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Abstract. Let p be a prime, k be a field of characteristic 6= p and N

be the normalizer of the maximal torus in the projective linear group
PGLn. We compute the exact value of the essential dimension edk(N ; p)
of N at p for every n ≥ 1.

Contents

1. Introduction 1
Acknowledgements 4
2. A general strategy 4
3. Representation-theoretic preliminaries 5
4. Subgroups of prime-to-p index 7
5. First reductions and proof of Theorem 1.1 parts (a) and (b) 9
6. Proof of Theorem 1.1 part (c): The upper bound 11
7. Theorem 1.1 part (c): The lower bound 12
8. Proof of Theorem 1.1 part (d) 15
References 17

1. Introduction

Let p be a prime, k be a field of characteristic 6= p and N be the normalizer
of a split maximal torus in the projective linear group PGLn, for some integer
n. The purpose of this paper is to compute the essential dimension edk(N ; p)
of N at p. For the definition of essential dimension of an algebraic group
(and more generally, of a functor), we refer the reader to [Re2], [BF], [BRV]
or [Me]. As usual, if the reference to k is clear from the context, we will
sometimes write ed in place of edk.
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We begin by explaining why we are interested in the essential dimension
of N . One of the central problems in the theory of essential dimension is to
find the exact value of the essential dimension of the projective linear group
PGLn or equivalently, of the functor

H1( ∗ ,PGLn) : K 7→ { degree n central simple algebras A/K,

up to K-isomorphism },

where K is a field extension of k. This problem arises naturally in the theory
of central simple algebras. To the best of our knowledge, it was first raised by
C. Procesi, who showed (using different terminology) that ed(PGLn) ≤ n2;
see [Pr, Theorem 2.1]. This problem, and the related question of computing
the relative essential dimension ed(PGLn; p) at a prime p, remain largely
open. The best currently known lower bound,

ed(PGLpr ; p) ≥ 2r

(cf. [Re1, Theorem 16.1(b)] or [RY, Theorem 8.6]), falls far below the best
known upper bound,

(1) ed(PGLn) ≤

{
(n−1)(n−2)

2 , for every odd n ≥ 5 and

n2 − 3n + 1, for every n ≥ 4;

see [LR], [LRRS, Theorem 1.1], [Le, Proposition 1.6] and [FF].
We remark that the primary decomposition theorem reduces the com-

putation of ed(PGLn; p) to the case where n is a power of p. That is, if
n = pr1

1 . . . prs
s then ed(PGLn; pi) = ed(PGLp

ri
i

; pi). The computation of

ed(PGLn) also partially reduces to the prime power case, because

ed(PGLp
ri
i

) ≤ ed(PGLn) ≤ ed(PGLp
r1
1

) + . . . + ed(PGLprs
s

)

for every i = 1, . . . , s; cf. [Re2, Proposition 9.8].
It is important to note that the proofs of the upper bounds (1) are not

based on a direct analysis of the functor H1( ∗ ,PGLn). Instead, one works
with the related functor

H1( ∗ , N) : K 7→ { K-isomorphism classes of pairs (A,L) },

where K is a field extension of k, A is a degree n central simple algebra
over K, L is a maximal étale subalgebra of A, and N is the normalizer of a
(split) maximal torus in PGLn. This functor is often more accessible than
H1( ∗ ,PGLn) because many of the standard constructions in the theory
of central simple algebras depend on the choice of a maximal subfield L
in a given central simple algebra A/K. Projecting a pair (A,L) to the
first component, we obtain a surjective morphism of functors H1( ∗ , N) →
H1( ∗ ,PGLn). The surjectivity of this morphism (which is a special case of
a more general result of T. Springer, see [Se2, III.4.3, Lemma 6]) leads to
the inequalities

(2) ed(N) ≥ ed(PGLn) and ed(N ; p) ≥ ed(PGLn; p) ;
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see [Me, Proposition 1.3], [BF, Lemma 1.9] or [Re2, Proposition 4.3]. The
inequalities (1) were, in fact, proved as upper bounds on ed(N); see [LRRS]
and [Le]. It is thus natural to try to determine the exact values of ed(N)
and ed(N ; p). In addition to being of independent interest, these numbers
represent a limitation on the techniques used in [LRRS] and [Le]. This
brings us to the main result of this paper.

Theorem 1.1. Let N the normalizer of a maximal torus in the projective
linear group PGLn defined over a field k with char(k) 6= p. Then

(a) edk(N ; p) = [n/p], if n is not divisible by p.
(b) edk(N ; p) = 2, if n = p.
(c) edk(N ; p) = n2/p − n + 1, if n = pr for some r ≥ 2.
(d) edk(N ; p) = pe(n − pe) − n + 1, in all other cases.

Here [n/p] denotes the integer part of n/p and pe denotes the highest power
of p dividing n.

In each part we will prove an upper bound and a lower bound on ed(N)
separately, using rather different techniques. There is nothing about the
methods we use that in any way guarantees that the lower bounds should
match the upper bounds, thus yielding an exact value of ed(N ; p). The
fact that this happens, for any base field k of characteristic 6= p, may be
viewed as a lucky coincidence. We also remark that our proof of the upper
bounds on edk(N ; p) in part (c) and (d) does not use the assumption that
char(k) 6= p; these bounds are valid for every k.

As we mentioned above, the computation of ed(PGLn; p), reduces to the
case where n is a power of p. A quick glance at the statement of Theorem 1.1
shows that, the computation of ed(N ; p) does not. On the other hand, the
proof of part (c), where n = pr and r ≥ 2, requires the most intricate
arguments. Another reason for our special interest in part (c) is that it
leads to a new upper bound on ed(PGLn; p). More precisely, combining the
upper bound in part (c) with (2), and remembering that the upper bound in
part (c) is valid for any the ground field k, we obtain the following inequality.

Corollary 1.2. Let n = pr be a prime power. Then

edk(PGLn; p) ≤ p2r−1 − pr + 1

for any field k and for any r ≥ 2. �

Corollary 1.2 fails for r = 1 because

(3) edk(PGLp; p) = 2,

see [Re2, Corollary 5.7] or [RY, Lemma 8.5.7]. For r = 2, Corollary 1.2 is
valid but is not optimal. Indeed, in this case L. H. Rowen and D. J. Saltman
showed that, after a prime-to-p extension L/K, every degree p2 central
simple algebra A/K becomes a (Z/pZ)2-crossed product; see [RS, Corollary
1.3]. The upper bound on the essential dimension of a crossed product given
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by [LRRS, Corollary 3.10] then yields the inequality

ed(PGLp2; p) ≤ p2 + 1 ,

which is stronger than Corollary 1.2 for any p ≥ 3. If r ≥ 3 we do not
know how close the true value of ed(PGLpr ; p) is to ed(N ; p) = p2r−1 −
pr + 1; in this case Corollary 1.2 gives the best currently known upper
bound on ed(PGLpr ; p). We remark that, beyond the obvious inequal-
ity ed(PGLpr ; p) ≤ ed(PGLpr), the relationship between ed(PGLpr ; p) and
ed(PGLpr) is quite mysterious as well.

A key ingredient in our proofs of the lower bounds in Theorem 1.1(c) and
(d) is a recent theorem of N. A. Karpenko and A. S. Merkurjev [KM] on the
essential dimension of a p-group, stated as Theorem 7.1 below. To the best
of our knowledge, these results were not accessible by previously existing
techniques. Corollary 1.2 and the other parts of Theorem 1.1 do not rely on
the Karpenko-Merkurjev theorem.

Acknowledgements

The authors are grateful to A. S. Merkurjev and J.-P. Tignol for helpful
comments.

2. A general strategy

Let G be an algebraic group defined over a field k. Recall that the action of
G on an algebraic variety X defined over k is generically free if the stabilizer
subgroup StabG(x) is trivial for x ∈ X(k) in general position.

Remark 2.1. If G is a finite constant group and X is irreducible and smooth
then the G-action on X is generically free if and only if it is faithful.

Indeed, the “only if” implication is obvious. Conversely, if the G-action on
X is faithful then StabG(x) = {1} for any x outside of the closed subvariety
⋃

16=g∈G X〈g〉, whose dimension is ≤ dim(X). �

Remark 2.2. Suppose k′/k be a field extension of degree prime to p. Then
essential dimension at p does not change if we replace k by k′; see [Me,
Proposition 1.5(2)]. This happens in particular, if char(k) 6= p and k′ is
obtained from k by adjoining a primitive pth root of unity. Thus in the
course of proving Theorem 1.1 we may assume without loss of generality
that k contains a primitive pth root of unity.

In the sequel we will repeatedly encounter the following situation. Sup-
pose we want to show that

(4) edk(G) = edk(G; p) = d ,

where G is a linear algebraic group defined over k.

All such assertions will be proved by the following 2-step procedure.
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(i) Construct a generically free linear representation of G of dimension
d+dim(G) defined over k. This implies that edk(G) ≤ d; see [Re2, Theorem
3.4] or [BF, Proposition 4.11].

(ii) Prove the lower bound edk(G; p) ≥ d.

Since clearly ed(G; p) ≤ ed(G), the desired equality (4) follows from (i)
and (ii).

The group G will always be of the form G = D ⋊ F , where D is diag-
onalizable and F is finite. In the next section we will recall some known
facts about representations of such groups. This will help us in carrying
out step (i) and, in the most interesting cases, step (ii) as well, via the
Karpenko-Merkurjev Theorem 7.1.

3. Representation-theoretic preliminaries

We will work over a ground field k which remains fixed throughout. Sup-
pose that a linear algebraic k-group G contains a diagonalizable (over k)
group D and the quotient G/D is a constant finite group F . Here by “di-
agonalizable over k” we mean that D is a subgroup of the split torus G

d
m

defined over k or, equivalently, that every linear representation of D defined
over k decomposes as a direct sum of 1-dimensional subrepresentations.

Denote the group of (multiplicative) characters of D by X(D). Note that
since D is diagonalizable over k, every multiplicative character of D is de-
fined over k. Consider a linear k-representation G → GL(V ). Restricting
this representation to D, we decompose V into a direct sum of 1-dimensional
character spaces. Let Λ ⊂ X(D) be the set of characters (weights) of D
which occur in this decomposition. Note that here |Λ| ≤ dim(V ), and equal-
ity holds if and only if each character from Λ occurs in V with multiplicity
1. The finite group F acts on X(D) and Λ is invariant under this action.
Moreover, if the G-action (and hence, the D-action) on V is generically free
then Λ generates X(D) as an abelian group. In summary, we have proved
the following lemma; cf. [Se1, Section 8.1].

Lemma 3.1. Suppose every F -invariant generating set Λ of X(D) contains
≥ d elements. If G → GL(V ) is a generically free k-representation of G
then dim(V ) ≥ d. �

As we explained in the previous section, we are interested in constructing
low-dimensional generically free representations of G. In this section we
will prove simple sufficient conditions for generic freeness for two particular
families of representations.

Lemma 3.2. Let W be a faithful representation of F and V be a represen-
tation of G whose restriction to D is generically free. Then V × W is a
generically free representation of G.

Here we view W as a representation of G via the natural projection G →
G/D = F .
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Proof. For w ∈ W (k) in general position, StabG(w) = D; cf. Remark 2.1.
Choosing v in general position in V (k), we see that

StabG(v,w) = StabG(v) ∩ StabG(w) = StabD(v) = {1} .

�

From now on we will assume that G = D ⋊ F is the semidirect product
of D and F . In this case, given an F -invariant generating set Λ ⊂ X(D),
we can construct a linear (in fact, a monomial) k-representation VΛ of G
so that each character from Λ occurs in VΛ exactly once. To do this, we
associate a basis element vλ to each λ ∈ Λ. The finite group F acts on

VΛ = Span(vλ |λ ∈ Λ)

by permuting these basis elements in the natural way, i.e., via

(5) σ : vλ 7→ vσ(λ) .

for any σ ∈ F and any λ ∈ Λ. The diagonalizable group D-acts by the
character λ on each 1-dimensional space Span(vλ), i.e., via

(6) t : vλ 7→ λ(t)vλ

for any t ∈ D and λ ∈ Λ. Extending (5) and (6) linearly to all of VΛ, we
obtain a linear representation G = D ⋊ F → GL(VΛ). Note that by our
construction dim(VΛ) = |Λ|.

Our second criterion for generic freeness is a variant of [LR, Lemma
3.1] or [Le, Proposition 2.1]. For the sake of completeness we outline a
characteristic-free proof.

Lemma 3.3. Let Λ be an F -invariant subset of X(D) and φ : Z[Λ] → X(D)
be the natural morphism of Z[F ]-modules, taking λ ∈ Λ to itself. Let VΛ be
the linear representation of G = D ⋊ F defined by (5) and (6), as above.
The G-action on VΛ is generically free if and only if

(a) Λ spans X(D) (or equivalently, φ is surjective) and

(b) the F -action on Ker(φ) is faithful.

Proof. Let U ≃ G
n
m be the diagonal subgroup of GL(VΛ), in the basis eλ,

where λ ∈ Λ. Here n = |Λ| = dim(VΛ). The G-action on V induces an
F -equivariant morphism ρ : D → U , which is dual to φ under the usual
(anti-equivalence) Diag between finitely generated abelian groups and diag-
onalizable algebraic groups. Applying Diag to the exact sequence

(0) - Ker(φ) - Z[Λ]
φ- X(D) - Coker(φ) - (0) ,

of finitely generated abelian Z[F ]-modules we obtain an F -equivariant exact
sequence

1 - N - D
ρ- U - Q - 1 ,

of diagonalizable groups, where U = Diag(Z[Λ]), N = Diag(Coker(φ)) and
Q = Diag(Ker(φ)); cf. [Ja, I 5.6] or [DG, IV 1.1]. Since U is F -equivariantly
isomorphic to a dense open subset of V , the G-action on V is generically



ESSENTIAL DIMENSION 7

free if and only if the G-action on U is generically free. On the other hand,
the G-action on U is generically free if and only if (i) the D-action on U is
generically free, and (ii) the F -action on Q is generically free.

It is now easy to see that (i) is equivalent to (a) and (ii) is equivalent to
(b); cf. Remark 2.1. �

4. Subgroups of prime-to-p index

Our starting point is the following lemma.

Lemma 4.1. Let G′ be a closed subgroup of a smooth algebraic group G
defined over k. Assume that the index [G : G′] is finite and prime to p.
Then ed(G; p) = ed(G′; p).

In the case where G is finite a proof can be found in [Me, Proposition
4.10]; the argument below proceeds along similar lines.

Proof. Recall that if G is a linear algebraic group and H is a closed subgroup
then

(7) ed(G; p) ≥ ed(H; p) + dim(H) − dim(G) ;

for any prime p; see, [BRV, Lemma 2.2] or [Me, Corollary 4.3]. Since
dimG′ = dim G, this yields ed(G; p) ≥ ed(G′; p).

To prove the opposite inequality, it suffices to show that for any field
K/k the map H1(K,G′) → H1(K,G) induced by the inclusion G′ ⊂ G is
p-surjective, i.e., that for every α ∈ H1(K,G) there is a finite field extension
L/K of degree prime to p such that αL is in the image of H1(L,G′) →
H1(L,G); see, e.g., [Me, Proposition 1.3].

Let X be a G-torsor over K and X/G the quotient by the action of G′.
For a field L/K and an L-point Spec(L) → X/G′ we construct a G′-torsor
Y as the pullback

Y - X

Spec(L)
?

- X/G′
?

Spec(K)
?

In this situation Y ×G′
G ∼= XL as G-torsors. Thus we have the natural

diagram

H1(L,G′) - H1(L,G)

[Y ] - [X]L

[X]

6

H1(K,G)

6
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where [X] and [Y ] denote the classes of X and Y in H1(K,G) and H1(L,G′),
respectively. It remains to show the existence of such an L-point, with the
degree [L : K] prime to p.

Note that G/G′ is affine, since G and G′ are of the same dimension and

hence G/G′ ∼= (G/G◦)/(G′/G◦) = Spec k[G/G◦]G
′/G◦

where G◦ is the con-
nected component of G (and G′). Furthermore G/G′ is smooth; cf. [DG,
III 3.2.7]. Let Ks be the separable closure of K. X being a G-torsor, we
have XKs

∼= GKs and (X/G′)Ks
∼= (G/G′)Ks which implies that X/G′ is

also affine, cf. [DG, III 3.5.6 d)]. Thus, K[X/G′] ⊗ Ks
∼= k[G/G′] ⊗ Ks is

reduced and its dimension dimK K[X/G′] = [G : G′] is not divisible by p by
assumption.

Therefore K[X/G′] is étale or, equivalently, a product of separable field
extensions of K

K[X/G′] = L1 × · · · × Lr;

see, e.g., [Bo, V, Theorem 4]. For each Lj the projection K[X/G′] → Lj is
an Lj-point of X/G′ and since

dimK K[X/G′] =
r∑

j=1

[Lj : K] is prime to p,

one of the fields Lj must be of degree prime to p over K. We now take
L = Lj. �

Corollary 4.2. Suppose k is a field of characteristic 6= p. Then edk(Sn; p) =
[n/p].

Proof. Let m = [n/p] and let D ≃ (Z/pZ)m be the subgroup generated by
the disjoint p-cycles

σ1 = (1, . . . , p), . . . , σm = ((m − 1)p + 1, . . . ,mp) .

The inequality ed(Sn; p) ≥ edk(D; p) ≥ [n/p] is well known; see, [BuR1,
Section 6], [BuR2, Section 7], or [BF, Proposition 3.7].

To the best of our knowledge, the opposite inequality was first noticed
by J.-P. Serre (private communication, May 2005) and independently by R.
Lötscher [Lö]. The proof is quite easy; however, since it has not previously
appeared in print, we reproduce it below.

The semi-direct product D ⋊ Sm, where Sm permutes σ1, . . . , σm, embeds
in Sn with index prime to p. By Lemma 4.1, edk(D ⋊ Sm; p) = edk(Sn; p)
and it suffices to show that edk(D ⋊ Sm) ≤ [n/p]. As we mentioned in
Section 2, in order to prove this, it is enough to construct a generically
free m-dimensional representation of D ⋊ Sm defined over k. Moreover, by
Remark 2.2 we may assume that ζp ∈ k, where ζp denotes a primitive root
pth root of unity.
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To construct a generically free m-dimensional representation of D ⋊ Sm,
let σ∗

1 , . . . , σ
∗
m ⊂ X(D) be the “basis” of D dual to σ1, . . . , σm. That is,

σ∗
i (σj) =

{

ζp, if i = j and

1, otherwise.

The Sm-invariant subset Λ = {σ∗
1 , . . . , σ

∗
m} of X(D) gives rise to the m-

dimensional k-representation VΛ of D ⋊ Sm, as in Section 3. An easy appli-
cation of Lemma 3.3 shows that this representation is generically free. �

5. First reductions and proof of Theorem 1.1 parts (a) and (b)

Let T ≃ G
n
m/∆ be the diagonal maximal torus in PGLn, where ∆ = Gm

is diagonally embedded into G
n
m. Recall that the normalizer N of T is

isomorphic to T ⋊Sn, where we identify Sn with the subgroup of permutation
matrices in PGLn.

Let Pn be a Sylow p-subgroup of Sn. Lemma 4.1 tells us that

edk(N ; p) = edk(T ⋊ Pn; p) .

Note also that by Remark 2.2 we may assume without loss of generality that
k contains a primitive pth root of unity.

Thus in order to prove Theorem 1.1 it suffices to establish the following
proposition.

Proposition 5.1. Let T ≃ G
n
m/∆, where ∆ = Gm is diagonally embedded

into G
n
m. Assume that k is of characteristic 6= p, containing a primitive pth

root of unity. Then

(a) edk(T ⋊ Pn) = edk(T ⋊ Pn; p) = [n/p], if n is not divisible by p.
(b) edk(T ⋊ Pn) = edk(T ⋊ Pn; p) = 2, if n = p.
(c) edk(T ⋊ Pn) = edk(T ⋊ Pn; p) = n2/p − n + 1, if n = pr for some r ≥ 2.
(d) edk(T ⋊ Pn) = edk(T ⋊ Pn; p) = pe(n − pe) − n + 1, in all other cases.

Here Pn is a Sylow p-subgroup of Sn, [n/p] is the integer part of n/p and pe

is the highest power of p dividing n.

The assumption that k contains a primitive pth root of unity is only
needed for the proof of the first equality in parts (a) and (b).

Our proof of each part of this proposition will be based on the strategy
outlined in Section 2, with G = T ⋊Pn. Before we proceeding with the proof
of the proposition, we recall that the character lattice X(T ) is naturally
isomorphic to

{(a1, . . . , an) ∈ Z
n | a1 + · · · + an = 0} ,

where we identify the character

(t1, . . . , tn) → ta1

1 . . . tan
n

of T = G
n
m/∆ with (a1, . . . , an) ∈ Z

n. Note that (t1, . . . , tn) is viewed as
an element of G

n
m modulo the diagonal subgroup ∆, so the above character

is well defined if and only if a1 + · · · + an = 0. An element σ of Sn (and
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in particular, of Pn ⊂ Sn) acts on a = (a1, . . . , an) ∈ X(T ) by naturally
permuting a1, . . . , an.

For notational convenience, we will denote by ai,j the element of (a1, . . . , an) ∈
X(T ) such that ai = 1, aj = −1 and ah = 0 for every h 6= i, j.

We also recall that for n = pr the Sylow p-subgroup Pn of Sn can be
described inductively as the wreath product

Ppr ∼= Ppr−1 ≀ Z/p ∼= (Ppr−1)p ⋊ Z/p .

For general n, Pn is the direct product of certain Ppr , see Section 8.

Proof of Proposition 5.1(a). Step (i): Since n is not divisible by p, we may
assume that Pn is contained in Sn−1, where we identify Sn−1 with the sub-
group of Sn consisting of permutations σ ∈ Sn such that σ(1) = 1.

We will now construct a generically free linear representation V of T ⋊

Sn−1 of dimension n−1+[n/p]. Restricting this representation to T ⋊Pn, we
will obtain a generically free linear representation of dimension n−1+[n/p].
This will show that ed(T ⋊ Pn) ≤ [n/p].

To construct V , let Λ = {a1,i | i = 2, . . . , n} and let W be a [n/p]-
dimensional faithful linear representation of Pn constructed in the proof
of Corollary 4.2 (we may adjoin pth roots of unity to k if needed, see Re-
mark 2.2). Applying Lemma 3.2(b), we see that V = VΛ × W is generically
free.

Step (ii): Since the natural projection p : T ⋊ Pn → Pn has a section, so
does the map p∗ : H1(K,T ⋊ Pn) → H1(K,Pn) of Galois cohomology sets.
Hence, p∗ is surjective for every field K/k. This implies that

ed(T ⋊ Pn) ≥ ed(Pn; p) = [n/p] .

Here ed(Pn; p) = ed(Sn; p) by Lemma 4.1 and ed(Sn; p) = [n/p] by Corol-
lary 4.2. �

Remark 5.2. We will now outline a different and perhaps more conceptual
proof of the upper bound ed(N ; p) ≤ [n/p] of Theorem 1.1(a). As we pointed
out in the introduction, ed(N ; p) is the essential dimension at p of the functor

H1( ∗ , N) : K 7→ { K-isomorphism classes of pairs (A,L) },

where A is a degree n central simple algebras over K, L is a maximal étale
subalgebra of A. Similarly, ed(Sn; p) is the essential dimension at p of the
functor

H1( ∗ ,Sn) : K 7→ {K-isomorphism classes of n-dimensional étale algebras L/K }.

Let α : H1( ∗ ,Sn) → H1( ∗ , N) be the map taking an n-dimensional étale
algebra L/K to (EndK(L), L). Here we embed L in EndK(L) ≃ Mn(K) via
the regular action of L on itself.

It is easy to see that, in the terminology of [Me, Section 1.3], α is p-
surjective. That is, for any class (A,L) in H1(K,N) there exists a prime-to-
p extension K ′/K such that (A ⊗K K ′, L ⊗K K ′) lies in the image of α. In
fact, any K ′/K of degree prime-to-p which splits A will do; indeed, by the
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Skolem-Noether theorem, any two embeddings of L⊗K K ′ into Mn(K ′) are
conjugate. By [Me, Proposition 1.3], we conclude that ed(N ; p) ≤ ed(Sn; p).
Combining this with Corollary 4.2 yields the desired inequality ed(N ; p) ≤
[n/p]. �

Proof of Proposition 5.1(b). Here n = p and Pn ≃ Z/p is generated by the
p-cycle (1, 2, . . . , n). We follow the strategy outlined in Section 2.

Step (i): To show that edk(T ⋊ Pn) ≤ 2, we will construct a generically
free k-representation of T ⋊ Pn of dimension 2 + dim(T ⋊ Pn) = n + 1.

Let Λ = {a1,2, . . . ,ap−1,p,ap,1} and V = VΛ×L, where L is a 1-dimensional
faithful representation of Pn ≃ Z/p and T ⋊ Pn acts on L via the natural
projection T ⋊Pn → Pn. Note that dim(V ) = |Λ|+1 = n+1. Since Λ gener-
ates X(T ), Lemma 3.2(b) tells us that V is a generically free representation
of T ⋊ Pn.

Step (ii): Recall that edk(T ⋊ Pn; p) = edk(N ; p) by Lemma 4.1. On the
other hand, as we mentioned in the introduction,

edk(N ; p) ≥ edk(PGLp; p) = 2 ;

see (2) and (3). This completes the proof of Proposition 5.1(b) and of
Theorem 1.1(b). �

6. Proof of Theorem 1.1 part (c): The upper bound

In the next two sections we will prove Proposition 5.1(c) and hence, The-
orem 1.1(c). We will assume that n = pr for some r ≥ 2 and follow the
strategy of Section 2. In this section we will carry out Step (i). That is,
we will construct construct a generically free representation V of T ⋊ Pn of
dimension p2r−1. This will show that ed(T ⋊ Pn) ≤ p2r−1 − pr + 1. Our
V will be of the form VΛ for a particular Pn-invariant Λ ⊂ X(T ), following
the recipe of Section 3. Note that this construction (and thus the above
inequality) will not require any assumption on the base field k.

For notational convenience, we will subdivide the integers 1, 2, . . . , pr into
p “big blocks” B1, . . . , Bp, where each Bi consists of the pr−1 consecutive
integers (i − 1)pr−1 + 1, (i − 1)pr−1 + 2, . . . , ipr−1.

We define Λ ⊂ X(T ) as the Pn-orbit of the element

a1,pr−1+1 = (1, 0, . . . , 0
︸ ︷︷ ︸

B1

,−1, 0, . . . , 0
︸ ︷︷ ︸

B2

, 0, 0, . . . , 0
︸ ︷︷ ︸

B3

, . . . , 0, 0, . . . , 0
︸ ︷︷ ︸

Bp

)

in X(T ). Thus, Λ consists of elements aα,β, subject to the condition that if
α lies in the big block Bi then β has to lie in Bj, where j − i ≡ 1 modulo p.
There are pr choices for α. Once α is chosen, there are exactly pr−1 further
choices for β. Thus

|Λ| = pr · pr−1 = p2r−1 .

As described in Section 3, we obtain a linear representation VΛ of T ⋊ Pn of
the desired dimension

dim(VΛ) = |Λ| = p2r−1 .
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It remains to prove that VΛ is generically free. By Lemma 3.3 it suffices to
show that

(i) Λ generates X(T ) as an abelian group and

(ii) the Pn action on the kernel of the natural morphism φ : Z[Λ] → X(T )
is faithful.

The elements aα,β clearly generate X(T ) as an abelian group, as α and
β range over 1, 2, . . . , pr. Thus in order to prove (i) it suffices to show that
SpanZ(Λ) contains every element of this form. Suppose α lies in the big
block Bi and β in Bj. If j − i ≡ 1 (mod p), then aα,β lies in Λ and there is
nothing to prove. If j − i ≡ 2 (mod p) then choose some γ ∈ Bi+1 (where
the subscript i + 1 should be viewed modulo p) and write

aα,β = aα,γ + aγ,β .

Since both terms on the right are in Λ, we see that in this case aα,β ∈
SpanZ(Λ). Using this argument recursively, we see that aα,β also lies in
SpanZ(Λ) if j − i ≡ 3, . . . , p (mod p), i.e., for all possible i and j. This
proves (i).

To prove (ii), denote the kernel of φ by M . Since Pn is a finite p-group,
every normal subgroup of Pn intersects the center of Pn, which we shall
denote by Zn. Thus it suffices to show that Zn acts faithfully on M .

Recall that Zn is the cyclic subgroup of Pn of order p generated by the
product of disjoint p-cycles

σ1 · . . . · σpr−1 = (1 . . . p)(p + 1 . . . 2p) . . . (pr − p + 1, . . . , pr) .

Since |Zn| = p, it either acts faithfully on M or it acts trivially, so we only
need to check that the Zn-action on M is non-trivial. Indeed, Zn does not
fix the non-zero element

a1,pr−1+1 + apr−1+1,2pr−1+1 + · · · + a(p−1)pr−1+1,1 ∈ Z[Λ]

which lies in M . This completes the proof of the upper bound of Proposi-
tion 5.1 and Theorem 1.1(c). �

7. Theorem 1.1 part (c): The lower bound

In this section we will continue to assume that n = pr. We will show that

(8) ed(N ; p) ≥ p2r−1 − pr + 1 ,

thus completing the proof of Proposition 5.1(c) and Theorem 1.1(c). Let

(9) q := pe, where e ≥ 1 if p is odd and e ≥ 2 if p = 2.

be a power of p. The specific choice of e will not be important in the sequel;
in particular, the reader may assume that q = p if p is odd and q = 4, if
p = 2. Whatever e we choose, q = pe will remain unchanged for the rest of
this section.

We now recall that if k′/k is a field extension then

edk(N ; p) ≥ edk′(N ; p) ;
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cf. [Me, Proposition 1.5(1)]. Thus for the purpose of proving (8) we may
replace k by k′. In particular, we may assume that k′ contains a primitive
qth root of unity.

Let T(q) = µn
q /µq be the q-torsion subgroup of T = G

n
m/∆. Applying the

inequality (7) to G = T ⋊ Pn and its finite subgroup H = T(q) ⋊ Pn, we
obtain

ed(T ⋊ Pn; p) ≥ ed(T(q) ⋊ Pn; p) − pr + 1 .

Thus it suffices to show that

(10) ed(T(q) ⋊ Pn; p) ≥ p2r−1 .

The advantage of replacing T ⋊ Pn by T(q) ⋊ Pn is that T(q) ⋊ Pn is a finite
p-group, so that we can apply the following recent result of Karpenko and
Merkurjev [KM].

Theorem 7.1. Let G be a finite p-group and k be a field containing a
primitive pth root of unity. Then edk(G; p) = edk(G) = the minimal value
of dim(V ), where V ranges over all faithful linear k-representations G →
GL(V ).

Now recall that we are assuming that k contains a primitive qth root
of unity and hence, a primitive pth root of unity. Hence, Theorem 7.1
applies in our situation. That is, in order to prove (10) it suffices to show
that T(q) ⋊ Pn does not have a faithful linear representation of dimension

< p2r−1. Lemma 3.1 further reduces this representation-theoretic assertion
to the combinatorial statement of Proposition 7.2 below.

Before stating Proposition 7.2 we recall that the character lattice of T(q) ≃
µn

q /µq is

Xn := {(a1, . . . , an) ∈ (Z/qZ)n | a1 + · · · + an = 0 in Z/qZ },

where we identify the character

(t1, . . . , tn) → ta1

1 . . . tan
n

of T(q) with (a1, . . . , an) ∈ (Z/qZ)n. Here (t1, . . . , tn) stands for an element
of µn

q , modulo the diagonally embedded µq, so the above character is well
defined if and only if a1+· · ·+an = 0 in Z/qZ. (This is completely analogous
to our description of the character lattice of T in the previous section.)
Note that Xn depends on the integer q = pe, which we assume to be fixed
throughout this section.

Proposition 7.2. Let n = pr and Pn be a Sylow p-subgroup of Sn. If Λ is
a Pn-invariant generating subset of Xn then |Λ| ≥ p2r−1 for any r ≥ 1.

Our proof of Proposition 7.2 will rely on the following special case of
Nakayama’s Lemma [AM, Proposition 2.8].

Lemma 7.3. Let q = pe be a prime power, M = (Z/qZ)d and Λ be a
generating subset of M (as an abelian group). If we remove from Λ all
elements that lie in pM , the remaining set, Λ\pM , will still generate M . �
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Proof of Proposition 7.2. We argue by induction on r. For the base case,
set r = 1. We need to show that |Λ| ≥ p. Assume the contrary. In this
case Pn is a cyclic p-group, and every non-trivial orbit of Pn has exactly p
elements. Hence, |Λ| < p is only possible if every element of Λ is fixed by
Pn. Since we are assuming that Λ generates Xn as an abelian group, we
conclude that Pn acts trivially on Xn. This can happen only if p = q = 2.
Since these values are ruled out by our definition (9) of q, we have proved
the proposition for r = 1.

In the previous section we subdivided the integers 1, 2, . . . , pr into p “big
blocks” B1, . . . , B

r−1
p of length p. Now we will now work with “small blocks”

b1, . . . , bpr−1, where bj consists of the p consecutive integers

(j − 1)p + 1, (j − 1)p + 2, . . . , jp .

We can identify Ppr−1 with the subgroup of Ppr that permutes the small
blocks b1, . . . , bpr−1 without changing the order of the elements in each block.

For the induction step, assume r ≥ 2 and consider the homomorphism
Σ: Xpr → Xpr−1 given by

(11) a = (a1, a2, . . . , apr) 7→ s = (s1, . . . , spr−1) ,

where si = a(i−1)p+1 + a(i−1)p+2 + . . . + aip is the sum of the entries of a in
the ith small block bi. Thus

(i) if Λ generates Xpr then Σ(Λ) generates Xpr−1.

(ii) if Λ is a Ppr -invariant subset of Xpr then Σ(Λ) is a Ppr−1-invariant
subset of Xpr−1.

Let us remove from Σ(Λ) all elements which lie in pXpr−1. The resulting
set, Σ(Λ) \ pXpr−1, is clearly Ppr−1-invariant. By Lemma 7.3 this set gener-

ates Xpr−1. Thus by the induction assumption |Σ(Λ) \ pXpr−1| ≥ p2r−3.
We claim that the fiber of each element s = (s1, . . . , spr−1) in Σ(Λ)\pXpr−1

has at least p2 elements in Λ. If we can show this, then we will be able to
conclude that

|Λ| ≥ p2 · |Σ(Λ) \ pXpr−1| ≥ p2 · p2r−3 = p2r−1 ,

thus completing the proof of Proposition 7.2.
Let σi be the single p-cycle, cyclically permuting the elements in the small

block bi. To prove the claim, note that the subgroup

〈σi | i = 1, . . . , pr−1〉 ≃ (Z/pZ)p
r−1

of Pn acts on each fiber of Σ.
To simplify the exposition in the argument to follow, we introduce the

following bit of terminology. Let us say that a ∈ (Z/qZ)n is scalar in the
small block bi if all the entries of a in the block bi are the same, i.e., if

a(i−1)p+1 = a(i−1)p+2 = · · · = aip .

We are now ready to prove the claim. Suppose a = (a1, . . . , apr) ∈ Xpr

lies in the preimage of s = (s1, . . . , spr−1), as in (11). If a is scalar in the
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small block bi then clearly

si = a(i−1)p+1 + a(i−1)p+2 + · · · + aip ∈ pZ/qZ .

Since we are assuming that s lies in

Σ(Λ) \ pXpr−1 ,

s must have at least two entries that are not divisible by p, say, si and
sj. (Recall that s1 + · · · + spr = 0 in Z/qZ, so s cannot have exactly one
entry not divisible by p.) Thus a is non-scalar in the small blocks bi and bj.

Consequently, the elements σα
i σβ

j (a) are distinct, as α and β range between
0 and p− 1. All of these elements lie in the fiber of s under Σ. Therefore we
conclude that this fiber contains at least p2 distinct elements. This completes
the proof of the claim and thus of Proposition 7.2, Proposition 5.1(c) and
Theorem 1.1(c). �

8. Proof of Theorem 1.1 part (d)

In this section we assume that n is divisible by p but is not a power of p.
We will modify the arguments of the last two sections to show that

ed(T ⋊ Pn) = ed(T ⋊ Pn; p) = pe(n − pe) − n + 1 ,

where pe is the highest power of p dividing n. This will complete the proof
of Proposition 5.1 and thus of Theorem 1.1.

Write out the p-adic expansion

(12) n = n1p
e1 + n2p

e2 + ... + nupeu ,

of n, where 1 ≤ e = e1 < e2 < ... < eu, and 1 ≤ ni < p for each i. Subdivide
the integers 1, ..., n into n1 + ... + nu blocks Bi

j of length pei , for j ranging
over 1, 2, ..., ni. By our assumption there are at least two such blocks. The
Sylow subgroup Pn is a direct product

Pn = (Ppe1 )n1 × · · · × (Ppeu )nu

where each Ppei acts on one of the blocks Bi
j .

Once again we will use the strategy outlined in Section 2.

Step (i): We will construct a generically free representation of T ⋊ Pn of
dimension pe1(n − pe1). This will prove the upper bound edk(T ⋊ Pn) ≤
pe1(n− pe1). Note that this construction (and thus the above inequality) do
not require any assumption on the field k.

To construct this representation, let Λ ⊂ X(T ) be the union of the Pn-
orbits of the elements

a1,j+1 where j = pe1, ..., n1p
e1, n1p

e1 + pe2, ....., n − peu

i.e., the union of the Pn-orbits of elements of the form (1, 0 . . . , 0,−1, 0, . . . , 0),
where 1 appears in the first position of the first block and −1 appears in the
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first position of one of the other blocks. For aα,β in Λ there are pe1 choices
for α and n − pe1 choices for β. Thus

dim(VΛ) = |Λ| = pe1(n − pe1) .

It is not difficult to see that Λ generates X(T ) as an abelian group. To
conclude with Lemma 3.3 that VΛ is a generically free representation of
T ⋊ Pn, it remains to show that the Pn-action on the kernel of the natural
morphism φ : Z[Λ] → X(T ) is faithful when e1 ≥ 1. As in section 6 we only
need to check that the center Zn of Pn acts faithfully on the kernel. Let σ
be a non trivial element of Zn = (Zpe1 )n1 × · · · × (Zpeu )nu . We may assume
that the first component of σ in the above direct product is non-trivial, and
therefore σ permutes elements in the first block B1

1 cyclically. Note that B1
1

is of size at least p as e = e1 ≥ 1, and that we have at least 2 blocks. The
second block is also of size ≥ p and if p = 2, at least of size 4 by (12). It
follows from this that σ does not fix the non-zero element

a1,pe+1 − a1,pe+2 + a2,pe+2 − a2,pe+1

which lies in the kernel of φ.

Step (ii): We now want to prove the lower bound, ed(T ⋊ Pn; p) ≥
pe1(n − pe1) − n + 1. Arguing as in Section 7 (and using the same nota-
tion, with q = p), it suffices to show that ed(T(p) ⋊ Pn; p) ≥ pe1(n − pe1).
By the Karpenko-Merkurjev theorem 7.1 this is equivalent to showing that
every faithful representation of T(p) ⋊ Pn has dimension ≥ pe1(n − pe1). By
Lemma 3.1 it now suffices to prove the following lemma.

Lemma 8.1. Let n be a positive integer, Pn be the Sylow subgroup of Sn,
pe be the highest power of p dividing n, and

Xn := {(a1, . . . , an) ∈ (Z/pZ)n | a1 + · · · + an = 0 in Z/pZ }.

Then every Pn-invariant generating subset of Xn has at least pe(n − pe)
elements.

In the statement of the lemma we allow e = 0, to facilitate the induction
argument. For the purpose of proving the lower bound in Proposition 5.1(d)
we only need this lemma for e ≥ 1.

Proof. Once again, we consider the p-adic expansion (12) of n, with 0 ≤
e1 < e2 < ... < eu and 1 ≤ ni < p. We may assume that n is not a power of
p, since otherwise the lemma is vacuous.

We will argue by induction on e = e1. For the base case, let e1 = 0.
Here the lemma is obvious: since Xn has rank n − 1, every generating set
(Pn-invariant or not) has to have at least n − 1 elements.

For the induction step, we may suppose e = e1 ≥ 1; in particular, n is
divisible by p. Define Σ : Xn → Xn/p by sending (a1, ...., an) to (s1, ..., sn/p),
where

sj = a(j−1)p+1 + · · · + ajp
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for j = 1, . . . , n/p. Arguing as in Section 7 we see that Σ(Λ) \ pXn/p is a
(Ppe1−1)n1 × · · · × (Ppeu−1)nu-invariant generating subset of Xn/p and that
every

s ∈ Σ(Λ) \ pXn/p

has at least p2 preimages in Λ. By the induction assumption,

|Σ(Λ) \ pXn/p| ≥ pe−1(
n

p
− pe−1)

and thus

|Λ| ≥ p2 · pe−1(
n

p
− pe−1) = pe(n − pe)

This completes the proof of Lemma 8.1 and thus of parts (d) of Proposi-
tion 5.1 and of Theorem 1.1. �
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