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1 Introduction

The main thrust of this work is the study of two seemingly unrelated questions:
Non-abelian Galois cohomology of Laurent polynomial rings on the one hand, while on
the other, a class of infinite dimensional Lie algebras which, as rough approximations,
can be thought off as higher nullity analogues of the affine Kac-Moody Lie algebras.

Though the algebras in question are in general infinite dimensional over the given
base field (say the complex numbers), they can be thought as being finite provided
that the base field is now replaced by a ring (in this case the centroid of the algebras,
which turns out to be a Laurent polynomial ring). This leads us to the theory of
reductive group schemes as developed by M. Demazure and A. Grothendieck [SGA3].
Once this point of view is taken, Algebraic Principal Homogeneous Spaces' and their
accompanying non-abelian étale cohomology, arise naturally. It is this geometrical
approach to infinite dimensional Lie theory that is one of the central themes of our
work.

To illustrate these ideas, let us briefly look at the case of affine Kac-Moody Lie
algebras over an algebraically closed field k of characteristic 0. Let £ be such an
algebra, and let £ be the derived algebra of £, modulo its centre. The Lie algebra £
can be recovered from £ (by taking the universal central extension and then attaching
a derivation), and we will now concentrate on the Lie algebra L itself. Recall that the
centroid of L is the subring Ctd, (L) C Endg(L) comprised of elements that commute
with the Lie bracket of £. The k—Lie algebra L is infinite dimensional, but by viewing
now L as an algebra over its centroid in the natural way, we find ourselves back on the
finite world: There exists a finite dimensional simple Lie algebra g, and a finite Galois
extension S of Ctdy (L), such that £ ®ca,(r) S and g ®; S are isomorphic as S-Lie
algebras. Since the centroid of an affine algebra can be identified with the Laurent
polynomial ring k[t*!], we see that £ is a twisted forms, for the étale topology on
Spec(k[t*!]), of the k[t*!]-algebras g ®j k[tT!]. Accordingly, we can attach to £ a
torsor X, whose isomorphism class lives in H}, (k[t*'], Aut(g)).

L Also called Torsors. This terminology is due to Giraud.



More generally, we could take L to be an Extended Affine Lie Algebra (EALA
for short), and L its centreless core (JAABFP], [N1] and [N2]). This is a beautiful
class of infinite dimensional Lie algebras with striking connections to the classical
finite dimensional landscape (simple Lie algebras of course, but also Jordan algebras,
alternative algebras, quadratic forms...). The centroids are now Laurent polynomial
rings R, = k[ti,-- -] in finitely many variables. Just as in the affine Kac-Moody
case, the resulting algebras £ are twisted forms of algebras of the form g ®; R,,.

These examples hint towards a possible deep connection between some aspects of
contemporary infinite dimensional Lie theory, and the Galois cohomology of the ring
R, = k[tF,---t}1]. The present paper sets out to explore this possibility.

1.1 Notation and conventions

To help the reader we list below most of the notation and conventions used
throughout the paper.

k denotes a field which, with the sole exception of §5, is assumed to be of charac-
teristic 0. As usual, k£ will denote an algebraic closure of k. The tensor product ®;
will be denoted by the unadorned symbol ®.

k—alg denotes the category of commutative associative unital k-algebras.

1 1 1
Ry = K[t - t2Y, Ry = K[ 7,657, -+t 7] and Ry oo = lim Ry, 4.
d
1 1 1
K= k(- 5Y), K = k(67,6710 7) and Ky o0 = lim K, g.
d

Fo = E((t1)((f2))---((t0))-

m1(R,) denotes the algebraic fundamental group of Spec(R,) at the geometric
point Spec(F},) for some (fixed) algebraic closure F,, of F,,.

(Ca)n>1 is a set of compatible primitive n-roots of unity, i.e. ¢f, = (, (in the case
when £k is algebraically closed of characteristic 0).

For a given R in k—alg, by an R—group we will understand an affine group scheme
over Spec(R). If G is an R—group, the pointed set of non-abelian Cech cohomology
on the étale site of X = Spec(R) with coefficients in G, is denoted by H} (X, G), or
also by H} (R, G) (accordingly with customary usage depending on the context). At
times, specially during proofs in order to cut down on notation, we write H' instead
of H},. When G is smooth, the set H},(R, G) measures the isomorphism classes of
principal homogeneous spaces (torsors) over X under G (see Ch. IV §1 of [M] for
basic definitions and references).



Given an R—group G and a morphisms R — S in k—alg, we let Gg denote the
S-group G Xgpee(r) Spec(S) obtained by base change. For convenience, we will under
these circumstances denote most of the times H} (S, Ggs) by H%(S, G).

The expression linear algebraic group (defined) over k, is to be understood in
the sense of Borel [Bo]. For a k-group G, this is equivalent to requiring that G be
smooth.? The connected component of the identity of such group G, will be denoted
by G°.

A reductive R-group is to be understood in the sense of [SGA3]. In particular,
a reductive k—group is a reductive connected algebraic group defined over k in the
sense of Borel.

1.2 Brief description of contents

Section 2. This section is devoted to the étale cohomology of Laurent polynomials
ring k[t5, %3] in two variables, and connections with Serre’s Conjecture II for the

corresponding function field k(¢,t2) (the analogue of Conjecture I was dealt with in
[P2]).

Section 3. Loop torsors, the main topic of this section, are the torsors that are
of interest in infinite dimensional Lie theory. One of the main results of this section
is the existence of an invariant, the Witt-Tits index, that can be attached to loop
torsors. In the case of two variables, we defined another invariant with values in the
Brauer group. One of the major results of the paper (Theorem 3.17) asserts that
this Brauer invariant is fine enough to classify inner loop torsors. It is not however
fine enough to distinguish torsors in general (§3.6), which leads to the failure of the

analogue of Serre’s Conjecture II for the ring k5™, 15].

Section 4. As explained in the Introduction, the study of Extended Affine Lie
Algebras is intimately related to the study of k[tF, - - - £']-forms of finite dimensional
simple Lie algebras. This section contains general results about forms of arbitrary
finite dimensional algebras (mostly assumed to be central and perfect) over rings.

Section 5. This is detailed study of the nature of forms of algebras in the case
when the base ring is a Laurent polynomial ring in finitely many variables. Particular
emphasis is put on the case when the base algebra is a finite dimensional simple Lie
algebra, and the ensuing connections with Extended Affine Lie Algebras.

Section 6. This section contains several conjectures related to the Galois coho-
mology of k[ti', t5'], and the classification of Extended Affine Lie Algebras in
nullity 2.

2A smooth k-group is affine (by our convention on k-groups), and algebraic (since smooth
schemes are by definition locally of finite type).



2 Torsors over k[t;', t5'] and Serre’s Conjecture II

Throughout this section k is assumed to be algebraically closed. Torsors over
k[t5'] were studied in [P2], and behave according to an analogue of Serre’s Conjecture
I (Steinberg’s theorem). We now look at the case of k[ti,¢3']. The situation here
is much more delicate, and some of the results perhaps unexpected. We shall come
back to this section when we look at Extended Affine Lie Algebras of nullity 2 in §6.

We set R = k[ti,15"], K = k(t1,t3), and F = k((t1))((t2)).

2.1 Cohomology of finite modules

We start by collecting some basic facts about the étale cohomology of R.
Proposition 2.1. 1. Gal(F) ~ m(R) ~ Z x Z.

2. HY(R.p,) ~ HY(F,p,) = (Z/nL)?.

3. H%(R,m,) ~ H%(F,p,) ~ Z/nZ.

4. Br(R) ~ Q/Z and , Br(R) ~ Z/nZ. The canonical maps Br(R) — Br(F') and
nBr(R) —,, Br(F) are isomorphisms.

5. Let S/R be a finite connected étale cover of degree d. The restriction map
Resg/p : H*(R, p,,) — H*(S, p,,) is mutiplication by d, and the corestriction map
Corg/p : H*(S,p,,) — H*(R, p,,) is the identity.

6. Given i € Z, the class [i] € Z/nZ =,, Br(R) is represented by the R-Azumaya
algebra A(i,n) with presentation

Tr =ty, Ty = th, ToTy = ¢, T To.

Proof. (1) Consider the Galois covering Ry 4 = R[tlil/d, tzil/d] of R = Ry, with Galois
group (Z/dZ)?* generated by 7; (i = 1,2) defined by

m(t) = (G 6,
The crucial point is that every connected finite étale cover of R is dominated by one
of these Galois extensions. Thus m;(Rz) = lim Gal(Rypq/R) = lim (Z/dZ)* = (Z)?
(see [GP1, cor. 3.2] and [GP2] for details).

(2) , (3) and (4) : see [GP2, §3 and §4.2]. Because of (4), the calculations of (5) can
be carried on F instead of R. One can now reason as in proposition 6.3.9 of [GS].
By (3) and (4) we have Z/nZ ~ H*(R,u,) ~ ,, Br(R) ~ , Br(F). So for establishing
(6), it suffices to show that the element [i| € Z/nZ is represented by the F-algebra
A(i,n) ®g F. But this is Proposition 5.7.1 of [GS]. O

5



Remark 2.2. Note that the isomorphisms of (1) and (2) above depend on the choice
of a compatible set of primitive roots of unity (¢, )n>1-

Remark 2.3. Let Inv : Br(R) — Q/Z be the group isomorphism constructed in
Part (4) of the above Proposition. Let A be an R—Azumaya algebra of degree n, and
write Inv(A) = £ with p, ¢ coprime. Then the R-algebras A and A(p, q) are Brauer
equivalent. We claim that ¢ divides n. Since Br(R) ~ Br(F'), the statement can be
checked for A @ F. But this central simple F-algebra has period (exposant) ¢, and
we do know that ¢ divides the degree n of A ®@pg F' (cf. [GS], §4.5).

Remark 2.4. The class of 1 € Z/nZ ~ H?*(R,Z/nZ) ~ ,Br(R) is nothing but the
cup—product y; U xo, where x; : Z X Z — Z/nZ stand for the unique continuous
character satisfying x;(ni, na) = n; mod (n), for all ny,ny, € Z ([GS] Remark 6.3.8).

2.2 Serre’s conjecture 11

By theorem 2.1 of [CTGP], the cohomology and classification of semisimple groups
over a two-dimensional geometric field with no factors of type Fy, is known. By adding
some extra assumptions to the nature of the geometric field (assumptions which hold
in the case of k(t1,t2) that we are interested in), the groups with factors of type Eg
can also be covered. More precisely:

Theorem 2.5. Let K be a two-dimensional function field over k. Let G be a semisim-
ple, simply connected K -group, and G = [[ Ri,/x(G;) the decomposition of G in
i=1

almost simple factors. Assume that K; = L;(x;), where L; is a field of transcendence
degree one over k for alli=1,....,r. Let

l-p—-G—-GY -1
be the central isogeny associated to the centre u of G. Then the boundary map
§: HY(K,G™) - H*(K,p)
15 bijective.

Proof. Since groups of type Eg have trivial centre, we can consider separately groups
with no FEg factors, and groups of type Eg. As it has already been mentioned, for
groups G with no Ejg factors, the Theorem at hand is a special case of theorem 2.1 of
[CTGP]. Let Eg be the Chevalley k—group of type Eg. This group is simply connected
and we have Eg =2 Aut(Eg). Therefore by Shapiro’s formula, it will suffice to show
that H'(K;,Eg) = 1. Let L be an extension of k of transcendence degree one. For

6



any closed point x of the projective line P!, the completion of L(#) at x is isomorphic
to L(x)((m;)). The field L(x) is a finite extension of L, so cd(L(z)) < 1. By Bruhat-
Tits theory, we have H'(L(x)((r,)), Eg) = 1 ([BT], théoréme 4.7). In other words,
all classes of H'(L(t),Eg) are unramified with respect to the closed points of the
projective line P}. By Harder’s lemma ([H], Lemma 4.1.3), the map H' (P}, Eg) —
H'(L(t),Eg) is then surjective. According to the theorem of Grothendieck-Harder
(cf. [Gil], th. 3.8.a), we have the following exact sequence of pointed sets

I— Héar(P}nEE;) - Hl(]P)EvES) =5 HI(L7E8)7

where ev,, stands for the pull-back map defined by the point at infinity. But H*(L, Eg) =
1 by Steinberg’s theorem. This implies that H},,.(P},Eg) & H'(P;,Es). As Zariski
torsors are rationally trivial, we conclude that H'(L(t), Eg) = 1 as desired. O

Based on this last Theorem, an optimistic outcome for the G—cohomology of R
takes the following form.

Question 2.6. Let G be a semisimple R—group. Let 1 — p — G — G — 1 beits
universal covering. Is the boundary map H}(R,G) — HZ(R,p) bijective ?

In particular, if G is simply connected, the question is whether H, (R, G) vanishes,
namely a variant of Serre’s conjecture II.

2.3 Some evidence

Theorem 2.7. Let G be a semisimple R—group, and 1 — p — G — G — 1 its
universal covering.

1. The boundary map H}(R,G) — HZ(R, p) is surjective.
2. If G is split, then HL(R, G) = 1.
Proof. (1) Let a € H*(R, pu). We consider the restriction maps
H*(R,p) — H*(K,p) — H*(F,p).

By Theorem 2.5 0k : HY(K, G) — H?(K,p) is an isomorphism, so there exist a non-
empty open subvariety U C Spec(R), and a v € H'(U, G), such that 6y (y) = ay €
H?(U,p). For every point z € Spec(R)M \ U, the completed field K, is a field of
Laurent series over the residue field k(x), which is the field of functions of a k—curve.
So

(K., G) = H*(K,, 1)

7



(Theorem 2.5). On the other hand, consider the residue map
Do+ H* (Koo ) — H'(k(2), p(~1))

~

where p(—1) stands for the Tate twist u(—1) = Hom(Z, u) ~ Hom(p,, p) for some
d >> 0 (see [GMS] §1.7.8). Since cd(k(x)) = 1, Op is an isomorphism. We summarize
the previous facts in the commutative diagram

H'(U,G) —— H(U,p)

| |

HY(K,,G) —— H*(K,,p) —2— H'(k(z),p(-1)).

We have 0,(ay) = 0, so 6(5,) = 0. It follows that vz = 1. By Harder’s lemma
[H, lemma 4.1.3], the class v extends on codimension 1 points of Spec(R) \ U. The
variety Spec(R) is a smooth affine surface, so v extends to Spec(R) [CTS, théoreme
6.13], i.e there exists some class ¥ € H'(R, G) such that 7y = 7. By construction,
dr(Fr) = ap € H*(F,pu). Since the restriction H*(R,pu) — H?(F,u) is an isomor-
phism (Proposition 2.1(4)), we conclude that dg(7y) = «a.

(2) Assume that G is split and simply connected. In particular, G is defined over
k. We see R as the localisation of k[t;,ts] at t;t; # 0. Let v € HY(R,G). By
Bruhat-Tits ([BT], cor 3.15), we have H'(k(t;)((t2)), G) = 1 and H'(k(t2)((t1)), G)
= 1. Harder’s lemma implies that v extends at the generic points of the subvarieties
t; = 0 and to = 0 of AZ. In other words, there exists an open subvariety U C Aj
such that codimy(U) = 2 and v extends to U. Again by [CTS, théoréme 6.13], v
extends to a class 2. Since H'(A},G) = 1 ([Rg], ¢f. [CTO], proposition 2.4), it
follows that v =3y = 1 € H'(R, G) as desired. O

Corollary 2.8. Fvery semisimple R—group scheme G of type Eg, Fy or Gq is split.
Furhermore H'(R,G) = 1.

Remark 2.9. Serre’s conjecture on rationally trivial torsors proven by Colliot-Thélene
and Ojanguren ([CTO], théoreme 3.2) permits to give a shorter proof of the second
statement of Theorem 2.7. Taking into account Theorem 2.5, all R-torsors under G
are rationally trivial. Thus H},.(R,G) = H'(R, G), and therefore H'(R,G) =1 by
[GP2, corollary 2.3].

One more piece of evidence towards a positive answer of Question 2.6 comes
from reduced norms (in analogy with the theorem of Merkurjev and Suslin which
characterizes fields of cohomological dimension 2 by the surjectivity of their reduced
norms. See [Sel, 11.3.2).



Lemma 2.10. Let A(i,n) be the standard Azumaya R—algebra defined in Proposition
2.1. Then the reduced norm map ([K2], 1.7.8.1.5) N : A(i,n)* — R* is surjective.

Proof. The algebra A = A(i,n) has presentation 1" = t1, Ty = t&, ToTy = ¢, Ty Ts.
In particular, it contains R[T}] as a maximal commutative R—subalgebra. As in the
field case, the restriction of the reduced norm to R[T3]* is nothing but the norm map
N; : R[T1]* — R* of the cyclic Galois R-algebra R[T}]. Since Ny(T}) = (—1)""'ty,
we have (—1)"71t;. R*" C N(A*). So the group R*/N(A*) is cyclic generated by the
class of ty. Similarly, R[Ty] is also a cyclic Galois R-algebra and No(Ty) = (—1)""'t,.
We conclude that A(i,n)* — R* is surjective. O

3 Loop torsors

Throughout this section the base field k is assumed to be algebraically closed and
of characteristic 0.

Let G be a reductive k—group. We fix a maximal torus T of G, and a base A
of the root system ® = (G, T). Let t denote the Lie algebra of T. For any subset
I cAcCPG,T) we set

t; = ﬂ ker(a) C t,
acl
and let T be the subtorus of T with Lie algebra t;. Define L; = Zg(T); this is a
Levi subgroup of the standard parabolic group Pj.

In what follows, we will often encounter the following situation: H is a subgroup
of G, and x = (xy, 79, ...., T,,) is an n—tuple of elements of H. We summarize this by
simply saying that “z lies in H” .3

Let £ = (z1, %2, ...., ©,) be an n—tuple of commuting elements of finite order of G.
Let d be an integer such that z¢ = --- = 24 = 1. Recall the Galois covering R, 4 =
R[tlil/d, e ,t;tl/d] of R,, with Galois group (Z/mZ)" generated by 7; (i = 1,...,n)
defined by

Tt = (Ca) 1)

This enables us to define the cocycle a(z) € Z'(Gal(R, 4/Rn), G(Rn.4)) as follows?
afz) : Gal(R,q/Ry) — G(k) — G(Rpq), 7' 7o v 272y ™ -y

n

As it is customary, we denote the class of a(z) in H'(R,,, G) by [a(z)]. Observe that
this class is independent of the choice of the common period d.

3Strictly speaking, the x; are elements of H(k). This abuse of notations, whenever harmless, will
be used throughout.

4The somehow unnatural appearance of inverses in the definition of a(z), is consequence of the
way «o(z) arises from multiloop algebras. See §6 below for details.
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Classes of the form [a(x)] as above are called loop classes. They form a subset
H},,,(Rn, G) C H'(R,,G). The elements of these classes are called loop torsors.

There is another useful way of looking at loop torsors in terms of the algebraic
fundamental group of R. Recall that m(R,) ~ (Z)" under our fixed choice of com-
patible roots of unity, and that H} (7 (R,), G(R,)) — H'(R,, G) (see [GP1, cor.
3.2], or [GP2, cor. 2.15]) The cocycle a(z) corresponding to « can thus be thought
as the unique (continuous) map «a(z) : (Z)" — G(k) for which

12 —in

i1
-
n

a(x) 2 (i1, ey in) — o] My

for all (iy,...,i,) € Z".

3.1 The Witt-Tits index of a loop torsor

The following Theorem is the crucial ingredient which will allow us to attach an
index set I C A to a loop torsor. This result is also related to the work of Reichstein-
Youssin [RY] linking non-toral abelian sugroups and the essential dimension of G.
Our proof is a higher dimensional version in characteristic 0 of [Gi2] (e.g. proposition
3).

Theorem 3.1. Letx = (x1, 22, ..., x,) be an n—tuple of commuting elements of finite
order of G. For a subset I C A, the following conditions are equivalent:

1. & normalizes a parabolic subgroup P of G of type I,

2. [a(z)k, ] € im (Hl(Kn, P;) — HYK,, G)),

s The twisted group a@)G K. admits a K,,—parabolic subgroup of type I.
3 |a(x)p,] € im (Hl(Fn, P;) — HY(F,, G)),

3 Y. The twisted group a(z)GFn

In particular, if G is semisimple, then x is irreducible (i.e it does not lie in any
proper parabolic subgroup of G), if and only if the corresponding twisted F,—group
a@)G . 1S anisotropic.

admits a F,—parabolic subgroup of type I.

Fr

Proof. By a theorem of Chevalley ([Bo] theorem 11.6) P; is its own normalizer in G.
The equivalence (2) <= (2") and (3) <= (3*) then follows from a classical lemma
([Se], I111.2.2, lemme 1).

(1) = (2): Up to conjugacy by a suitable element g € G(k), we may assume that the
z;’s lie in Pr(k). Because Gal(K,) acts trivially on g, the g~ 'a(z)g define a cocycle
which is cohomologous to a(x). Now (2) is clear.

(2) = (3): Obvious.

10



(3) = (1): Consider the k-variety Y = G/P; of parabolic subgroups of G of type
I, as well as the corresponding twisted F),—variety

X =a@YF,-
Our hypothesis is that X(F,) # (). We have
X(F,) = {y e Y(Fpn) | al@)(0)fy=y foraloe Gal(Fn,m/Fn)}.
Since Y is complete, we have

Y(Fn—l,m[[ %n]]) = Y(Fn,m)'

Now, by specializing at t, = 0, we obtain
{yeY(Fiin) | al@)(0)7y =y forall o € Gal(Fy/Fo) | 0,

where the Galois action of Gal(F, ,/F,) on Y(F,_1,,), is induced by the canoni-
cal projection Gal(F, ,/F,) — Gal(F,_1,,/F.—1). Repeating the same process, we
finally get

{y eY(k) | a(z)(0).y=y forall o € Gal(me/Fn)} £,
and therefore
{yeY () | a@)(0)y =y Yo € GallF/F) } £0

since Gal(F,, .,/ F,) acts trivially on Y (k). But this means that all of the z; normalize
a k-parabolic subgroup of type I, hence (1). O

Example 3.2. For the split group Eg and its standard non-toral abelian subgroup
(Z/27,)°, the corresponding loop torsor is studied by Chernousov-Serre [CS]. Our
result gives another proof that the associated twisted group defined over k(ti, ...,1t9)
is anisotropic.

Since assertions (2) and (3) of Theorem 3.1 are satisfied for a unique maximal
index I, namely the Witt-Tits index ® of 4z Gk,, we get the following interesting
fact.

°Let K/k be a field and [2] € H'(K, G). The twisted group .G admits a single G(K)—conjugacy
classe of minimal parabolic subgroups, and any such minimal P is G (K )-conjugated to a unique
minimal standard parabolic subgroup P; C G. This I is called the Witt-Tits index of .G, and it
depends only on [z] € H(K,G) ([BoT], §6.5). In terms of Galois cohomology, P is the unique
minimal standard parabolic subgroup of G such that [2] € Im(H(K,P;) — H(K, G)).

11



Corollary 3.3. The minimal elements (with respect to inclusion) of the set of parabolic
subgroups of G normalized by x1, ..., x, are all conjugate under G(k). The type I(x)
of this conjugacy class is the Witt-Tits index of the F,—group o@=)Gr,.

We call I(z) the Witt-Tits index of 2. As we shall see later, this invariant plays a
crucial role in the classification of loop torsors.

Remark 3.4. One can also define an index in the linearly reductive case by taking
into account the star action of x on A. More precisely, assume F' is a linear algebraic
group whose connected component F° := G is reductive. We have an exact sequence

of algebraic groups
1 — G" — Aut(G) — Out(G) — 1

([SGA3] XXV théoreme 1.3). Let  be an n-tuple of commuting elements of finite
order of F. The above exacts sequence yields an action of < > on Out(G). This
is the first part of the invariant attached to . The second part is defined as in the
connected case, by replacing P; by Ng(P;) in Theorem 3.1. If G is semisimple and
adjoint, then Out(G) can be identified with the group Aut(A) of automorphisms of
A. By the uniqueness of type for outer forms, the action of x on Aut(A) leaves the
index set [ stable.

3.2 Reducibility

Recall that a subgroup H of a reductive k—group G is called G—irreducible if H
is not contained in any proper parabolic subgroup P of G.

Recall also that, by definition, a reductive k-group is connected.® There is a
weaker notion, that of linearly reductive subgroup H of G, that we now need (see
[BMR] for details). A linear algebraic group H is linearly reductive if every rational
representation of H is semisimple. Because our algebraically closed base field is of
characteristic 0, for H to be linearly reductive it is necessary and sufficient that H°
be reductive.

Lemma 3.5. Let G be a reductive k—group, and H a subgroup of G. If S is a mazimal
torus of Zg(H), then S = Z(Zg(S))° and Zg(S) is a Levi subgroup of a parabolic
subgroup of G.

Proof. Let S’ be the identity component of the centre of Zg(S). Clearly S C S'.
Since H C Zg(S), we have S C Zg(H). Since S is a maximal torus of Zg(H), we
have S = S'. So S = Z(Z¢(S))°. That Zg(S) is the Levi subgroup of a parabolic
subgroup of G is well known ([Bo| proposition 20.4). O

6See the conventions in §1.1
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Recall that if H is linearly reductive, then the centralizer Zg(H) of H in G is
also linearly reductive ([R], proposition 10.1.5). Corollary 3.5 of [BMR] and its proof
state the following.

Theorem 3.6. Let H be a linearly reductive subgroup of a reductive k—group G, and
let S be a maximal torus of Zg(H). Then

1. H is irreducible in Zg(S).

2. If P be a parabolic subgroup of G for which Zg(S) is a Levi subgroup, then P is
a minimal element (with respect to inclusion) of the set of parabolic subgroups
of G that contain H.

3. If P is a minimal element (with respect to inclusion) of the set of parabolic
subgroups of G that contain H, then H is L—irreducible for some Levi subgroup
L of P.

Corollary 3.7. Let H be a linearly reductive subgroup of a reductive k—group G. For
a parabolic parabolic subgroup P of G, the following conditions are equivalent:

1. P is a minimal element of the set of parabolic subgroups containing H.

2. There ezists a mazimal torus S of Zg(H) such that Zg(S) is a Levi subgroup
of P.

Proof. (2) = (1): This is given by the second assertion of Theorem 3.6.

(1) = (2): Let L be a Levi subgroup of P for which H is L-irreducible (Theorem
3.6(3)). For S := Z(L)° we have L = Zg(S) ([Bo] proposition 11.23 and corollary
14.19), and S C Zg(H) ( since H C L). We claim that S is a maximal torus of
Za(H). Let S" C Zg(H) be a torus containing S. Since S commutes with S’, we
have S' C Zg(S) = L. If S C S', then S’ is not central in L. Thus Zi,(S') is a Levi
subgroup of a proper parabolic subgroup Q of L (ibid. proposition 20.6). But since
H commutes with S’, we have H C Z1,(S’) € Q. This contradicts our assumption on
L-irreducibility.

U

The minimality of parabolic subgroups containing H can be tested on elements of
finite order of H.

Corollary 3.8. Let H be a linearly reductive subgroup of a reductive group G. There
exists elements x1, ...,x, € H of finite order such that

1. Zg(H) = Zg(l’l, ,S(Zn)

13



2. The abstract group < x1,...,x, > is linearly reductive (i.e. the Zariski closure
of < x1,...,x, > in G is linearly reductive).

In this case, the minimal elements of the set of parabolic subgroups containing
H are precisely the minimal elements of the set of parabolic subgroups containing

{1’1, ceey l’n}

Proof. Let Hys (respectively Hy;,), denote the subset of H(k) consisting of those
elements which are semisimple (respectively of finite order).

We claim that Zg(H) = Nyen., Zg(z). For since the finite constant group H/H"
is diagonalizable, there exists a set of coset representatives of H in H comprised of
semisimple elements. This, together with the fact that the semisimple elements of
H? are dense in H® ([Bo] theorem 11.10), establishes the claim.

If x € Hy,, then <z > C H is a closed subgroup of a torus of G. In particular,
the elements of finite order of < x>, form a dense subset of <z >. Together with
our previous claim, this shows that Zq(H) = Myen,,, Za(r). Given that each Zg(z)
is closed and k[G] is noetherian, we conclude that Zg(H) = Zg(z1)N....N Zg(xy) ==
Za(z1, ..., xy) for some w1, ...,z € Hyyp.

Observe that Zg(z1,...,2n) = Za(z1, ..., Ty, v) for all z € Hyy;y,. To finish the
proof of (1) and (2) therefore, it will suffice to show that there exists @11, ..., T €
Hy;, such that the abstract group < 4, ..., 2, > is linearly reductive.

Let Hi =<2y, ...,2, >. If H(l] is reductive we are done. If not, the H? = U,.L;
where 1 # U (resp. L;) is the unipotent radical (resp. a Levi subgroup) of HJ. Since
H° has trivial unipotent radical, there exists x,,.1 € H?cm such that :cmHle;an =+
U, (recall that HY,, is dense in H"). Let Hy = <21, ..., T, Tmp1 > 1If H) = HY,
these two groups would have the same unipotent radical, namely U;. But they do
not: x,,.1 does not normalize U;. Thus H? C Hg. One now considers the unipotent
radical of H) and repeats the above argument. Since the dimension of the resulting
groups H(l) - Hg C ... are bounded by HO, there exists elements 41, ..., 7, € Hyyp
as desired.

Finally, let P be a parabolic subgroup of G which is minimal among those con-
taining {x1, ..., z,}. Then P is minimal among those parabolic subgroups containing
the group K = < 1, ...,x, > . Since K is linearly reductive, there exists a maximal
torus S of Zg(K) such that L = Zg(S) is a Levi subgroup of P (Corollary 3.7). By
construction, Zg(K) = Zg(H). In particular, S commutes with H, and therefore
HCL. O

3.3 Almost commutative subgroups

Following [BFM], we say that a subgroup H of G is almost commutative if
(H.Z2(G))/Z(G) is abelian. The last assertion of the following result generalises
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lemma 2.1.2 of [oc. cit. about compact Lie groups (see also [KS]).

Proposition 3.9. Let H be an almost commutative subgroup of G which is linearly
reductive, and let S be a mazimal torus of Zg(H).

1. The k—parabolic subgroups of G which are minimal among those containing H
are all conjugate under G(k). Furthermore, the type 1(H) of this conjugacy
class is the Witt—Tits index of some twisted inner form of G.

2. If J C A is such that S is conjugated to T ;, then J = [(H).

Proof. (1) After replacing G by G, we may assume that H is an abelian subgroup
of G. Corollary 3.8 provides an n—tuple £ = (z1, ..., x,) of elements of finite order of
G, such that the parabolic subgroups which are minimal among those containing H,
are precisely those which are minimal among those containing {x1,..,z,}. We can
now apply Corollary 3.3.1.

(2) Up to conjugacy, we may assume that T is a maximal torus of Zg(H). Corollary
3.7 implies that P, is a minimal parabolic subgroup containing H. By (1), we get
that J = I(H).

]

Lemma 3.10. Let A : G — G be an isogeny of reductive k—groups. Let H be an
almost commutative subgroup of G which is linearly reductive, and set H = \71(H).
Then

1. H is an almost commutative and linearly reductive subgroup of G.

2. The morphism Z5(H)" — Zg(H)? is a central isogeny.

3. Via the natural identification of A with a base of the root system (ID(é, 'T‘), we

have I(H) = I(H).

Proof. We begin by recalling certain relevant facts about isogenies (see [Bo]§22 for
details). Because A is separable, it is central. In particular, for a subgroup S of
G to be a maximal torus, it is necessary and sufficient that A\7!(S) be a maximal
torus of G. Let T = A7!(T). This is a maximal torus of G, and the standard map
A P(G, T) — ¢(G,T) is an isomorphism.
~0
(1) The isogeny A maps the unipotent radical of H injectively into the unipotent
~0

radical of H, which is trivial by assumption. This shows that H is reductive, hence
that H is linearly reductive. Given that A is central, that H is almost commutative
follows from the almost commutativity of H, together with Z(G) = NT = NA™!(T) =

15



A~HNT) = A(Z(G)) (the intersections being taken over all maximal torus of G
and G respectively).

(2) The induced map A : Zé(ﬁ)o — Zg(H)? has finite central kernel, so only
surjectivity must be checked. It is enough to do this at the Lie algebra level. But
here the situation is clear. Indeed

Lie(Zg(H)) = Lie(G)*™, Lie(Zg(H)) = Lie(G) H,

and

AdA(Z)(dA(y)) = dA(AdZ(y))

for all 7 and § in G, were d\ := Lie()\) is the differential of A ([DG] II §4.1 and §5
5.7).

(3) By (2) and the opening remarks on isogenies, the maximal tori of Zg(H)? are
precisely of the form A~!(S) for S a maximal torus of Zg(H)°. Now (3) follows from
Proposition 3.9.

O

3.4 Almost commuting families of elements of finite order

Recall that an n—tuple £ = (x1, ..., z,,) of elements of G is said to almost commutes
if [x;,z;] € Z(G) for i, j = 1,..,n. This is equivalent to require that the group < = >
generated by the z; be almost commutative. Define the rank of such a family z to be
the dimension of the centralizer of Zg(x) = Zg(x1, ..., z,) of £ in G. Notice that x
is of rank zero if and only if Zg() is a finite group.

If in addition the x; are all of finite order, there is a more subtle invariant of x
that can be defined in terms of any maximal torus S of Zg(z).

Proposition 3.11. Let £ = (x4, ...,x,) be an almost commuting n—tuple of elements
of finite order of a semisimple k—group G.

1. The group < = > generated by the x; is finite. In particular, this group is
linearly reductive and all its elements are semisimple.

2. There is an unique subset I = I(x) C A for which any mazimal torus S of
Zg(x) is conjugated to T;.

3. Let S be a mazimal torus of Zg(x). Then x belongs to Zg(S) and its image in
Za(S)/S is a rank zero n—tuple of the semisimple k—group Zg(S)/S.
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4. Let G — G be the universal covering of G. There exist liftings T = (X1, ey Tp)
ofx in G, i.e. such that \(z;) = z; for i =1,...,n. Moreover, < x > is finite
and I(z) = 1 ().

5. If S is a maximal torus of Zg(x), there exists a mazimal torus T of G containing
S such that <& > C Ng(T). Furthermore, S = (TN Zg(<z >))0.

Proof. (1) If G is adjoint, then z is a commuting family of elements of finite order, and
the result is clear. The general case follows from the fact the kernel of the canonical
morphism G — G = G/Z(G) is finite and central.

(2) This is nothing but Proposition 3.9 applied to the case H =< z >.7

(3) Since S is the connected centre of Zg(S), the group Z¢(S)/S is semisimple
(possibly trivial). By construction, any maximal torus of Zg(S)/S containing the
images ;S of the x;’s must be finite. By (2) the resulting n—tuple is of rank zero.

(4) Liftings do exist since the map G(k) — G(k) is surjective (k is algebraically
closed). Since the universal covering G — G is an isogeny, the remaining assertions
of (3) follow from (1) and (2) with the help of Lemma 3.10.

(5) We have < x > C Z¢(S). By the main theorem of [BM], there exists a
maximal torus T of Zg(S) such that < > C Ng(T). Since S is the connected
centre of Zg(S), we conclude that T contains S. Finally (T N Zg(< z >))" is a
torus of Zg(< = >)° containing S. But S is a maximal torus of Zg(< z >)°, hence
S=(TNZa(<z>)").

U

3.5 Almost commuting pairs and their invariants

We now concentrate on the case n = 2. For convenience, as in §2, we set R =
Kt 7], K =kt ta), F = k(1) ((£2))-

Proposition 3.12. If a semisimple k—group G has a rank zero pair of almost com-
muting elements, then G is of type A, x --- X A,,.

Proof. Let & = (x1,x5) be an almost commuting rank zero pair of elements of G.
The group Zg(z) is finite, both x;, x5 are of finite order. By Lemma 3.11, we may
assume that G is simply connected.

First case: k = C: Let Gy, be the real anisotropic form of G. The group Gg,(R)

is a maximal compact subgroup of G(C). The finite group Zg(z) of G(C) lies in a
maximal compact subgroup of G(C). By Cartan’s theorem, up to conjugacy by an

"According to [BFM], the uniqueness of the index set I “is clear”. This uniqueness is not clear
to us however, at least not without the arguments explained herein.
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element of G(C), we may assume that Zg () C G, (R). Then z is a rank zero pair
of commuting elements of the compact Lie group G, (R). Proposition 4.1.1 of [BEM]
then states that G, is a product of groups of type A.

Second case : k is a subfield of C: Since the notion of rank zero pair is algebraic, it
follows that the proposition holds also in this case.

General case: The field k contains the algebraic closure Q of Q in k. The group
G is defined over Q. Since the elements of Zg(x) are of finite order, it follows that

Zg(z) € G(Q) C G(k). Therefore z is a rank zero pair of G(Q) and the second case
shows that G is product of groups of type A. O

For adjoint groups, the last result has the following useful consequence.

Lemma 3.13. Assume that G is adjoint and simple. Let x = (x1,x2) be a commuting
pair of elements of G of rank zero. Then G = PGL,,, and there exists d > 1 relatively
prime to n for which x is G(k)-conjugated to the pair (AdY;, AdYS), where Y1 and
Y, in GL, (k) are given by

{1 0 o 0 o ¢ o - 0
B N=1y o] 270 - 0
> 1 0 0 - 0 ¢!

Proof. The group G is adjoint simple and, by the last Lemma, of type A. Thus
G = PGL,, for some n > 2. Let £ = (x1,22) be a rank zero pair of PGL, (k). Let
(X1, X2) be any lift of (x1, z3) to a pair of elements of GL, (k). Then the commutator
of these two elements satisfies [X», X;] = diag((, ..., ¢u)?, for some d > 0.

By looking at the infinitesimal centralizer of 21 and x5 ([Bo], corollary to theorem
9.2), we see that the centraliser (under the adjoint action) of {zq,x5} in sl,(k) is
trivial. From this it follows that the centralizer of {X;, Xo} in M, (k) = k1d ®sl, (k)
consists only of the homotheties kId. So X; and X5 do not commute (for otherwise
x1 = 1 = 9 and (21, x2) is not a rank zero pair). This forces d € nZ. Let m be
the order of d in Z/nZ. We have ((1)™ = 1, so [XI", X5] = 1. Thus X" commutes
with X; and X5, and therefore X{" = 2;Id € £ Id. Similarly, XJ* = 2,1d € £* Id.
Choose a; € k such that a] = zi_l, and set Z; = a; X;. Then

ZI”' = 1, Z;n = 1, and Zng = leZg

where w = (¢. Since w is a primitive m-root of unity, the k—algebra {Z;, Z,} is a non
trivial quotient of the standard cyclic central simple k-algebra (1,1), ([GS], §2.5) of
degree m. Since (1,1),, is simple, {Z1, Z2} ~ (1,1), ~ M,,(k). But the centralizer of
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{Zy, Zy} in M, (k) is k, so m = n by the double centralizer theorem (cf. [Sc|, corollary
8.4.8). So d is relatively prime to n. On the other hand, the elements Y7, Y5 of (3.1)
above satisfy

(3.2) VI =1, (V)™ = 1, and Y§Y; = C1Y3 VR

We can now apply lemma 1.2 of [Ro] (with w = (Z as primitive n—root of unity), to
conclude that (7, Z;) is GL,(k)-conjugated to (Y7,Ys). Since AdZ; = Ad X, the
Lemma now follows by pushing into PGL,, (k). O

Remark 3.14. One checks that det(Y;) = (—1)"™'. When n is even, replacing Y; by
Y; := (3,Y; produces elements of SL,,(k) with the desired properties.

These examples of pairs enables us to recover the following useful result:

Lemma 3.15. Let G be a semisimple k—group. If ¢ € Z(G), then ¢ = [z, x9] for
some elements of finite order x1 and x5 of G .

Proof. It is well known that G admits a semisimple subgroup H of type A,, x... x 4,,
such that rank(H) = rank(G). Such a subgroup H contains a maximal torus of
G, so it contains Z(G). This reduces the problem to the case of a group G of
type A, x ... x A,,. Let G be the simply connected covering of G. Since the map
Z(G) — Z(G) is surjective, it will suffice to establish the Lemma for G. Furthermore,
since G is the product of almost simple semisimple simply connected group, we may
also assume that G is almost simple, i.e G = SL,,. But then, from the calculations

in the proof of previous Proposition, and with the notation of the last Remark, we
obtain Z(SL,) = {[Y{", Y] : 0 < m < n}. O

Let & = (1, x2) be a commuting pair of elements of finite order of G, and [a(z)] €
H'(R,G) the corresponding loop class (see the beginning of this section). Consider
now the simply connected covering

1—>u—>éLGH1

of G. By Proposition 3.11(4), any lifting Z = (#,, Z») of £ to G is a pair of almost com-
muting elements of finite order. Since the exact sequence 1 — p(k) — G(k) — G(k) — 1
is central, the commutator [Z;,7,] € G does not depend on the lifting Z. We denote
this commutator by p(z). As we shall see, () is an important invariant encoded in
the cohomology class «(z).

Proposition 3.16. The image of [a(x)| under the connecting map
5 HY(R,G) — H2(R,m) = p

1s given by the formula



Proof. iFrom 17Ty = pu(z)Z22; it easily follows that
(3.3) oy TG = p(x)PP T Iy

for all p; and py in Z. Let a : m(R) ~ 7x7 — p be the unique (continuous) map
satisfying a : (i, 2) = Qi) = T, T for all (i1,49) € Z x Z. By the consideration
explained in §5 above, we see that d([a(z)]) corresponds, under the connecting map
§: HY(R,G) — H(R, ), to the class of the 2—cocycle ¢ : Z x Z — p given by

N SN (5 01 >) v — 5. A Al
Ci1,i2),(j1,d2) - = X(in,i2) O‘(J1J2)O‘(i1+j1,i2+j2) - a(ll712)O‘(]1J2)O‘(i1+j1,i2+j2)

. . . . o N |
o 2 )1 2 [ o1 22
=Ty Ty "X Ty (1'1 Ty )

=i —1ig ~—j1 ~i9 "/L'l‘l'jl
=Ty Ty "X Ty Ty

= p(z) M,

The class of this cocycle in H 2(2 X Z 1) is precisely the cup product —6; U6, of the
homomorphisms 61,60, : Z X Z — p given by (i1,is) — u(x)* and (iy,i) — p(x)?
respectively (see Remark 2.4). Thus §(a(z)) = u(z)™ € H*(R,p) = p as stated. [

Theorem 3.17. Let 1 — p — G 2 G — 1 be the simply connected covering of a
semisimple k—group G. Then the boundary map 6 : H'(R, G) — H?(R, ) induces a
bijection

Hlloop(Rv G) — He?t(va‘)'

In other words, to an R—loop torsor X under G, we can attach a “Brauer invariant”
in H?(R,pu) C Br(R) which characterizes the isomorphism class of X. The Brauer
invariant can be easily computed (Proposition 3.16). We will come back to this in §6,
when we classify inner multiloop algebras of nullity 2.

We begin with two preliminary results needed for the proof.

Lemma 3.18. 1. If G = Gy x Gy, Theorem 3.17 holds for G iff it holds for G,
and GQ;

2. ker(HY(R, G) — HA(R,p)) = ker(HL(R, G) — H2(K, p)
= ker(HL(R,G) — H'(K, G)).

3. Given [z] € H}

loop

(R, G), assume that

(a) H}, (R, G — H*R,Z(G)) has trivial fiber at [2*];
(b) ker <H1(R, .Gr) — HY(R, z(;;gd)) — 1.
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Then H},,,(R,G) — H*(R,p) has trivial fiber at [2].

Proof. (1) This is obvious.

(2) By Proposition 2.1(1) ( or by general properties of the Brauer group. See [M, Ch.
IV cor 2.6], H*(R, p) injects in H?(K,u). On the other hand, H'(K, G) ~ H*(K, p)
by Theorem 2.5. Now (2) follows.

(3) Consider the commutative diagram

1
1 Z(G)
1 —— u ¢ 2 G — 1
(3.4) ? P
1 —— Z(G) G _7* G4 — 1
Z(G) 1

Passing to cohomology yields
f{iwp(lzu(;) - }{1(}%7(}) - }{2(}%711)

p*l p*l l

HL (R,G*) c HY(R,G") —— H%(R,Z(G)).

loop

By diagram chasing and assumption (a), it will suffice to establish the triviality of
the fiber of p, at [2] € H. (R, G). This fiber is controled by the diagram of torsion

loop

maps of the twisted R—group ,Gg := .G ([DG], 111.4.3.4), namely

HY(R,G) —— H'(R,G")
Al al
HY(R,Z2(G)) —— HY(R, .Gr) =%~ HY(R, .G%)

In other words, p;*([2]) = .p;'(1). Since Z(G) and Z(G) are both constant and
finite, the map H'(R, Z(G)) — H(R, Z(G)) is surjective. We then see that in the
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commutative diagram

H'(R, 2(G)) —— H'(R, .Gp) —2~ HY(R, .G%)

! ! I

HY(R,2(G)) —— HY(R, .Gg) —2> H'(R, .G%).

the map ker(.p.) — ker(.p,) is surjective. Since by assumption (b) we have ker(,p,) =
1, we conclude that ,p;1(1) = 1, hence that p;'([z]) = [2] as desired. O

We also need the following fairly general cohomological result.

Lemma 3.19. Let I C A be a subset, and A and object in k-alg. Then.
1. The canonical map H*(A,L;) — H'(A,Py) is bijective.
2. If Pic(A) = 0, the canonical map H'(A,L;) — H'(A,L;/T;) is injective.

Proof. (1) This is a special case of corollary 2.3 of exp. XXVI of [SGA3|.

(2) The sequence of algebraic groups 1 — T; — L; — L;/T; — 1 is central.
According to §111.4.5.3 of [DG], the fibers of H'(A,L;) — H'(A,L;/T;) are suitable
quotients of H'(A, T;). Since T; is a split torus, the hypothesis Pic(A) = 0 implies
that H'(A, T;) = 0. Thus the map H'(A,L;) — H'(A,L;/T;) is injective. O

Proof of Theorem 3.17: We may asume without loss of generality that G # 1.

To establish the injectivity of the map H},, (R,G) — H?*(R,p), we will rea-
son according to the index I of the relevant pairs. Since by Theorem 2.5, the
map HY(K,G) — H?(K,u) is a bijection, it will suffice to show that the map
Hlloop(R, G) — HY(K,G) is injective. Suppose then that we are given two pairs
x = (x1,22) and 2’ = (2, 2}) of commuting elements of finite order of G for which
la(x)]x = [a(@)]x € H'Y(K,G). Since the twisted groups o Gg and )Gr
are then isomorphic, they have same Witt-Tits index I. Theorem 3.1 implies that
I(z)=1(2')=1I.

Step 1: Injectivity for G adjoint when x, ' are of rank zero:

By Lemma 3.18 we reduce to the case of a simple adjoint group. Since G is not
trivial, we have G = PGL,, with n > 2. According to Lemma 3.13, we may assume
(up to conjugacy) that x = (Ad(Y1), Ad(Y2)%), ' = (Ad(Y1), Ad(Y2)?), with d, d’
prime to n. The corresponding twisted K—algebras A(d,n) @z K and A(d',n) @p K
are isomorphic if and only if d = d modulo n. Thus Ad(Yz)? = Ad(Y3)?, and
therefore  and 2’ are conjugated under G(k). Hence [a(x)] = [a(2')] € H,,,(R, G)
as desired.

22



Step 2: Injectivity when x, ' are of rank zero: Again the simple factors of G are
all of type A. Assumption (a) of Lemma 3.18.(4) holds by step 1. Let us check
that assumption (b), namely that H'(R, .Gg) — H'(R, .G%) has trivial kernel for

any [2] € HL, (R, G") corresponding to a rank zero pair. To check this, we may

assume that G is simple, i.e. G = PGL, with n > 2. As in Step 1, the class 2]
corresponds to the R—Azumaya algebra A(d,n) for some d prime to n. The corre-
sponding twisted adjoint and simply connected groups are ,G% = PGL;(A(d,n))
and ,Gp = SL;(A(d, n)) respectively (the latter being the R-group scheme of ele-
ments of reduced norm 1 of A(d,n)). The exact sequence of twisted R-groups

1 — p, — SLi(A(d,n)) — PGL;(A(d,n)) — 1
gives rise to the exact sequence of pointed sets
1 — p,(R) — SLi(A(d, n))(R) — PGL(A(d,n))(R) —

— R*/(R*)*" — H"(R,SL,(A(d,n))) — H'(R,PGL,(A(d,n))).

Since Pic(R) = 1, we have PGL;(A(d,n))(R) = GL1(A(d,n))(R)/R*, and the
boundary map PGL;(A(d,n))(R) — R*/R*" is nothing but the reduced norm mod-
ulo R*". But since this reduced norm map is surjective (Lemma 2.10), the map
H'(R,SL;(A(d,n))) — H'(R,PGL;(A(d,n))) is injective. This completes the proof
that assumption (b) of Lemma 3.18 holds, hence also the proof of Step 2. Accord-
ingly, the map H, lloop(R, G) — H?(R,p) has trivial fiber at loop classes corresponding
to rank zero pairs.

Step 3: Injectivity, the general case: By Proposition 3.11(2) we may assume, after
conjugating & and £’ by two elements of G(k), that both £ and 2’ are pairs of
L; = Zg(T;) inducing rank zero pairs T and ' of Zg(T;)/T;. Consider the exact
sequence of groups

1—>T]—>L]—>L]/T[—>1.

Recall that H'(K,P;) injects in H'(K,G) ([BoT], théoréeme 4.13.a). The map
HY(K,L;) — HY(K,G) is therefore injective by Lemma 3.19(1). Using again this
same Lemma, but now for R, we obtain the following commutative diagram of pointed
sets.

H.,,(RG) < HYRG) —— H'(K G)
| | .
Hlloop(Rv L) ¢ HYRL) —— HY(KL)
N N N
Hlloop(R7 L;/T;) ¢ H(R,L;/T;) —— H'(K,L;/Ty)
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The elements [o(z)] and [a(2')] actually belong to Hy,, (R, L;), and map to [o(Z)]
and [a(z')] in H,,,(R,L;/T;). By chasing the above diagram, we see that [(Z)]x =
[a(z’)]x in H'(K,L;/T;), and that the rank zero pairs  and z’ of L;/T; have the
same image in H'(K,L;/T;). By Step 2 then [a(Z)] = [a(2')] in H},,,(R,L;/T;). A
second diagram chase enables us to conclude that [o(z)] = [a(2’)] in H},,,(R, L;).

Step 4: surjectivity: Given ¢ € p ~ H?*(R,u), Lemma 3.15 provides an almost
commuting pair £ = (1, z2) of elements of finite order of G(k) such that u(z) = ¢~
By Proposition 3.16 we have §(a(x)) = u(z) ™ =c. O

3.6 Failure in the anisotropic case

The following example is analogous to the construction by Ojanguren-Sridharan
of reduced rank one projective quaternion modules over the real affine plane, which
are not free [OS].

Proposition 3.20. Let n > 2 be an integer, and let A = A(1,n) the standard Azu-
maya algebra over R = k[t¥*, 3] with generators T1, Ty, and relations TP = t,, Ty =
ty and 15T, = ¢,/ T\T;5. The equation

(1+T)A= (1+To)u

defines an invertible A—module L which is not free. The Azumaya algebra End (L)
has same class than A in the Brauer group, but is not isomorphic to A.

The proof is based on a valuation argument on the division algebra Ax. We equip
the additive group I' := R @ R with the lexicographical order, and define a valuation
v:R\{0} =T by

o(D @y tith) = Mine{ (j,4) | ai; #0} €T,
Y]

We denote by P +— P the specialisation map k[t;,t;] — k at the point (0,0). As
before, N : A — R denotes the reduced norm of A ([K2], .7.3.1.5).

Lemma 3.21. Given a non zero element
Tr = Zai’j TfTQJ S A, Qj 5 S ]{7,

define va(z) = £ Minp{ (5,4) | a;; #0} €.

1. vy 18 a valuation on A which extends v on R. Furthermore



2. If va(x) >0, then N(x) = ago™.

For valuation theory on division algebras, we refer the reader to the nice survey
by Wadsworth [W2].

Proof. (1) The completion of K = k(t;,ty) with respect to v is the field F' =
k((t1))((t2)). Extend the function v4 to Ay by the formula

w(i iai,ijTg> = Infp{(j, i) | oa; # O} el
Jj=—p i=pj

Since Ap is a cyclic division algebra, example 2.7 of [W2] states that the map w is
a valuation on Az.2 So vy is a valuation. The formula vy = %v o N was proven
independently by Ershov [E1][E2] and Wadsworth [W1].

(2) This is a special case of a formula due to Ershov ([E1], Corollary 2). O
n—1

Proof of Proposition 3.20: Put ¢ = (, and ¢ = [] ¢ = (=1)""'. The module
i=0

L is the kernel of the map f: A® A — A, (A, u) — (1 +T1)A — (1 + Ty)p. Since
f(A+T5,14+T)) = ThTy — ToTy = (1 — ()11 is invertible, f is split surjective. Thus
L is a projective module of reduced rank 1. Assume that L is free, i.e £ = (Ao, po) A
with (Ao, to) € A% By taking reduced norms, we have

(3.5) N(Ao)N(L +T1) = N(uo)N(1+1T).

For a non zero element a € A, by Galois descent, there exists a unique element
N’(a) € A such that N'(a)a = aN’(a) = N(a) € A. Since

F(N(U+T)(1 4+ T3),N(1+ 1)) = N(1+ T)(1+ T5) = (14 T)N(L+Ty) = 0,

we have

(3.6) (N’(1 +T)(1+Ty), N(1 + T1)> — (o, i), @ € Al
By comparing norms on (3.6), we obtain

N(Xo) | N(1 4 T71)" 'N(1 + T3) and N(yuo) | N(1 + T3)".

8Schilling’s theorem states actually that w is the unique valuation on Ap extending v (loc. cit,
corollary 2.2).
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Similarly, since f(N(1 +Ty),N(1 +T1)(1+T2)) — 0, we have N(\o) | N(1+T5)" and
N(po) | N(1 + T7)N(1 + Ty)"'. We also have

NA+T) = [[ Q+¢T) =1+et,

and similarly N(1 + T3) = 1 + eto. The above yield the following three identities.
1. N(Ao) (1 + et1) = N(uo) (1 + eto);
2. N(Ag) | (1 +eto)™ and N(Xg) | (1 + ety)" 1 (1 + et);

- N(uo) | (14 et1)™ and N(puo) | (1+ €ty) (1 + etz)"~".

(

Thus N(A\g) = (1 + eto)u and N(uo) = (1 + €t1)u for some u € R*. Since the reduced
norm N : A* — R* is surjective (Lemma 2.10), we may henceforth assume with no
loss of generality that N(\g) = 1 + ety and N(ug) = 1 + et;. We have v(1 + €t;) = 0,
so Lemma 3.21 shows that v4(uy) = 0 and similarly we have v4(\g) = 0. Hence

3

)\0 = aop,0 + Z Qg j TfTQj, Qj, - ]{Z,
(4,9)>(0,0)

po=boo+ > b TiT4, b€k
(4,5)>(0,0)
with agg,bp0 # 0. Lemma 3.21(2) enables us to specialize at (0,0) the equality
N(Xo) = 1+ €ty. This yields app™ =1 and by " = 1. On the other hand, the equation
(14 T1)Ao = (1 + Ty)po now implies that ago = bpo. Thus, after multiplying A\g and
to by the n-root of unity ag o, We may assume that agg = by = 1 while still keeping
the identities N(Ag) = 1 + ety and N(pg) = 1 + €t;.

We now look at the behavior at infinity by considering the valuation v, on R
which is the highest bidegree with respect to to, t;. We extend v, to a valuation
Uso.a 01 A as in Lemma 3.21. Since v, (N(Ag)) = voo(1 + €t2) = (1,0), it follows that
Uso,a(Ao) = 2(1,0). Hence A\g = 1+ (.75 for some 4. Similarly pg =1+ ¢J7}. In all
cases, we have (1 + T1)\g # (1 + T3)up which is a contradiction.

We conclude that £ is not free. The Azumaya algebra End, (L) has the same
class than A in the Brauer group. Since Pic(R) = 0, lemma 4.1.(3) of [GP2] enables
to conclude that End4 (L) is not isomorphic to A. O

Corollary 3.22. There exists an R-Azumaya algebra® M which is a non trivial
Zariski form of A(1,n). Moreover, [M] and [A(1,n)] € H'(R,PGL,) have same
connecting invariant 1 € Z/nZ = H*(R,p,,).

9The Margaux algebra.
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Remark 3.23. By twisting by A the exact sequence 1 — u, — SL,, — PGL,, — 1,
the last assertion can be rephrased by saying that H'(R,SL;i(A(1,n))) # 1. This
shows that, in contrast to the nullity 1 case of k[tlﬂ], the analogue of Serre conjecture
IT for k[t5, t5°'] fails (see Question 2.6).

4 Twisted forms of algebras over rings

In this section the base field k is of arbitrary characteristic. Throughout A will de-
note a finite dimensional k—algebra (not necessarily unital or associative; for example
a Lie algebra). All rings are assumed to be commutative and unital.

4.1 Multiplication algebras and centroids

Let R be a ring. For an arbitrary R-algebra L, recall that the multiplication
algebra Multg(L) of L, is the unital subalgebra of Endg(L) generated by {1, l,,7.},
where [, (resp. 1) denotes the left (resp. right) multiplication operator by the element
x € L. The abelian group £ has a natural left Multg(L£)-module structure, and an
algebra structure thereof if the ring Multg(£) is commutative.

The centroid Cr(L) of L, is the centralizer of Multg (L) in Endg(L). Thus Cr(£)
is the subalgebra of Endg(L) consists of all the endomorphisms of the R-module £
that commute with right and left multiplication by elements of L, i.e.

Cr(L) ={x € Endg(L): x(zy) = x(z)y = xx(y) for all z,y in L}.

For r € R, define A\, € Endg(L) by A\.(x) = rz. Then A, € Cg(L), and the map
Az @ — A is a ring homomorphism from R into Cr(L). Recall that £ is called
central if A\ is an isomorphism. If £ is a faithful R—module, the map A, is injective
and we may, and at times will, identify R with a subring A (R) of Cr(L).

Let £' = {>_ zy; : x5, y; € L} (finite sums of course). L' is a two-sided ideal of L,
and we recall that £ is called perfect if £L = L’.

Lemma 4.1. Let £ be an R-algebra. Let Ry — R by any (unital) ring homomor-
phism, and denote by Ly the resulting Ry—algebra structure on L. Then.

1. L is perfect as an R—algebra if and only if Ly is perfect as an Ry—algebra.

2. Assume L is a perfect R—algebra. Then Cg(L) is commutative and the canonical
map Cr(L) — Cgr,(Lo) is a ring isomorphism.
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Proof. (1) is clear. That Cg(L) is commutative is proved in[J, Ch. X lemma 1]. The
remaining point is that, because L is perfect, any endomorphism of the additive un-
derlying group of £ that commutes with right and left multiplication, is automatically
R-linear (see [ABP2, lemma 4.1] for details). O

Remark 4.2. We will be interested in looking at £ not only as an R-algebra, but
also as a k—algebra. The loop algebra attached to an affine Kac-Moody case is a
good example to have in mind. These are infinite dimensional algebras over C, but
much can be gained by looking at them as algebras over their centroids (which are
Laurent polynomial rings). In view of this last result, if £ is perfect, its centroid is
independent of which of these two base rings one uses.

4.2 Forms of simple algebras over rings

Recall that A is a finite dimensional k—algebra. Throughout R denotes an object
of k—alg.

Definition 4.3. An R—form of A is an algebra £ over R for which there exists a
faithfully flat and finitely presented extension S/R in k—alg such that

(4.1) LRRS~s AR S
(isomorphism of S—algebras).

Remark 4.4. Since A®S ~ (A®R)®gr S, the R—algebra L is nothing but an R—form
(trivialized by Spec(S) in the f.p.p.f. topology of Spec(R)) of the R-algebra A ® R.
Since Spec(R) is affine, the isomorphism classes of such R—algebras are parametrized
by H}ppf(R, Aut(AR)); the pointed set of Cech cohomology on the (small) f.p.p.f.
site of Spec(R) with coefficients on Aut(Ag). The R—group sheaf Aut(Ag) is in fact
an affine R—group scheme (because A is finite dimensional). We have Aut(Ag) =
Aut(A)g. If Aut(A) is smooth (for example if char(k) = 0), then S in (4.1) may be
assumed to be an étale cover. (see [SGA3] and [M] for details).

Example 4.5. (1) If A is the matrix algebra of rank n, the R—forms of A are the
Azumaya algebras over R of constant rank n.

(2) If g is a finite dimensional simple Lie algebra over an algebraically closed field
k of characteristic zero, then the k[t*!]-forms of g are precisely the affine Kac-Moody
Lie algebras (derived modulo their centres) over k. This is consequence of an analogue
of Serre Conjecture I for the Dedekind ring k[t=!]. See [P2] for details.

Lemma 4.6. Let £ be an R—form of a finite dimensional perfect and central finite
dimensional k—algebra A.
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1. L is perfect. In particular, its centroid Cr(L) is commutative and coincides

2. As an R—module, L is faithfully projective (in particular of finite type).

3. The canonical map Ay : R— Cgr(L) is a ring isomorphism. In particular, L is
central as an R—algebra.

Proof. (1) We have

(E/E/) ®RSZ£®RS/£/®RSEA®S/(£®RS)/
~A®S/(A®S) =0

(the first isomorphism because S/R is flat, the last equality because A, hence A® S,
is perfect). Since S/R is faithfully flat, £/L£" = 0. The assertions about the centroid
now follow from Lemma 4.1.

(2) After a faithfully flat base change £ becomes free of finite rank. By descent
properties then, £ is a projective R—module of finite type. To see that this module
is faithful, observe that if € R annihilates £, then the image s of r in S annihilates
the S—module L ®p S ~ A® S. Thus s = 0 (the k—algebra A, being central, cannot
be zero dimensional). Since S/R is faithfully flat, » = 0 as desired.

(3) Since L is faithful, the canonical map Az : R — Cg(L) is injective, and we may
thereof identify R with a subring A\(R) of the (commutative) ring Cr(L). Since L is
projective of finite type, the canonical map ¢ : Endg(L) ®p S — Ends(L ®g S) ~
Ends(A®S) is an S—algebra isomorphism. Clearly ¢(Cr(£)®gS) C Cs(A®S) ~ S
(the latter by [ABP2.5] lemma 2.3(a)). It follows that ¢(Az(R) @& S) = ¢(Cr(L) @r
S). Thus the inclusion Az(R) @z S C Cr(L) ®p S is an equality (being an equality
after applying ¢). By faithful flatness, Az(R) = Cr(L) as desired. O

Remark 4.7. Let £, and £, be R—forms of a finite dimensional perfect and central
k—algebra A. If ¢ : L1 — L is an isomorphism of k —algebras, then C(¢) : Cx(L1) —
Cy(Ly) given by x — ¢x¢~! is an isomorphism in k—alg. By part (3) of the last
Lemma, there exists a unique QAS € Auty(R) such that the diagram

R i R
)‘£1 l l )‘ﬁg

commutes. We have

~

¢(rz) = ¢(r)o(z)
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forall 7 € Rand x € L. To say that ¢ is R-linear, is to say that <$ =1.IfY: Ly — L3
is another isomorphism as above, then 1 o ¢ = 1 o ¢.
.From the foregoing we obtain the following useful exact sequence of groups

(4.2) 1 — Autp(L) — Auty(L) - Autp(R)

for any R—form L of A. This last map need not be surjective, and even when it is,
the sequence need not split. Notwithstanding all of these problems, (4.2) is enough
to completely describe the group Aut(L) of automorphisms of the k—algebra £ in
many interesting cases (see Examples 4.11 and 5.5 below, and also [PPS]).

Remark 4.8. Let g be a finite dimensional simple Lie algebra over k, with k alge-
braically closed of characteristic zero. Let R, = k[ti', ...,t]. As we saw in Example
4.5(2) , the case n = 1 corresponds to the affine Kac-Moody algebras. In general,
there is a delicate connection between R,,—forms of g and centerless cores of Extended
Affine Lie Algebras (EALA’s for short). As their name suggest, these algebras are
higher nullity analogues of the affine algebras (see [AABFP] for details).

Neher has described ([N1] and [N2]) a precise procedure for building up a (tame)
EALA out of centreless cores. It is not our intention to go into details about this
construction, and the affine case will suffice to illustrate the spirit of how this goes.
The centreless core £ is in this case a “loop algebra” L(g, o) (see §6.2). One builds an
EALA out of this by considering the universal central extension of £ (which happens
to be one dimensional), and tacking on a degree derivation. The algebra obtained is
in this case an affine Kac-Moody Lie algebra.

The above showcases the crucial role that centreless cores play in the theory of
EALAs. One of the main Theorems of [ABFP] shows that centreless cores which are
finitely generated as modules over their centroids,'® are always k[, ..., t5']-forms of
a finite dimensional simple Lie algebra g. Centreless cores thus fall within the present
language of forms. We believe that the approach described herewith is a new useful
tool for the study of EALAs.

Our approach also sheds insight into some of the fundamental results of EALA
theory. For example, Neher has shown that the centerless cores £ under consideration,
are always free module of finite rank over their centroid. But since £ is a form of
some g as above, the previous Lemma tells that the R—module L is finitely generated
and projective. Given that in the present situation R = k[ti, ..., £1], freeness follows
from a well-known theorem of Quillen and of Suslin.

10The ones which are not are fully understood.
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4.3 Invariance of type

Let a € Autg(R). Define a new R—module structure on £ by r-x = a(r)zx. We de-
note the resulting R—-algebra structure by £ to avoid confusion. (The multiplication
in L coincides with that of £. It is the R—module structure that has changed.)

Assume ¢ : R — S is an fppf base change for which there exists an S—algebra
isomorphism ¢ : L&Xr S ~ A® S. Then i, =10a: R — S is also fppf, and there
exists a unique S—algebra isomorphism

wa: a£®RsﬁA®S

satisfying v, (r®s) = ¢ (z®s) (where on the left hand ® g we view S as an R—algebra
via i,). Thus ,L£ is also an R—form of A, said to be obtained from L by twisting by
a. Note that id : ,£ — L is a k—algebra isomorphism, and that id = « (see Remark
4.7).

Theorem 4.9. [Invariance of type| Let Ly (resp. Ls) be an R—form of some finite
dimensional perfect central k—algebra Ay (resp. As). If L1 and Ly are isomorphic as
k-algebras, there exists a finite field extension K /k for which Ay ® K and Ay @ K are
isomorphic as K—algebras. In particular, if k is algebraically closed then Ay, and As
are isomorphic.

Proof. Let ¢ : L1 — Ly be a k-algebra isomorphism, and let (E € Autg(R) be the
corresponding automorphism at the centroid level (Remark 4.7). Denote &5\_1 by «a,
and consider the twisted algebra ,£;. Then the k-algebra isomorphism ¢, = ¢ o id :
oL1 — Lo satisfies ¢, = id. It follows from this that we may (and henceforth do )
assume with no loss of generality that our ¢ is an R-algebra isomorphism.

Consider the “switch” o : 571 ® S — Sy ® S;. Fix S;—algebra isomorphisms
Vv L; ®p S; — A; ® 5;. The composite map

Ty Lo @p S DS % Ly @RS @S P A 28598 9 A,08 0S5,

is an isomorphism of S; ® Ss—algebras. Thus the composite map

. o -
¢3A1®51®52¢£>1d£1®1%51®52 ¢@>ld£2®R51®52 ﬂ>A2<§§>51®52
is also an isomorphism of S; ® So—algebras.

Let m be a maximal ideal of S; ® S, and let F' = (S7 ® S3)/m the corresponding
quotient field. Our ¢ : A;®S571®Sy — Ay ®S71® S induces, upon reduction modulo m,
an F-algebra isomorphism ¢ : A; ® F — A, ® F. Since the A, are finite dimensional,
we may replace I’ by a subfield K which is finite dimensional over k. O
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4.4 Twisted automorphism groups

As before, A denotes a finite dimensional k—algebra, and £ an R—form of A. Our
next objective is to look in some detail at the group of automorphisms of £. For
simplicity we will henceforth assume that the extension S/R trivializing £ is finite
and Galois. By the Isotriviality Theorem of [GP1], this assumption is superfluous in
the case we are interested in, namely Laurent polynomials in finitely many variables
over a field of characteristic zero.!!

Let G = Aut(A). This is a linear algebraic group over k whose functor of points
is given by

(4.3) G(S) = Mory_.en (Spec(S), G) = Auts(A ® ),

where the latter is the abstract group of automorphisms of the S—algebra A ® S.
Each v € I' = Gal(S/R) induces an automorphism v* of Spec(S) as a scheme over
Spec(R), and a fortiori also as a scheme over Spec(k). For v € " and g € G(S) =
Mory,_en ( Spec(S5), GR), define

(4.4) Tg=goy".

This yields an action of I" on G(5). (If one thinks of g as a matrix with entries in S,
then 7g is nothing but the matrix obtained by applying 7 to each entry of g).

We now look at the k—group functor Aut(G) of automorphisms of G. By defini-
tion, for any S in k—alg

(4.5) Aut(G)(S) = Aut(Gg).

Some care is needed not to misunderstand this definition. The right hand side is the
(abstract) group of automorphisms of the S—group Gg obtained by the base change
S/k, and not the group of automorphisms of the group G(.5).

We will henceforth assume that the k—group Aut(G) is representable (for ex-
ample G reductive). Just as in (4.4) above, the group I' acts on Aut(G)(S) =
Mory_scn ( Spec(S), Aut(G)) by means of I'*.

Next consider the group homomorphism

int : G — Aut(QG)

given by conjugation. Fix an element g € G(S). Then the composite sequence

Spec(S) AN Spec(S) -+ G nt, Aut(G),

' The industrious reader may rewrite this section in the general case.
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together with the definition of the action of I' on Aut(G)(5), readily yield the equality
(4.6) “int g = int 7g forall ge G(S)andyel.

We now return to our twisted form £. Up to R—isomorphism, we may assume
that

(4.7) L={rcA®S: u,"z=uaforallyel}

for some fixed cocycle u = (uy)ser € Z*(T, G(S)). From (4.6) it follows that @, :=
int u, defines a cocycle u € Z'(T', Aut(G)(S)). Let 3G be the corresponding twisted
group. This is an affine R—group scheme which becomes Gg = Aut(Ag) after the
base change S/R.

Proposition 4.10. With the above notation and asumptions we have
Autgr(L) = (zGr)(R).

That is, the automorphisms of the twisted R—algebra L, are precisely the R—points of
the corresponding twisted group ;Gg.

Proof. By definition
(aGr)(R)={0 € Auts(A®S): u, "0 =0for ally € I'}.
Thus, if § € 7Gr(R) and x € L C A® S (see (4.7)), we have by (4.4) that

uy, Y(0(2)) =y 0 7w = uy, Y0uS s, T
= (u, "0)(x) = 0(x),

thereby showing that 6 stabilizes L.

Conversely, let 7 € Autg(L). Then 6 :=7®1 € Auts(L®r S) ~ Autg(A®RS) =
G(95). For x € L we have as above, that 0(z) = (4, 70)(z). Thus § = u, 76 when
restricted to L. Since £ spans A ® S as an S—module, the result follows. O

This last Proposition, together with Remark 4.7, can be put to good use to study
the group of automorphisms of many important families of infinite dimensional Lie
algebras.'> We will illustrate how this goes via two interesting examples; quantum
tori (immediately below) and affine Kac-Moody Lie algebras (Example 5.5).

12Most notably Extended Affine Lie Algebras.
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Example 4.11. (Quantum tori) Assume k contains a primitive n—th root of unity

Cn, and consider the quantum torus A, where ¢ = ( CEl C{‘) . By definition, A, is

the associative unital k-algebra generated by 77" and T3 subject to the relations
TT7'=1=T7'T, and ToT) = (T Ts.

The center of A, is R = k[ti',13'] where t, = 7). Thus A,, as an R-algebra, is
nothing but the cyclic algebra (t1,t2, () g. In particular, A, is an R-Azumaya algebra
of constant rank n. Furthermore

Aq ®p S~ Mn(S)

Since the Picard group of R is trivial, every R-linear automorphism of A, is inner.
By Proposition 4.10, the R-group of such automorphisms is a twisted form ; PGL,,
of PGL, . In particular (FPGL, r)(R) ~ AX/R* is a finite group. These are the
R-linear automorphisms of the k-algebra A,. To complete the picture we can use
Remark 4.7. For example if k%" = k*, an easy calculation shows that the canonical
map

“ o Aut(A4,) — Auty(R) ~ (k) x GLy(Z)

is surjective if n < 2, and has image (k*)? x SLy(Z) if n > 2 (¢f. [OP] and [N])

4.5 Graded considerations

The material in this section will play a crucial role in the Recognition Theorem
for multiloop algebras in §6.4. The reader may want to postpone reading this section
until then.

Let A be an abelian group (denoted additively). A A—grading on a k—algebra B is
a collection of subspaces {B*}\ca indexed by A such that

(i) The sum Y B is direct and equals B.
AEA

(ii) B*B* C BM*# for all A, p € A.

All of this information will be summarized by the expression “ B is a A—graded
k—algebra”. For a A—graded k—algebra B, the following two conditions are easily shown
to be equivalent.

(GSI) B # {0} and the only homogeneous ideals of B are {0} and 5.
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(GSII) B # {0} and Multg(B)z = B for all nonzero homogeneous x in .

We then say that B is graded simple.

Remark 4.12. Let B be graded simple. Then B is a monogenic Mult,(B)-module
(in particular, finitely generated). By lemma 4.2.3 of [ABFP], the centroid of B
is also A-graded. Thus, if x € Cy(B)\{0}, there exist unique Ay,..., A\, € A and
X1 - -+, Xn € Cr(B) such that

X =X1+- "+ Xn, and
xi(BY) € BM* forall A€ A and 1<i<h.

Definition 4.13. Let S be a A—graded object of k—alg. An S/R—form L of A is
said to be A—graded, if there exists a A—graded structure on the k—algebra £, and an
S—algebra isomorphism ¢ : L ®r S — A ® S which are compatible with each other,
that is

Y(Lr®1)Cc A S

for all A € A.

Proposition 4.14. Let A be a finite dimensional central simple k—algebra, and
S = @ S* a graded simple object of k—alg.
AEA
1. With the natural A—grading on A® S given by (A®S)* = A®S?, the k—algebra
A® S is graded simple.

2. Let L be a A—graded S/R—form of A. Then L is a graded simple k—algebra.
Furthermore, R is naturally identified with a graded k—subalgebra of S, and the
canonical map Az : R — Cy(L) is a A—graded isomorphism.

Proof. (1) Let x € (A® S)* be a nonzero element, and set M = Mult,(A ® S)z. We
must show that M = A® S. Write z = > a; ® s; with a; € A linearly independent,
and s; € S* nonzero. By Jacobson’s Density theorem (see the proof of Ch.X, theorem
3 of [J]), there exists a € Multy(A) such that aa; = a; and aa; = 0 if ¢ > 1. This
shows that a; ® s; € M. Let s € S. Since S is graded-simple, there exists s’ € S such
that s's; = s. Similarly since A is simple, there exist a’ € A such that a’a; # 0. Then

day®@s=(ad ®s)(a ®s) € M.

Thus A®s = (Multy (A)®@1)(d'a; ®s) C M for all s € S. It follows that M = A® S
as desired.
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(2) Fix an S—algebra isomorphism ¢ : L& S — A® S which is compatible with the
A—gradings. We begin with three general observations that will be used in the proof.

(a) Let a : R — S be the underlying map to the R-algebra structure of S, and
let 6: L —L®1C L®S the canonical map. Because « is faithfully flat, both «
and ( are injective.

(b) Every element of A® S is a sum of elements of the form siy(y® 1) withy € £
and s € S.

(c) The associative unital k—algebra Multy (L) has a natural A—graded structure.
Right and left multiplication by elements of £ generate a graded (two-sided) ideal
Multy, (L)1 of Multg(L).

Fix a nonzero homogeneous element x of £. Let N = Mult,(L£)"z. This is a
submodule (in fact an ideal) of the R-algebra £ which is graded as a subspace of L.
We claim that N # 0. For otherwise, for all s € S and y € £ we have

PEe1)(sP(ye1)) =stp(ry®1) =0=sy(yz® 1) = (s (y @ 1))Y(z @ 1).

It now follows from (b) above, that ¥(z ® 1) is killed by left and right multiplication
by all elements of A ® S. Thus the one-dimensional space k)(r ® 1) C A® S is a
nonzero graded ideal of A® S. By part (1) we obtain k¢(z®1) = A®S. Since A® S
is perfect and nonzero, we must have 2> ® 1 # 0. By (a) then, 2> # 0. But this is
impossible since 22 € N. Thus N # 0 as claimed.

Let M be the S—submodule of A ® S generated by (N ® 1). We claim that
M = A® S. By part (1), it will suffice to show that M is a nonzero graded ideal of
A® S. That M # 0 follows from (a) and the fact that N # 0. Our assumption on
¥ implies that the subspace (N ® 1) of A ® S is graded, hence M is also a graded
subspace of A ® S. To show that M is an ideal of A ® S, observe that for s € S and
y € L we have

(sv(y@1)Y(N @1) = s(¢(y @ 1)yp(Multy(£) Tz @ 1))
C s(Multy(L)Tz ® 1) = sN C M.

By (b) above M is a left ideal of A ® S. Similarly, M is a right ideal. The claim
follows. As a consequence, we conclude that

VIN@RS)=A®S =¢(L3gS).

Thus the canonical injective map N®gS — L®gS is in fact an equality. By faithfully
flat descent N = L as desired. This finishes the proof that £ is graded—simple.

It remains to show that the induced map at the centroid level preserves the A—
gradings (see Remark 4.12). Let r € R. Write a(r) = Y. s; with s; € S*. For
x e L

Yreel) =19z Z i) = Z sip(rz @ 1).
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Since rx € L, we conclude by graded considerations that s;)(£L ® 1) C ¥(L ® 1).
Consider x; : £ — L defined by y;(z) = 7'\, v3(x). Then

xi(zy) = 877 A, (Ve @ 1)i(y ® 1))
Y (Y e Dy @ 1))
= X (y)-
Similarly x;(zy) = xi(z)y. Thus y; € Cx(L). By Lemma 4.6.3 there exists a unique
r; € R such that x; = A,,. It follows from the definitions that a(r;) —s; kills ¢ (z ® 1).
Since the S module A®S is free, we obtain a(r;) = s;. This shows that R is identified,

via o, with a graded k-subalgebra of S. Finally, one checks that R*£*®1 C LM ® 1.
This immediately shows that the isomorphism A\, : R — Cy(L£) is A—graded. O

5 Forms of algebras over Laurent polynomial rings

Throughout this section k is assumed to be algebraically closed and of charac-
141 1
teristic 0. Recall that R, = k[tf',...t3!], that R,, = k[tfd,tzid,---tfd], and
141 1
that Rpe = lim Ryq. At the field level we have K, g = k(t; 4,6, %, - t»?) and
b} ﬁd b b

Kn,oo = h_IIl)d Kn,d-
5.1 Multiloop Algebras

Throughout this section A is a finite dimensional algebra over k. Recall that
(Cn)n>o in k™ is a compatible family of primitive roots of unity.

We begin by introducing the ingredients needed in the definition of multiloop
algebras. Let ¢ = (01, ...,0,) be a commuting family of finite order automorphisms
of the k—algebra A. Let d be a common period of the g;, i.e. o¢ = 1.

For each (iy,...,i,) € Z", consider the simultaneous eigenspaces

A i ={reA: oj(z) = C;j:c forall 1<j<n}

(which of course depend only on the i; modulo the d). The multiloop algebra associ-
ated to this data is the k—subalgebra £ of A ® R, o, defined as follows:

(5.1) L=L(A0)=0A; ; ot 4"/l C AQ Ryy C A® Ry oo.

Remark 5.1. Observe that £ does not depend on the choice of period d, and that
L has a natural R,—algebra structure.
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One easily verifies that
L ®r, Rna =g, , A Ry

Since R, 4/R, is free of finite rank (hence fppf), £ is an R,form of A which is
trivialized by the extension R, 4/R, (in the sense of §5).

From this last Remark it follows that to a multiloop algebra £ as above, corre-
sponds an R,—torsor X under the group Aut(A)."* By descent theory, X, is rep-
resentable by an affine R,—scheme. The functor of points of X is easily described:
For all S € R,,—alg

XL;(S) = HOIIIS,alg(;C ®Rn S, A &® S)

The isomorphism class of the R,,—torsor X, will be denoted by [Xg] Thus

(5.2) [X.] € H},(Rna/Rn, Aut(A)) C H}(R,, Aut(4)).
Recall the exact sequence of algebraic k—groups
(5.3) 1 — Aut’(4) — Aut(A) — Out(A) — 1,

where Out(A) = Aut(A)/Aut’(A) is the finite constant k-group of connected com-
ponents of Aut(A). Let Out(A) = Out(A)(k), and let™ : Auti(A) = Aut(A)(k) —
Out(A) be the canonical map. The kernel of ~ is Aut’(A4)(k).

The extension R, 4/R, is finite Galois. Its Galois group I',, 4 is henceforth iden-
tified with (Z/dZ)"™ acting naturally on R, 4 via our fixed choice of compatible roots
of unity; namely é(til/d) = ;iti/d for all e = (eq, ..., e,) € Z™. If we now let I" acts on
Aut(A)(Rnq) = Autr, ,—ag(A® R, 4) by conjugation, i.e. 7o = (1®7)o(1®(—7)), we
have a natural correspondence H' (T, 4, Aut(A) (R, 4)) ~ H} (Rna/R,, Aut(A)). In
terms of H'(T',, 4, Aut(A)(R,.4)), the loop torsor X, corresponds to the cocycle a, €
Z (Tha, Aut(A)(Ry,q)) given by (ag)s =07 ...0,® id € Autg, , ay (AR Ry q).
We have a natural correspondence ([SGA1, Exp XL5]).

(5.4) H,,(R,,Out(A)) ~ H},(m(R,), Out(A))
Remark 5.2. Since the fundamental algebraic group m(R,,) of Spec(R,) is identi-

fied with (2)" via our choice of compatible primitive roots of unity (Corollary 2.11
and Remark 2.13 of [GP2]), the set HY(m(R,), Out(A)) is nothing but the set of
conjugacy classes of commuting n—tuples of elements of finite order automorphisms
of Out(A). This interpretation plays a crucial role in the classification of multiloop

algebras by cohomological methods.

13Strictly speaking, the structure group is the affine R,-group Aut(4 ® R,). As already men-
tioned, this harmless slight abuse of notation is used throughout.
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Under the canonical map
H}(R,, Aut(A)) — HY (R, Out(A)) ~ H)(mi(R,), Out(A))

arising from (5.3) and (5.4), our [X.] = [a] maps to the class [@,] of the unique
cocycle (= continuous homomorphism) @, : m(R,) — Out(A) satisfying

— —én

e—ao,'...7,

for all e = (e, ...,e,) € Z".

Define an action of the group GL,,(Z) on the set of n—tuples of commuting elements
of finite order of Aut,(A) as follows: for @ = (a;j) € GL,(Z) and 0 = (04,...,0,) as
above, set

(‘o) = H o7 and %0 = (("0)1,...,(%0)n).

Non-abelian cohomology allows us to classify isomorphism classes of multiloop
algebras as algebras over R,,. One is however interested in the classification of these
as algebras over k. The following lemma is therefore most useful.

Lemma 5.3. Let A be finite dimensional perfect and central algebra over k. If o =
(01,...,00) and T = (71,...,T,) are two n—tuples of commuting automorphisms of
finite order of A, the following conditions are equivalent:

(1) L(A,0) ~;, L(A,T).
(2) L(A*0) ~p, L(A,T) for somea € GL,(Z).

Proof. Let ¢ : L(A,0) — L(A,T) be an isomorphism of k—algebras. Identify R,, with
the corresponding centroids (Lemma 4.6), and consider ¢ € Auty(R,) such that
o(rz) = 5(7")(;5(@ for allr € R, and z € A (see Remark 4.7). We have (E(tl) =
Ait1 L ten for some a = (a;;) € GL,(Z) and some \; € k*.

Identify L(A,o) with a k—subalgebra of A ® R, 4 for a suitable d (Remark 5.1).
Fix v; € k* such that 4¢ = );. Let « be the unique element of Auty (R, 4) satisfying
£/ s i/ e/t A straightforward calculation shows that the automorphism
1 = 1®a of the k-algebra A® R, 4, induces an isomorphism of L(A,a) onto L(A4, o).
At the centroid level we have 1Z = gg It follows that the k-linear isomorphism ¢o~! :
L(A, %) — L(A,7) is in fact R,-linear.

The converse is clear since L(A,o) and L(A, ®0) are evidently isomorphic as
k—algebras as explained above. O

Corollary 5.4. Let o and T be two finite order automorphisms of a finite dimensional
perfect central k—algebra A. Then L(A,0) ~ L(A,7) if and only if L(A,0) ~g,
L(A,7) or L(A,071) ~p, L(A,T). O
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5.2 The case of Lie algebras

The algebra A is now a finite dimensional (split) simple Lie algebra over k. To
follow standard practices, we will denote A by g. The relevant exact sequence of
algebraic groups is

(5.5) 1 — G* — Aut(g) — Out(g) — 1,

where Out(g) is the finite constant group corresponding to the (abstract) finite group
Out(g) of automorphisms of the Dynkin diagram of g ([SGA3] Exp. XXV théoreme
1.3). The sequence (5.5) is split. We fix a section Out(g) — Aut(g) and identify
thereof in what follows Out(g) with a subgroup of Aut(g)(k) = Autg(g).

Example 5.5. (Affine Kac-Moody Lie algebras) Let L be an affine Kac-Moody Lie
algebra over k, and £ be the derived algebra of £ modulo its centre. As shown by
Kac, there exists a finite dimensional simple Lie algebra g, and an automorphism 7
of the corresponding Dynkin diagram, such that

(5.6) L~ L(g,m).

As already mentioned, here and elsewhere 7 € Out(g) is viewed as an element of
Autg(g) via our fized section of the split exact sequence (5.5) above. Thus loop
algebras (in nullity 1) provides us with concrete realizations of the affine algebras.!*

The structure of the group of automorphisms of an arbitrary symmetrizable Kac-
Moody Lie algebra (derived modulo its centre), was determined in [PK]: It is gener-
ated by the “adjoint” Kac-Moody group, together with a “Cartan-like” subgroup H ,
the symmetries of the extended Dynkin diagram, and the so-called Chevalley involu-
tion. In the case of an untwisted affine algebra , namely 7 = 1 in (5.6), it is known
that the adjoint Kac-Moody group is nothing but G (k[t*']) above.

The present cohomological viewpoint yields a new concrete realization of the auto-
morphism group in both the twisted and untwisted affine case. To illustrate, consider
the case of the twisted algebra L of type BC’,(f_)Q, n > 2 (type Ale in Kac’s nota-
tion). Here g = sl,(k), 7(X) = =X, R = k[t*1], S = k[t*/2]. The Galois group T
of the extension S/R will throughout be identified with Z/27Z via *(t'/?) = —t'/2. The
cocycle u € Z*(T, Autg(sl, ® S)) defining £ is given by uy = 7~ = m. The R-linear
automorphisms of £ are the R—points of the twisted R—group that fits into the split
exact sequence

1— #PGL,r— Autg(L) — Z/2Z — 1.

A priori, the affine algebras are given by generators and relations & la Chevalley. This presen-
tation does not provide much insight into the nature of the algebras.

40



This sequence is obtained by first applying the base change R/k to (5.5), and then
twisting by u as prescribed by Proposition 4.10.

We can give an explicit description of the R-points of the twisted group w PGL,, i .
Indeed. The exact sequence of R—groups schemes

1—G,r—GL,r — PGL,p —1

can be twisted by w. The obstruction to the map 3 GL,, r(R) — 5 PGL,, g(R) being
surjective lies on H'(R, #Gm.r). But this H ! vanishes. One can see by general con-
sideration [P2], or by direct computation by interpreting zG,, r as a kernel of a Weil
restriction, namely

Ns/r
1— ﬂGm,R - RS/RGm,S - Gm,R - ]-7

and then passing to cohomology (Ng/p is surjective because k is algebraically closed,
and H'(R, Rs/rGm,s) = H'(S, Gyns) = Pic(S) =0 by Shapiro’s Lemma).

The outcome is that R-linear inner automorphisms of our Kac-Moody algebra L,
i.e. the R—points of the image of ; PGL, g inside Autg(L), are given by conjugation
by a matrix X € GL,(9) satisfying 7' X = v'Xu ™' = X.

It remains to look at the map ~ : Auty(L) — Autg(R). By definition

(5.7) L={Xesl,®S5: —(1X)" =X},

where I' = 7Z/27 acts on the second coordinate of the matrix X € sl,, ® S. On the
other hand
Auty(R) = Auty(k[t™]) ~ k™ x Z/2Z.

We claim that the map ~ is surjective. Clearly any element 6 of Auty(R) induces
an element 6 of Auty(sl, ® S). So we must show that f stabilizes £ for 6 € k* and
0 € 7/27. 1f 0 € k>, this is clear because k is algebraically closed. If 6 is the generator
of Z,/27, we may assume 6(t) = t!. Again using (5.7) one sees that 6(L) = £. We
thus have the split exact sequence

1 — Autg(L) — Auti(L) — Autg(R) — 1.

This finishes the description of the group of automorphisms of the affine Lie algebra
L.

We now return to our general discussion. In terms of cohomology, the affine Lie
algebras as in (5.6) account for H'(R;, Out(g)) ~ {conjugacy classes in Out(g)}.
The classes of all R;—forms of g on the other hand, are measured by H*! (Rl, Aut(g)).
As it turns out, the canonical map H'(R;, Aut(g)) — H'(R;,Out(g)) is bijective.
For this one needs to know that H'(R;, —) vanishes for quasisplit R;—groups of adjoint
type. This was established in [P1] with the aid of Harder’s work. More generally we
have
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Theorem 5.6. [P2] Let G be a reductive group scheme over k[t¥']. Then
HY(Kk[t*Y], G) = 1.

This Theorem shows that the k[t*!]-forms of g are precisely the affine Kac-Moody
algebras (derived modulo their centres) as it was mentioned in Example 4.5. In
particular over k[t*!], all forms of g are loop algebras. By the invariance of type
(Theorem 4.9), g is unique up to isomorphism. For a fixed g, two k[t*!]-forms are
isomorphic over k if and only if they are isomorphic over k[t*!]. This follows from
Corollary 5.4, together with the fact that in Out(g), every element is conjugate to its
inverse. Combining all of the above we recover, by purely theoretical considerations,
the existence of exactly 16 non-isomorphic classes of affine Lie algebras.'

Similar considerations apply to R;—forms of an arbitrary finite dimensional k—
algebras [P2].

We now turn our attention to the case n = 2. Here we find that some interesting
and unexpected behavior arises. Theorem 5.6 ought to be thought as the validity
of “Serre conjecture I” for R; = k[t;']. Since Serre’s Conjecture II holds for K =
k(ti,ts), one is lead to raise the following inevitable question.

Let G be a semisimple group scheme over Ry = k[tli, t;tl]. Assume G is of simply
connected type. Is HY(Ry, G) trivial?

Somehow surprisingly perhaps, the answer to this question is negative (as we have
seen in §4.6). The next example recalls the reason for this failure, and the implications
that this has for the classification of EALA by cohomological methods.

Example 5.7. (sly in nullity 2) Let g = sly = sl(k). Then Aut(g) = PGL, and we
have the exact sequence 1 — p, — SLy — PGLy, — 1. Relativizing at R = Ry =
k[ti, t5'] and passing to cohomology yields

H,(R,SLy) — H}(R,PGLy) > HZ(R, ) C 2Br(R).

We have HZ(R,py) ~ Z/27Z = {0,1} (Proposition 2.1). The kernel of § is trivial
(straightforward for SLj, but also consequence of Theorem 2.7), so the fiber §—1(0)
is comprised of one isomorphism class, namely the isomorphism class of the trivial
R-Lie double loop algebra

;CO = 5[2 QR= L(ﬁ[g, ld, ld)
The Lie algebra Ly is the centreless core of an EALA of nullity 2.

15Ag far as we know, nowhere in the usual Kac-Moody literature it is actually shown that the
algebras of these sixteen families are non isomorphic.
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Since PGLs; is also the group of automorphisms of the matrix algebra Ms(k), there
is a natural correspondence between R—forms of g and Ms(k): Given an R—form A
of My(k), view A as a Lie algebra Lie(A) with bracket given by the commutator
[z,y] = xy — yx. The derived Lie algebra Lie(A)’ is then an R—form of sls.

We now apply this to the quaternion R-algebra A = A(1,n), to obtain an R-Lie
algebra £, = Lie (A)’. This is also a double loop algebra. In fact

Ly = L(5[2701702)7

where o7 and o9 in Aut(sly)(k) are given by conjugation by ((1) _01) and (1) (1)
respectively. The Lie algebra £, has anisotropic generic fiber, hence cannot be the
centreless core of an EALA.

Because of the classification of commuting pair of elements of finite order of
PGLy(k), we know that £, and £, are the only two k—isomorphism classes of double
loop algebras based on sl,.

Following the same procedure, we can attach to the Margaux algebra M of §4.6
the Lie algebra

£2 = Lie (./\/l),

Recall that M = Ends(M), where M is a rank one faithfully projective A-module
which is not free. We have M ®p S ~ M(S) for S = R[ti/z]. However A and M are
not isomorphic R—algebras. Thus £; and L, are non-isomorphic R—forms of sl,. The
algebra L, is neither a multiloop algebra, nor the centreless core of an EALA.

The algebras £; and L, are part of the fiber §71(1) of the boundary map 4 :
H}(R,PGLy) — HZ(R,p,). This fiber, which is measured by H} (R,SL;(A)), has
therefore at least two elements. However L, is the only class of this fiber which is a
multiloop algebra. In particular, £ is not isomorphic to Ly as a k—algebra.

Remark 5.8. sl, ® k[ti'] corresponds to the affine Kac-Moody Lie algebra L of type
Agl). This algebra has Dynkin diagram o <=> o. The nontrivial symmetry of this
diagram “lifts” to an automorphism o of E, which in turn induces an automorphism
o of the k-Lie algebra sly ® k[ti']. We have £; ~ L(sl, ® k[t;'],0). Thus our
double loop algebra £ = L(sly, 01,02) can be obtained as a single loop algebra of
an affine algebra, but the automorphism o of the affine algebra cannot be obtained
from an automorphism of sl, by the base change k[t5-!]/k. This point of view for the

classification of double loop algebras (i.e. as single loop algebras of affine Kac-Moody
algebras) will be described in [ABP3].

Remark 5.9. It is interesting to observe that unlike the nullity 1 case where inner
automorphisms always lead to trivial loop algebras, two inner automorphisms may
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lead to non-trivial loop algebras. For type E;, Theorem 3.17 shows that there must
necessarily exists two commuting inner automorphisms whose corresponding loop
algebra is not trivial. This was first empirically discovered by van de Leur with the
aid of a computer [vdL].

If 2 = (xy,...,2,) is an n—tuple of commuting elements of finite order of G,
then Adz = (Adxy, ..., Adx,) is an n—tuple of commuting automorphisms of g. For
convenience, we will denote the corresponding loop algebra L(g, Adz) simply by

L(g,x).

Theorem 5.10. Letx = (x1,22) andy = (y1,y2) be two commuting pairs of elements
of finite order of G*. Then

1. L(g,x) ~p-vie L(g,y) <= p(x) = pu(y).
2. L(g,%) ~p-rie L(9,y) = p(x) = py)*™".

Proof. (1) This is consequence of the torsor interpretation of L(g,x) and L(g,y);
namely that the boundary map H'(R, G*?) — H?(R, p) is bijective (Theorem 3.17),
and determined by p(x)’s (Proposition 3.16).

(2) By Lemma 5.3, we are reduced to comparing p(z) and p(®x). Consider then

a1 Aa12
b = (z{" 23, 2{*x5*?) where a = <a an ] € GLy(Z).
21 Q22

By definition

~a11 Fa12 77021 a2 a ~a21 a22 77011 a12
Tyt 25 T 29 = p(Ce) 17 35 Ay 15

By repeated use of (3.3) we obtain u(%z) = u(z)t®. Now (2) follows from (1) and
Lemma 5.3. O

Remark 5.11. Clearly pu(zy,79) = u(ze,71)"'. As a consequence we recover the

obvious fact that L(g,z1,22) ~_rie L(g,22,71). By contrast, we also obtain the
following not entirely intuitive result: L(g,x1,22) ~g_rie L(@,z2,21) if and only if
() is of period 2.

Remark 5.12. Similar considerations apply to any perfect and central finite dimen-
sional algebra A for which Aut(A)° is semisimple.
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5.3 A characterization of multiloop algebras

The main theorem of [ABFP] asserts that centreless cores of EALAs which are
modules of finite type over their centroids, are always multiloop algebras. The Lie
algebra L, described in Example 5.7, shows that for n > 1 there exists R,—forms
which need not be multiloop algebras. It thus seem important to give a criterion that
distinguishes multiloop algebras among all forms.

The k-algebra R,, o, has a very natural interpretation: As a k-space R,, -, has basis
(t{*...t%),.c0, and the multiplication is given by bilinear extension of /! = t/*7. We
give R,  a Q"—grading in a natural fashion, by assigning ¢{* ... t2" degree (¢1, ..., qn)-
Each R, 4 is a graded subalgebra of R, ., whose homogeneous elements have degrees
in éZ". Note that a homogeneous element r € R,,, when viewed as an element of
R, 4, is homogeneous of degree d\ for some A in the grading group éZ" of R, 4.

Theorem 5.13. [Recognition of multiloop algebras| Let A be a finite dimensional
simple algebra over an algebraically closed field k of characteristic 0. Let n > 0 be an
integer. For a k—algebra L the following conditions are equivalent.

1. L ~, L(A,0) for some n—tuple 0 = (01,...,0,) of commuting finite order
automorphisms of A.

2. There exists a Q" —grading of L and an R, - —algebra isomorphism
Y : LOR, Rpoo — A® Ry o which are compatible, namely »(L*®1) C AQR)
for all A € Q™.

Proof. A multiloop algebra as in (1) clearly satisfies the conditions of (2). This follows
at once form the very definition (5.1) of L(A,o), and the nature of the gradings.

Assume £ and 1) are as in (2). We show that £ ~ L(A,0,...,0,) by appealing
to the realization theorem 8.3.2 of [ABFP]. To this end, it will suffice to give £ a
A—grading for which the following three conditions hold.

(a) A is finitely generated and torsion free.
(b) L is graded simple.

(c) There exists d > 0 such that C(L) = )\G?MC(E)’\. Furthermore, C'(£)° = k.
S

Fix an R, »—algebra isomorphism ¢ : £L ®g, R, — A® R, o such that ¢(L ®
1)CA®R) forall A e Q"

Since A is finite dimensional, there exists d; > 0 such that A® 1 C V(L ® R,.4,).
On the other hand, since £ as an R,—module is of finite type (Lemma 4.6(2)), there

45



exists dy > 0 such that (L ® 1) C A® R, 4,- If we now set d = d;ds, the fact that ¢
is R, —linear shows that 1) induces, by restriction of the base ring, an R, 4-algebra
isomorphism

w : £®Rn Rn,d - A® Rn,d

By assumption, for all A € Q™ we have
V(LR CARR)  NA® Ry 4.

As a consequence £* @ 1 # {0} = d\ € Z". But since the extension R, /R, is
faithfully flat, the canonical map £ — £ ®g R, 4 given by x — x ® 1 is injective. In
particular, then Q"—grading of £ has support inside the subgroup A = éZ”.

As a A-graded algebra, we may identify £ with a graded k-subalgebra of A® R,, 4
(where R, 4 is given the standard A—grading). Since R, 4 is graded simple, £ is graded
simple by Proposition 4.14. This establishes (a) and (b) above.

Since L is graded simple, the centroid Cy (L) of £ inherits a A—grading

Cr(L) = (L),

where

Ce(L) = {x € Cu(L) : x(L*) € L2 for all u € A}.

(see [ABFP] lemma 4.2.3). Let r € R, be homogeneous. Then r, as an element of
R, 4, is homogeneous of degree d\ for some A\ € A. If x € L# we have

Pra@l)=y@er)=rp@rel) er(A® RL,) C A® REM.
This forces rz € LA hence that Ci(L) = @ACk(E)dA. Finally, if d\ = 0, then r is
e

a homogeneous element of R, of degree 0, i.e. r € k. Thus (c) above holds and the
proof of the Theorem is now complete. O

Remark 5.14. By the Isotriviality Theorem [GP1, cor. 3.3] every R,—form of A
is split by R, . The last Theorem therefore gives a way of recognizing multiloop
algebras among all forms. The crucial ingredient is the existence of a Q"—grading
compatible with that of R, .. Note how the defining relations of the algebra M
of Example 5.7 “breaks” the compatibility between the gradings of the quaternion
algebra A(1,n) and R, .

6 Conjectures

Throughout this section k is assumed to be algebraically closed and of character-
istic 0. Let R = k[t¥', 5], and K = k(t,t,).
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If the semisimple R—group G is isotropic (after the base change K/R), it is rea-
sonable to expect that H'(R, G) = 1. Indeed theorem 2.1 of [CTGP] states that the
anisotropic kernel of a semisimple group defined over K is always of type A. This
is somehow analogous to the fact that almost commuting rank zero pairs only ap-

pear in type A. In the anisotropic case however, this is not true: We have seen that
H'(R,SL;(A(1,n)) # 1 (Remark 3.23).

Conjecture 6.1. Let G be a semisimple almost simple R—group with no factors of
type A. Then the connecting map H'(R,G) — H*(R,p) is bijective. In particular,
H},,,(R,G) = H'(R,G) (see Theorem 3.17).

By Theorem 2.7(2), the conjecture is fully established for groups of type Ga, Fy
and Eg (because these groups are their own automorphism groups). The case of
special orthogonal groups can be understood from the classification of R—quadratic
forms.

Theorem 6.2. (Parimala, [Paj)

1. Cancellation holds for rational R—isotropic forms : if qi, qs are rationally
1sotropic R—forms such that ¢ 1L q = qo L q for some quadratic R—form q,
then q1 = qo.

2. Let q1, g2 be isotropic quadratic R—forms. If ¢ ®r K = qs @p K, then ¢1 = ¢o.
3. Let q be a R—quadratic form of rank > 5. Then q is diagonalizable and isotropic.

Proof. 1) This is part of the proof of the classification of isotropic R—forms (proposi-
tion 3.4 of [Pal).

2) Since the field K is of class Cs, the quadratic form g is isotropic. By theorem 3.5 of
loc. cit., there exists two k[t5']-quadratic forms gy and ¢; such that ¢ = qo L {(t2)q:.
Since quadratic forms over k[ti'] are diagonalizable (Harder, cf. [Kn] §13.4.4), it
follows that ¢ is diagonalisable, i.e is a sum of rank one R—forms in the following
list (1) (t1), (t2), (tit2). Thus ¢ contains an orthogonal summand (z,z) which is
hyperbolic. We conclude that ¢ is an isotropic R—quadratic form. O

Corollary 6.3. Let g be an R—quadratic form of rank > 5. Then H*! (R, Spin(q)) =1
and H'(R,SO(q)) ~ Z/2Z.

Proof. Theorem 6.2 shows that ¢ is diagonalisable and contains an hyperbolic sum-
mand. The exact sequence 1 — p, — Spin(q) — SO(q) — 1 of reductive R—-groups
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induces the following exact commutative diagram of pointed sets

SO(q)(R) - R*/(R*)> ——  H'(R,Spin(g)) —— H'(R,S0(q))

| |

1 = H'(K,Spin(q)) —— H'(K,SO(q)).

Recall that H! (R, O(q)) classifies isomorphism classes of quadratic modules of rank
equal to rank(q). Parimala’s theorem states that H' (R, O(q)) injects in H* (K, O(q)).
By diagram chasing, it follows that the map

H'(R, Spin(q)) — H'(R,SO(q)) — H'(R,0(q))

is trivial. On the other hand, since ¢ is isotropic (over R), the sequence 1 — SO(q) —
O(q) — Z/2Z — 1 is split exact ([K2], proposition 5.2.2 page 225). It follows
that the map H'(R,SO(q)) — H'(R,0(q)) has trivial kernel, hence the triviality
of the map H'(R,Spin(q)) — H'(R,SO(q)). On the other hand, the spinor norm
SO(q)(R) — R*/(R*)? contains even products of invertible values of ¢ ([K2], page
232). Since ¢ contains a hyperbolic summand, it follows that the spinor norm is
surjective. By diagram chasing, we conclude that H* (R, Spin(q)) = 1. This implies
that the kernel of the connecting map H'(R,SO0(q)) — H*(R,Z/2Z) = Z/2Z has
trivial kernel. Now a classical twisting argument shows that the connecting map is

indeed injective. Since it is also surjective by Theorem 2.7.(1), we conclude that
H'(R,S0(q)) ~ Z/2Z as desired. O

In other words, Conjecture 6.1 holds for special orthogonal and spinor groups of
quadratic forms of rank > 5.

Our final conjecture states that, outside of type A, double loop algebras are com-
pletely determined by their Witt-Tits index.

Conjecture 6.4. Let x = (z1,22) and y = (y1,y2) be two commuting pairs of auto-
morphisms of a finite dimensional simple Lie algebra g over k. Assume g is not of
type A. Then L(g,x) ®@g K is an isotropic finite dimensional simple Lie algebra over
K. Furthermore,

L(g,x) ~_pnie L(g,y) <= I(z) =1(y).

The assumption that g is not of type A is necessary. For in type A,,, with n >> 1,
there are anisotropic loop algebras which are not isomorphic (Theorem 5.10 and
Proposition 2.1(6)). The conjecture holds if 2 and y are in G, for in this case the
Brauer invariant and the Witt-Tits index determine each other.
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