SK; OF AZUMAYA ALGEBRAS OVER HENSEL PAIRS

ROOZBEH HAZRAT

ABSTRACT. Let A be an Azumaya algebra of constant rank n over a Hensel pair (R,T)
where R is a semilocal ring with n invertible in R. Then the reduced Whitehead group
SK;(A) coincides with its reduction SK;(A/IA). This generalizes the result of [6] to non-
local Henselian rings.

Let A be an Azumaya algebra over a ring R of constant rank n. There exists an étale
faithfully flat splitting ring R C S for A, i.e.,, A®r S = M,(S). This provides the notion
of the reduced norm (and reduced trace) for A ([10], III, §1). Denote by SL(1, A) the
set of all elements of A with reduced norm 1. SL(1,A) is a normal subgroup of A* the
invertible elements of A (see Saltman [14], Theorem 4.3). Since the reduced norm map
respects the scaler extensions, it defines the smooth group scheme SL; 4 : T" — SL(1, Ar)
where Ap = A®gT for an R-algebra T'. Consider the short exact sequence of smooth group

schemes

1 —SLy 4 — GL;y 4 BLEY Gn —1

where GL; 4 : T'— A} and G,,,(T') = T* for an R-algebra T'. This exact sequence induces
the long exact étale cohomology

(1) 1—SL(L,A) — A" =5 R — H)(R,SL(1, A) — HL,(R,GL(1, 4)) — -

Let A" denote the commutator subgroup of A*. One defines the reduced Whitehead group
of A as SK;(A) = SL(1,A)/A” which is a subgroup of (non-stable) K;(A) = A*/A". Let
I be an ideal of R. Since the reduced norm is compatible with extensions, it induces the
map SK;(A4) — SK;(A), where A = A/IA. A natural question arises here is, under what
circumstances and for what ideals I of R, this homomorphism would be a mono or/and epi
and thus the reduced Whitehead group of A coincides with its reduction. The following
observation shows that even in the case of a split Azumaya algebra, these two groups could
differ: consider the split Azumaya algebra A = M,,(R) where R is an arbitrary commutative
ring. In this case the reduced norm coincides with the ordinary determinant and SK;(A) =
SL.(R)/|GL,(R), GL,(R)]. There are examples such that SK;(A) # 1, in fact not even
torsion. But in this setting, obviously SK;(A) = 1 for A = A/mA where m is a maximal
ideal of R (for some examples see Rosenberg [13], Chapter 2).

If I is contained in the Jacobson radical J(R), then A C J(A) (see, e.g., Lemma 1.4 [4])

and (non-stable) K;(A) — K;(A) is surjective, thus its restriction to SK; is also surjective.

It is observed by Grothendieck ([5], Theorem 11.7) that if R is a local Henselian ring with
maximal ideal I and G is an affine, smooth group scheme, then HY(R,G) — HL(R/I,G/IG)

is an isomorphism. This was further extended to Hensel pairs by Strano [15]. Now if further
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R is a semilocal ring then HY, (R, GL(1, A)) = 0, and thus from the sequece (1) it follows

(2) (14+TAAJA —=1+1
] — SKy(A) Ky(A) — g H},(R,SL(1, A)) — 1
| -
1 —= SK;(A) Ki(A) — s f HY(R,SL(1, A)) —=1
1 1

The aim of this note is to prove that for the Hensel pair (R, I) where R is a semilocal ring, the

map SK;(A) — SK;(A) is also an isomorphism. This extends the result of [6] to non-local
Henselian rings.

Recall that the pair (R, I) where R is a commutative ring and / an ideal of R is called
a Hensel pair if for any polynomial f(z) € R[z], and b € R/I such that f(b) = 0 and f'(b)
is invertible in R/I, then there is a € R such that a = b and f(a) = 0 (for other equivalent
conditions, see Raynaud [12], Chap. XI).

In order to prove this result, we use a recent result of Vasertein [17] which establishes the
(Dieudonne) determinant in the setting of semilocal rings. The crucial part is to prove a
version of Platonov’s congruence theorem [11] in the setting of an Azumaya algebra over a
Hensel pair. The approach to do this was motivated by Suslin in [16]. We also need to use
the following facts established by Greco in [3, 4].

Proposition 1 ([4], Prop. 1.6). Let R be a commutative ring, A be an R-algebra, integral
over R and finite over its center. Let B be a commutative R-subalgebra of A and I an ideal
of R. Then IANB C IB.

Corollary 2 ([3], Cor. 4.2). Let (R,I) be a Hensel pair and let J C /I be an ideal of R.
Then (R, J) is a Hensel pair.

Theorem 3 ([3], Th. 4.6). Let (R, I) be a Hensel pair and let B be a commutative R-algebra
integral over R. Then (B, 1B) is a Hensel pair.

We are in a position to prove the main Theorem of this note.

Theorem 4. Let A be an Azumaya algebra of constant rank m over a Hensel pair (R, I
where R is a semilocal ring with m invertible in R. Then SK;(A) = SK;(A) where A =
AJIA.

Proof. Since for any a € A, Nrd,(a) = Nrd 4(a), it follows that there is a homomorphism
¢ : SL(1,A) — SL(1,A). We first show that ker ¢ C A’, the commutator subgroup of A*.
In the setting of valued division algebras, this is the Platonov congruence theorem [11]. We
shall prove this in several steps. Clearly ker ¢ = SL(1, A) N1+ IA. Note that A is a free
R-module (see [1], II, §5.3, Prop. 5) . Set m = n.
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1. The group 1+ I is uniquely n-divisible and 1 4+ I A is n-divisible.

Let a € 1+ 1. Consider f(z) = 2™ —a € Rlz]. Since n is invertible in R, f(z) =
z" — 1 € Rz] has a simple root. Now this root lifts to a root of f(z) as (R,I) is a
Hensel pair. This shows that 1+ I is n-divisible. Now if (1 + a)” = 1 where a € I, then
a(a™ ! +na" 2+ ---+n) = 0. Since the second factor is invertible, a = 0, and it follows
that 1+ I is uniquely n-divisible.

Now let a € 1+ IA. Consider the commutative ring B = R[a] C A. By Theorem 3,
(B,IB) is a Hensel pair. On the other hand by Prop. 1, TAN B C vIB. Thus by Cor. 2,
(B,IAN B) is also a Hensel pair. But a € 14+ IAN B. Applying the Hensel lemma as in
the above, it follows that a has a n-th root and thus 1 4+ I A is n-divisible.

2. Nrda(1+TA) =1+1.

JFrom compatibility of the reduced norm, it follows that Nrd4(1 + [A) C 1+ I. Now
using the fact that 1 + I is n-divisible, the equality follows.

3. SK;(A) is n?-torsion.

We first establish that N4 p(a) = Nrd4(a)”. One way to see this is as follows. Since A is
an Azumaya algebra of constant rank n, then i : A ® A = Endg(A) = M,2(R) and there
is an étale faithfully flat S algebra such that j : A ® S = M, (S). Consider the following
diagram

A® AP @ S 2L Endp(A) ® S —— Endg(A ® ) —— M,2(S)

. N N v

AP @ A® S — A% @ My (S) —> My (A @ S) = M,2(S)
where the automorphism ) is the compositions of isomorphisms in the diagram. By a
theorem of Artin (see, e.g., [10], §III, Lemma 1.2.1), one can find an etale faithfully flat
S algebra T such that ¢ @ 1 : M,2(T) — M,2(T) is an inner automorphism. Now the
determinant of the element a ® 1 ® 1 in the first row is N4,g(a) and in the second row is
Nrd4(a)™ and since ¢ ® 1 is inner, thus they coincide.

Therefore if a € SL(1, A), then N4 z(a) = 1. We will show that a® € A’. Consider the
sequence of R-algebra homomorphism

f: A= A® A? — Endg(A) = M,2(R) — M,2(A)

and the R-algebra homomorphism i : A — M,2(A) where a maps to al,2, where I, is
the identity matrix of M,2(A). Since R is a semilocal ring, the Skolem-Noether theorem
is present in this setting (see Prop. 5.2.3 in [10]) and thus there is ¢ € GL,2(A) such
that f(a) = gi(a)g~!. Also, since A is a finite algebra over R, A is a semilocal ring.
Since n is invertible in R, by Vaserstein’s result [17], the Dieudonne determinant extends
to the setting of M,2(A). Taking the determinant from f(a) and gi(a)g™!, it follows that
1= Nyr(a) = a" ¢, where ¢, € A'. This shows that SK;(A) is n?torsion.
4. Platonov Congruence Theorem: SL(1,A)N1+ 1A C A'.

Let a € SL(1,A)N1+4 IA. By (1), there is b € 1+ IA such that b = a. Then
Nrd 4(a) = Nrd 4(b)"" = 1. By (2), Nrd4(b) € 1 + I and since 1 + I is uniquely n-divisible,
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Nrd,(b) = 1, so b € SL(1,4). By (3), " € A, so a € A'. Thus ker¢p C A’ where
¢ : SL(1, A) — SL(1, A).

It is easy to see that ¢ is surjective. In fact, if @ € SL(1, A) then 1 = Nrd 4(a) = Nrd 4(a)
thus, Nrd4(a) € 1+ I. By (1), there is r € 1 + I such that Nrd 4(ar™') = 1 and ar—! = a.
Thus ¢ is an epimorphism. Consider the induced map ¢ : SL(1, A) — SL(1, A)/A’. Since I C
J(R), and by (3), ker ¢ C A’ it follows that ker ¢ = A’ and thus ¢ : SK;(A) = SK;(4). O

Let R be a semilocal ring and (R, J(R)) a Hensel pair. Let A be an Azumaya algebra
over R of constant rank n and n invertible in R. Then by Theorem 4, SK;(A) = SK;(A4)
where A = A/J(R)A. But J(A) = J(R)A, so A = My, (D;) x -+ My, (D,) where D; are

division algebras. Thus SK;(A) = SK;(A) = SK;(Dy) - -- x SKy(D,.).

Using a result of Goldman [2], one can remove the condition of Azumaya algebra having
a constant rank from the Theorem.

Corollary 5. Let A be an Azumaya algebra over a Hensel pair (R, I) where R is semilocal

and the least common multiple of local ranks of A over R is invertible in R. Then SK,;(A) =
SK;(A) where A= A/IA.

Proof. One can decompose R uniquely as Ry @- - -@® R; such that A; = R; ®g A have constant
ranks over R; which coincide with local ranks of A over R (see [2], §2 and Theorem 3.1).
Since (R;, I R;) are Hensel pairs, the result follows by using Theorem 4. O

Remarks 6. Let D be a tame unramified division algebra over a Henselian field F', i.e., the
valued group of D coincide with valued group of F' and chr(F) does not divide the index of
D (see [18] for a nice survey on valued division algebras). Jacob and Wadsworth observed
that Vp is an Azumaya algebra over its center Vp (Theorem 3.2 in [18] and Example 2.4
in [8]). Since D* = F*Up and Vp ®y, F' ~ D, it can be seen that SK;(D) = SK;(Vp).

On the other hand our main Theorem states that SK;(Vp) ~ SK;(D). Comparing these,
we conclude the stability of SK; under reduction, namely SK;(D) ~ SK; (D) (compare this

with the original proof, Corollary 3.13 [11]).
Now consider the group CK;(A) = A*/R*A’ for the Azumaya algebra A over the Hensel

pair (R,I). A proof similar to Theorem 3.10 in [6], shows that CK;(A) = CK;(A). Thus in
the case of tame unramified division algebra D, one can observe that CK;(D) = CK;(D).

For an Azumaya algebra A over a semilocal ring R, by (1) one has
R*/Nrd 4(A*) = HL(R,SL(1, A)).
If (R, 1) is also a Hensel pair, then by the Grothendieck-Strano result,
R*/Nrd 4(A*) =2 HL(R,SL(1,A)) = HL(R,SL(1,A)) = R*/Nrd4(A*).

However specializing to a tame unramified division algebra D, the stability does not follow
in this case. In fact for a tame and unramified division algebra D over a Henselian field F’
with the valued group I'r and index n one has the following exact sequence (see [7], Theorem
1):

1 — H'(F,SL(1,D)) — H'(F,SL(1,D)) — 'y /nl'p — 1.
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