
SK1 OF AZUMAYA ALGEBRAS OVER HENSEL PAIRS

ROOZBEH HAZRAT

Abstract. Let A be an Azumaya algebra of constant rank n over a Hensel pair (R, I)
where R is a semilocal ring with n invertible in R. Then the reduced Whitehead group
SK1(A) coincides with its reduction SK1(A/IA). This generalizes the result of [6] to non-
local Henselian rings.

Let A be an Azumaya algebra over a ring R of constant rank n. There exists an étale
faithfully flat splitting ring R ⊆ S for A, i.e., A ⊗R S ∼= Mn(S). This provides the notion
of the reduced norm (and reduced trace) for A ([10], III, §1). Denote by SL(1, A) the
set of all elements of A with reduced norm 1. SL(1, A) is a normal subgroup of A∗, the
invertible elements of A (see Saltman [14], Theorem 4.3). Since the reduced norm map
respects the scaler extensions, it defines the smooth group scheme SL1,A : T → SL(1, AT )
where AT = A⊗R T for an R-algebra T . Consider the short exact sequence of smooth group
schemes

1 −→ SL1,A −→ GL1,A
Nrd−→ Gm −→ 1

where GL1,A : T → A∗

T and Gm(T ) = T ∗ for an R-algebra T . This exact sequence induces
the long exact étale cohomology

(1) 1 −→ SL(1, A) −→ A∗ Nrd−→ R∗ −→ H1

et(R, SL(1, A)) −→ H1

et(R, GL(1, A)) → · · ·
Let A′ denote the commutator subgroup of A∗. One defines the reduced Whitehead group
of A as SK1(A) = SL(1, A)/A′ which is a subgroup of (non-stable) K1(A) = A∗/A′. Let
I be an ideal of R. Since the reduced norm is compatible with extensions, it induces the
map SK1(A) → SK1(Ā), where Ā = A/IA. A natural question arises here is, under what
circumstances and for what ideals I of R, this homomorphism would be a mono or/and epi
and thus the reduced Whitehead group of A coincides with its reduction. The following
observation shows that even in the case of a split Azumaya algebra, these two groups could
differ: consider the split Azumaya algebra A = Mn(R) where R is an arbitrary commutative
ring. In this case the reduced norm coincides with the ordinary determinant and SK1(A) =
SLn(R)/[GLn(R), GLn(R)]. There are examples such that SK1(A) 6= 1, in fact not even
torsion. But in this setting, obviously SK1(Ā) = 1 for Ā = A/mA where m is a maximal
ideal of R (for some examples see Rosenberg [13], Chapter 2).

If I is contained in the Jacobson radical J(R), then IA ⊂ J(A) (see, e.g., Lemma 1.4 [4])
and (non-stable) K1(A) → K1(Ā) is surjective, thus its restriction to SK1 is also surjective.

It is observed by Grothendieck ([5], Theorem 11.7) that if R is a local Henselian ring with
maximal ideal I and G is an affine, smooth group scheme, then H1

et(R, G) → H1

et(R/I, G/IG)
is an isomorphism. This was further extended to Hensel pairs by Strano [15]. Now if further
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R is a semilocal ring then H1

et(R, GL(1, A)) = 0, and thus from the sequece (1) it follows

(2) (1 + IA)A′/A′ //

²²

1 + I

²²

1 // SK1(A) //

²²

K1(A)
Nrd

//

²²

R∗ //

²²

H1

et(R, SL(1, A)) //

∼=

²²

1

1 // SK1(Ā) // K1(Ā)
Nrd

//

²²

R̄∗ //

²²

H1

et(R̄, SL(1, Ā)) // 1

1 1

The aim of this note is to prove that for the Hensel pair (R, I) where R is a semilocal ring, the
map SK1(A) → SK1(Ā) is also an isomorphism. This extends the result of [6] to non-local
Henselian rings.

Recall that the pair (R, I) where R is a commutative ring and I an ideal of R is called
a Hensel pair if for any polynomial f(x) ∈ R[x], and b ∈ R/I such that f̄(b) = 0 and f̄ ′(b)
is invertible in R/I, then there is a ∈ R such that ā = b and f(a) = 0 (for other equivalent
conditions, see Raynaud [12], Chap. XI).

In order to prove this result, we use a recent result of Vasertein [17] which establishes the
(Dieudonnè) determinant in the setting of semilocal rings. The crucial part is to prove a
version of Platonov’s congruence theorem [11] in the setting of an Azumaya algebra over a
Hensel pair. The approach to do this was motivated by Suslin in [16]. We also need to use
the following facts established by Greco in [3, 4].

Proposition 1 ([4], Prop. 1.6). Let R be a commutative ring, A be an R-algebra, integral

over R and finite over its center. Let B be a commutative R-subalgebra of A and I an ideal

of R. Then IA ∩ B ⊆
√

IB.

Corollary 2 ([3], Cor. 4.2). Let (R, I) be a Hensel pair and let J ⊆
√

I be an ideal of R.

Then (R, J) is a Hensel pair.

Theorem 3 ([3], Th. 4.6). Let (R, I) be a Hensel pair and let B be a commutative R-algebra

integral over R. Then (B, IB) is a Hensel pair.

We are in a position to prove the main Theorem of this note.

Theorem 4. Let A be an Azumaya algebra of constant rank m over a Hensel pair (R, I)
where R is a semilocal ring with m invertible in R. Then SK1(A) ∼= SK1(Ā) where Ā =
A/IA.

Proof. Since for any a ∈ A, NrdA(a) = NrdĀ(ā), it follows that there is a homomorphism
φ : SL(1, A) → SL(1, Ā). We first show that ker φ ⊆ A′, the commutator subgroup of A∗.
In the setting of valued division algebras, this is the Platonov congruence theorem [11]. We
shall prove this in several steps. Clearly ker φ = SL(1, A) ∩ 1 + IA. Note that A is a free
R-module (see [1], II, §5.3, Prop. 5) . Set m = n2.
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1. The group 1 + I is uniquely n-divisible and 1 + IA is n-divisible.

Let a ∈ 1 + I. Consider f(x) = xn − a ∈ R[x]. Since n is invertible in R, f̄(x) =
xn − 1 ∈ R̄[x] has a simple root. Now this root lifts to a root of f(x) as (R, I) is a
Hensel pair. This shows that 1 + I is n-divisible. Now if (1 + a)n = 1 where a ∈ I, then
a(an−1 + nan−2 + · · · + n) = 0. Since the second factor is invertible, a = 0, and it follows
that 1 + I is uniquely n-divisible.

Now let a ∈ 1 + IA. Consider the commutative ring B = R[a] ⊆ A. By Theorem 3,

(B, IB) is a Hensel pair. On the other hand by Prop. 1, IA ∩ B ⊆
√

IB. Thus by Cor. 2,
(B, IA ∩ B) is also a Hensel pair. But a ∈ 1 + IA ∩ B. Applying the Hensel lemma as in
the above, it follows that a has a n-th root and thus 1 + IA is n-divisible.

2. NrdA(1 + IA) = 1 + I.

¿From compatibility of the reduced norm, it follows that NrdA(1 + IA) ⊆ 1 + I. Now
using the fact that 1 + I is n-divisible, the equality follows.

3. SK1(A) is n2-torsion.

We first establish that NA/R(a) = NrdA(a)n. One way to see this is as follows. Since A is
an Azumaya algebra of constant rank n, then i : A ⊗ Aop ∼= EndR(A) ∼= Mn2(R) and there
is an étale faithfully flat S algebra such that j : A ⊗ S ∼= Mn(S). Consider the following
diagram

A ⊗ Aop ⊗ S
i⊗1

//

²²

EndR(A) ⊗ S
∼=

// EndS(A ⊗ S)
∼=

// Mn2(S)

ψ
²²

Aop ⊗ A ⊗ S
1⊗j

// Aop ⊗ Mn(S)
∼=

// Mn(Aop ⊗ S)
∼=

// Mn2(S)

where the automorphism ψ is the compositions of isomorphisms in the diagram. By a
theorem of Artin (see, e.g., [10], §III, Lemma 1.2.1), one can find an ètale faithfully flat
S algebra T such that ψ ⊗ 1 : Mn2(T ) → Mn2(T ) is an inner automorphism. Now the
determinant of the element a ⊗ 1 ⊗ 1 in the first row is NA/R(a) and in the second row is
NrdA(a)n and since ψ ⊗ 1 is inner, thus they coincide.

Therefore if a ∈ SL(1, A), then NA/R(a) = 1. We will show that an2 ∈ A′. Consider the
sequence of R-algebra homomorphism

f : A → A ⊗ Aop → EndR(A) ∼= Mn2(R) →֒ Mn2(A)

and the R-algebra homomorphism i : A → Mn2(A) where a maps to aIn2 , where In2 is
the identity matrix of Mn2(A). Since R is a semilocal ring, the Skolem-Noether theorem
is present in this setting (see Prop. 5.2.3 in [10]) and thus there is g ∈ GLn2(A) such
that f(a) = gi(a)g−1. Also, since A is a finite algebra over R, A is a semilocal ring.
Since n is invertible in R, by Vaserstein’s result [17], the Dieudonnè determinant extends
to the setting of Mn2(A). Taking the determinant from f(a) and gi(a)g−1, it follows that

1 = NA/R(a) = an2

ca where ca ∈ A′. This shows that SK1(A) is n2-torsion.

4. Platonov Congruence Theorem: SL(1, A) ∩ 1 + IA ⊆ A′.

Let a ∈ SL(1, A) ∩ 1 + IA. By (1), there is b ∈ 1 + IA such that bn2

= a. Then

NrdA(a) = NrdA(b)n2

= 1. By (2), NrdA(b) ∈ 1 + I and since 1 + I is uniquely n-divisible,
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NrdA(b) = 1, so b ∈ SL(1, A). By (3), bn2 ∈ A′, so a ∈ A′. Thus ker φ ⊆ A′ where
φ : SL(1, A) → SL(1, Ā).

It is easy to see that φ is surjective. In fact, if ā ∈ SL(1, Ā) then 1 = NrdĀ(ā) = NrdA(a)
thus, NrdA(a) ∈ 1 + I. By (1), there is r ∈ 1 + I such that NrdA(ar−1) = 1 and ar−1 = ā.
Thus φ is an epimorphism. Consider the induced map φ̄ : SL(1, A) → SL(1, Ā)/Ā′. Since I ⊆
J(R), and by (3), ker φ ⊆ A′ it follows that ker φ̄ = A′ and thus φ̄ : SK1(A) ∼= SK1(Ā). ¤

Let R be a semilocal ring and (R, J(R)) a Hensel pair. Let A be an Azumaya algebra
over R of constant rank n and n invertible in R. Then by Theorem 4, SK1(A) ∼= SK1(Ā)
where Ā = A/J(R)A. But J(A) = J(R)A, so Ā = Mk1

(D1) × · · ·Mkr
(Dr) where Di are

division algebras. Thus SK1(A) ∼= SK1(Ā) = SK1(D1) · · · × SK1(Dr).

Using a result of Goldman [2], one can remove the condition of Azumaya algebra having
a constant rank from the Theorem.

Corollary 5. Let A be an Azumaya algebra over a Hensel pair (R, I) where R is semilocal

and the least common multiple of local ranks of A over R is invertible in R. Then SK1(A) ∼=
SK1(Ā) where Ā = A/IA.

Proof. One can decompose R uniquely as R1⊕· · ·⊕Rt such that Ai = Ri⊗R A have constant
ranks over Ri which coincide with local ranks of A over R (see [2], §2 and Theorem 3.1).
Since (Ri, IRi) are Hensel pairs, the result follows by using Theorem 4. ¤

Remarks 6. Let D be a tame unramified division algebra over a Henselian field F , i.e., the
valued group of D coincide with valued group of F and chr(F̄ ) does not divide the index of
D (see [18] for a nice survey on valued division algebras). Jacob and Wadsworth observed
that VD is an Azumaya algebra over its center VF (Theorem 3.2 in [18] and Example 2.4
in [8]). Since D∗ = F ∗UD and VD ⊗VF

F ≃ D, it can be seen that SK1(D) = SK1(VD).
On the other hand our main Theorem states that SK1(VD) ≃ SK1(D̄). Comparing these,
we conclude the stability of SK1 under reduction, namely SK1(D) ≃ SK1(D̄) (compare this
with the original proof, Corollary 3.13 [11]).

Now consider the group CK1(A) = A∗/R∗A′ for the Azumaya algebra A over the Hensel
pair (R, I). A proof similar to Theorem 3.10 in [6], shows that CK1(A) ∼= CK1(Ā). Thus in
the case of tame unramified division algebra D, one can observe that CK1(D) ∼= CK1(D̄).

For an Azumaya algebra A over a semilocal ring R, by (1) one has

R∗/NrdA(A∗) ∼= H1

èt
(R, SL(1, A)).

If (R, I) is also a Hensel pair, then by the Grothendieck-Strano result,

R∗/NrdA(A∗) ∼= H1

èt
(R, SL(1, A)) ∼= H1

èt
(R̄, SL(1, Ā)) ∼= R̄∗/NrdĀ(Ā∗).

However specializing to a tame unramified division algebra D, the stability does not follow
in this case. In fact for a tame and unramified division algebra D over a Henselian field F
with the valued group ΓF and index n one has the following exact sequence (see [7], Theorem
1):

1 −→ H1(F , SL(1, D)) −→ H1(F, SL(1, D)) −→ ΓF /nΓF −→ 1.
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