, L)

)

coincides with the isomorphism in the initial discussion of del Pezzo surfaces
of degree 6. Therefore, µ is an isomorphism.

(ii) and (iii): By the proof of (i), any triple (B, τ, L) over F is isomorphic to
the split triple. Moreover, any del Pezzo surface of degree 6 splits over F . The
homomorphism µ in (3) is an isomorphism by (iv), therefore the statements
follow by the standard technique in [8, §26].

(v): The étale algebrasK and L are associated to the Galois action on the set
of 6 minimal diagonal idempotents ei and fi of the algebra F 3×F 3 (i = 1, 2, 3)
where the ei (resp. the fi) are diagonal idempotents in F 3 × 0 (resp. 0× F 3).
The statement follows from the fact that the correspondence ei 7→ Ei, fi 7→
Fi establishes an isomorphism of the (S2 × S3)-sets of minimal idempotents
{e1, e2, e3, f1, f2, f3} and exceptional lines {E1, E2, E3, F1, F2, F3}. �

Remark 4.3. With notation as in the beginning of this section, the natural
exact sequence of Galois modules

0 → F [U ]×/F
×
→ DivS\U(S) → PicS → PicU,

where DivS\U (S) denotes the group of divisors of S with support on the com-

plement of U and the first map is the divisor map, yields the exact sequence
of Galois lattices:

0 → T̂ → Z[KL/F ] → PicS → 0,

which defines the 2-dimensional F -torus T with character group T̂ = F [U ]×/F
×
.

The F -variety U is a principal homogeneous space under T . The 6-dimensional
Galois module Z[KL/F ] is the permutation module on the 6 lines.
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Direct computation over F shows that there is an exact sequence of Galois
lattices

0 → T̂ → Z[KL/F ] → Z[L/F ] ⊕ Z[K/F ] → Z → 0.

Here Z[L/F ] is the 3-dimensional permutation lattice on the set of opposite
pairs of lines in the hexagon and Z[K/F ] is the 2-dimensional permutation
lattice on the set of triangles of triples of skew lines in the hexagon. The
map Z[KL/F ] → Z[L/F ] sends a line to the pair it belongs to, and the map
Z[KL/F ] → Z[K/F ] sends a line to the triangle it belongs to. The map
Z[L/F ]⊕Z[K/F ] → Z is the difference of the augmentation maps. Note that
this Galois homomorphism has an obvious Galois equivariant section.

¿From this we conclude that there exist an isomorphism of Galois lattices

PicS ⊕ Z ≃ Z[L/F ] ⊕ Z[K/F ]

and an exact sequence of F -tori

1 → Gm,F → RL/FGm × RK/FGm → RKL/FGm → T → 1.

Taking F -points and using Hilbert’s theorem 90, we conclude that T (F ) is
the quotient of (KL)× by the subgroup spanned by K× and L×. We also see
that the F -torus is stably rational. More precisely T ×F RK/FGm×F RL/FGm

is F -birational to Gm,F ×F RKL/FGm. The F -torus T actually is rational
(Voskresenskĭı proved that all 2-dimensional tori are rational).

Remark 4.4. It follows from the proof of Theorem 4.2 that T is a maximal
F -torus of the connected component of the identity Aut(B, τ)+ of the au-
tomorphism group of the pair (B, τ). By [8, §23], the group of F -points of
Aut(B, τ)+ coincides with

{b ∈ B× | b · τ(b) ∈ F×}/K×.

It follows that

T (F ) = {x ∈ (KL)× | NKL/L(x) ∈ F×}/K×.

We leave it to the reader to compare this description with the one produced
in the previous remark.

Remark 4.5. If the quadratic algebra K is split, i.e., K = F × F and B =
A×Aop with the switch involution τ , where A is a central simple F -algebra of
dimension 9, the surface S(B, τ, L) is a closed subvariety of SB(A)×F SB(Aop)
and the projection S(B, τ, L) → SB(A) is a blow-up with center a closed
subvariety of SB(A) isomorphic to SpecL. In particular, the surface S(B, τ, L)
is not minimal.

Lemma 4.6. Let S = S(B, τ, L) be a del Pezzo surfaces of degree 6. Then
(i) If nS = 6, then K and the K-algebra B are not split.
(ii) If S(F ) 6= ∅, then the K-algebra B is split.
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Proof. If K is split then nS ≤ 3 by Remark 4.5. By the same remark, if
B is split then S has a rational point over K, hence nS ≤ 2. Finally, if S
has a rational point, then so does RK/F SB(B) as S is a closed subvariety of
RK/F SB(B), and therefore B is split. �

We may now give our first proof of Theorem 1.3. Let notation be as in
Proposition 3.2.

By Theorem 2.4, X is either a conic bundle over a smooth conic or a del
Pezzo surface of degree d = 1, . . . , 9. In the first case, X has a rational point
over a field extension of degree dividing 4, therefore, nX divides 4, a contra-
diction. In the latter case, we have 6 | nX | d, i.e., d = 6 and X is a del Pezzo
surface of degree 6.

By Theorem 4.2, we have X = S(B, τ, L) for a rank 9 Azumaya algebra B
with unitary involution τ over a quadratic étale algebra K over F and a cubic
étale F -subalgebra L of B contained in Sym(B, τ). It follows from Lemma 4.6
(i) that K and B are not split. By (iii) of Proposition 3.2 and by Lemma 4.6
(ii), the K(Y ×F Z)-algebra B ⊗K K(Y ×F Z) is split. The field extension
K(Y ×F Z)/K(Z) is the function field of a conic over K(Z) and B ⊗K K(Z)
is an algebra of degree 3 over K(Z), hence B ⊗K K(Z) is also split. By a
theorem of Châtelet (recalled below), the K-algebra B, which is not split, is
similar to DK or to D⊗2

K . Since B carries an involution of the second kind we
have corK/F ([B]) = 0 by [8, Th. 3.1]. From 2[D] = corK/F ([B]) we conclude
that D and therefore B is split, a contradiction.

5. Splitting properties of geometrically rational varieties of

canonical dimension at most 2

In this section we study the kernel of the natural homomorphism of Brauer
groups BrF → BrF (X) for a geometrically unirational smooth variety X of
canonical dimension at most 2.

Let us recall the well known:

Proposition 5.1. Let F be a field, F a separable closure, g = Gal(F/F ) the
absolute Galois group. Let X/F be a proper, geometrically integral variety.
We then have a natural exact sequence

0 → PicX → (PicX)g → BrF → BrX,

where BrX = H2
ét(X,Gm). If moreover X/F is smooth, then the map BrX →

BrF (X) is injective, and we have the exact sequence

0 → PicX → (PicX)g → BrF → BrF (X).

We write Br(F (X)/F ) for the kernel of BrF → BrF (X).
The following well known result is due to F. Châtelet. In dimension 1, i.e.

for A a quaternion algebra and X a conic, it goes back to Witt.
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Proposition 5.2. Let X = SB(A) be the Severi-Brauer variety of A. Then
Br(F (X)/F ) is the subgroup of BrF generated by the class of A.

Proposition 5.3. Let F be a perfect field and X a geometrically rational
surface over F . Then we have one of the following possibilities:

(i) X is F -birational to a Severi-Brauer surface, i.e. a twisted form of P2.
Then Br(F (X)/F ) is 0 or Z/3, and is spanned by the class of a central simple
algebra of degree 3.

(ii) X is F -birational to a twisted form of P1 ×F P1. Then Br(F (X)/F )
is 0 or Z/2 (spanned by the class of a quaternion or biquaternion algebra) or
Z/2 ⊕ Z/2 (spanned by the classes of two quaternion algebras).

(iii) X is F -birational to a conic bundle over a smooth projective conic.
Then Br(F (X)/F ) is 0 or Z/2, or Z/2 ⊕ Z/2, and is spanned by the classes
of two quaternion algebras.

(iv) Br(F (X)/F ) = 0, i.e., the natural map BrF → BrF (X) is injective.

Proof. By resolution of singularities (Theorem 2.1) we may assume that X is
smooth, projective and F -minimal.

Assume X is the Severi-Brauer surface SB(A) associated to a central simple
F -algebra A of index 3. That Br(F (X)/F ) is 0 or Z/3, and is spanned by the
class of a central simple algebra of degree 3, follows from Proposition 5.2.

Assume X is a twisted form of P1 ×F P1. As the automorphism group of
P1 ×F P1 is the semidirect product of PGL2 ×PGL2 with the cyclic group of
order 2 permuting the components, we have X = RK/F (C) where K/F is an
étale quadratic F -algebra and C is a conic curve over K. If K is a field then
by [14, Cor. 2.12], we have

Br
(
F (C)/F )

)
= corK/F

(
Br

(
K(C)/K)

))
.

By Proposition 5.2, Br
(
K(C)/K)

)
is generated by the class of a quaternion

algebra overK and therefore, Br
(
F (C)/F )

)
is generated by the corestriction of

a quaternion algebra that is either 0 or a quaternion algebra, or a biquaternion
algebra.

If K = F ×F then X = C ×F C
′ where C and C ′ are conics over F . In this

case Br
(
F (C)/F )

)
is a quotient of Z/2 ⊕ Z/2, spanned by the classes of the

quaternion F -algebras associated with C1 and C2.
Let X/F be a conic bundle over a conic Y . Then Br

(
F (Y )/F

)
is 0 or Z/2,

spanned by the class of the quaternion algebraQ associated to Y and the kernel
of BrF (Y ) → BrF (X) is 0 or Z/2. Thus the order of the kernel of BrF →
BrF (X) divides 4. Let A/F be a nontrivial division algebra in Br

(
F (X)/F )

)

different from Q. It suffices to show that Br
(
F (X)/F )

)
contains a division

quaternion algebra different from Q. The index of A over the function field
F (Y ) is at most 2. By the index reduction formula [17, Th. 1.3], the index
of one of the F -algebras A and A ⊗F Q is at most 2, i.e., one of these two
algebras is similar to a division quaternion algebra different from Q.

If X is not F -isomorphic to a twisted form of P2, to P1 ×F P1 or to a conic
bundle over a conic then according to Theorem 2.4 and Lemma 2.5, X is a del
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Pezzo surface with PicX of rank 1 such that the canonical class, which is in
PicX, is not divisible in PicX. As the cokernel of the natural map PicX →
(PicX)g is torsion, the group (PicX)g is free of rank 1. Therefore (PicX)g is
generated by the canonical class and hence the map PicX → (PicX)g is an
isomorphism. By Proposition 5.1, this implies that Br(F (X)/F ) = 0. �

Remark 5.4. The proof of this proposition uses Theorem 2.4 and Lemma 2.5
in a critical fashion but it requires no discussion of del Pezzo surfaces other
than Severi-Brauer surfaces and twisted forms of P1×F P1. The same comment
applies to Theorem 5.5 and Corollary 5.7 hereafter, hence to the second proof
of Theorem 1.3 given at the end of this section.

Theorem 5.5. Let W be a smooth, proper, geometrically unirational variety
over a field F of characteristic zero.

(i) If cdim(W ) = 1 then Br
(
F (W )/F

)
is 0 or Z/2.

(ii) If cdim(W ) = 2 then Br
(
F (W )/F

)
is one of 0, Z/2, Z/2 ⊕ Z/2 or

Z/3. The kernel is spanned either by a quaternion algebra, or two quaternion
algebras, or one biquaternion algebra, or a cubic algebra.

Proof. By Lemma 3.1, there exists a closed geometrically rational F -subvariety
X ⊂ W of dimension 1 in case (i) and of dimension 2 in case (ii). As BrW
injects into BrF (W ), we have

Br
(
F (W )/F

)
⊂ Br

(
F (X)/F

)
.

If the dimension of X is 1, then X is a smooth conic. The kernel of BrF →
BrF (X) is 0 or Z/2.

If the dimension of X is 2, then the possibilities for Br
(
F (X)/F

)
were listed

in Proposition 5.3. �

Remark 5.6. The same theorem holds if the hypothesis that W is geomet-
rically unirational is replaced by the hypothesis that W is a geometrically
rationally connected variety. These hypotheses indeed imply that the variety
X is geometrically rationally connected. Since X is of dimension at most 2
and char(F ) = 0 this forces X to be geometrically rational.

Corollary 5.7. Let W/F be a smooth, proper, geometrically unirational va-
riety over a field F of characteristic zero. Assume cdim(W ) ≤ 2. Let A and
A′ be central division F -algebras. If there is an F -rational map from W to the
product SB(A) ×F SB(A′) then one of the following occurs:

(1) A and A′ are cubic algebras.
(2) A and A′ are quaternion or biquaternion algebras.

Proof. If there is such a rational map, then the classes of A ∈ Ker[BrF →
Br SB(A)] and A′ ∈ Ker[BrF → Br SB(A′)] belong to Br

(
F (W )/F

)
. The

result then follows from Theorem 5.5. �
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Remark 5.8. Corollary 5.7 holds if the hypothesis that W is geometrically
unirational is replaced by the hypothesis that W is a geometrically rationally
connected variety.

We now give our second proof of Theorem 1.3. This proof does not use
Section 4. Let notation be as in Proposition 3.2, so that Y , resp. Z, is the
Severi-Brauer variety attached to a quaternion algebra, resp. to an algebra of
degree 3. Assume cdim(SB(A)) ≤ 2. Then cdim(Y ×F Z) ≤ 2. If we apply the
above corollary 5.7 to the identity map of Y ×F Z then we get a contradiction.
We could also combine Proposition 3.2 and Proposition 5.3. It is then clear
that we here use statement (iv) of Proposition 3.2, as opposed to our use of
statement (iii) of that same proposition in our first proof (end of Section 4) of
Theorem 1.3.
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[5] F. Enriques, Sulle irrazionalità da cui può farsi dipendere la risoluzione d’un’ equazione
algebrica f(x, y, z) = 0 con funzioni razionali di due parametri, Mathematische Annalen
49 (1897) 1–23.

[6] V. A. Iskovskikh, Minimal models of rational surfaces over arbitrary fields, Math. USSR
Izv. 14 (1980) 17-39.

[7] N. Karpenko and A. Merkurjev, Canonical p-dimension of algebraic groups, Advances in
Math. 205 (2006) 410–433

[8] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, American
Mathematical Society, Providence, RI, 1998, With a preface in French by J. Tits.

[9] J. Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer
Grenzgebiete, 3. Folge, Band 32, Springer Verlag 1996.

[10] J. Lipman, Introduction to resolution of singularities, in Proceedings of Symposia in
Pure Mathematics 29 (1975) 187-230.

[11] J. Lipman, Desingularization of two-dimensional schemes, Annals of Math. 107 (1978)
151-207.

[12] Yu. I. Manin, Cubic forms, Second edition, North-Holland 1986.
[13] A. Merkurjev, Steenrod operations and degree formulas, J. reine angew. Math. 565

(2003), 13–26.
[14] A. S. Merkurjev and J.-P. Tignol, The multipliers of similitudes and the Brauer group

of homogeneous varieties, J. reine angew. Math. (Crelle) 461 (1995), 13–47.
[15] S. Mori, Threefolds whose canonical bundles are not numerically effective, Annals of

Math. 116 (1982) 133-176.
[16] M. Rost, Remarks on Jordan algebras (dim 9, deg 3), cubic surfaces, and del Pezzo

surfaces (deg 6), Preprint, available on the author’s homepage
http://www.mathematik.uni-bielefeld.de/∼rost/chain-lemma.html (1996).

[17] A. Schofield and M. Van den Bergh, The index of a Brauer class on a Brauer-Severi
variety, Trans. Amer. Math. Soc. 333 (1992), no. 2, 729–739.



RATIONAL SURFACES AND CANONICAL DIMENSION OF PGL6 15

[18] K. Zainoulline, Canonical p-dimensions of algebraic groups and degrees of basic polyno-
mial invariants, Bull. London Math. Soc., to appear.
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