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Abstract

We will consider an explicit birational map between a quadric and the
projective variety X(J) of traceless rank one elements in a simple reduced
Jordan algebra J . X(J) is a homogeneous G-variety for the automorphism
group G = Aut(J). We will show that the birational map is a blow up
followed by a blow down. This will allow us to use the blow up formula
for motives together with Vishik’s work on the motives of quadrics to give
a motivic decomposition of X(J).

Recently Totaro has solved the birational classification problem for a large
class of quadrics [To08]. In particular, let φ be an r-Pfister form over a field k
of characteristic not 2, and b = 〈b1, · · · bn〉 be a non-degenerate quadratic form
with n ≥ 2.

Proposition 0.1. [To08, Thm. 6.3] The birational class of the quadric defined
by

q = φ⊗ 〈b1, · · · , bn−1〉 ⊥ 〈bn〉
only depends on the isometry classes of φ and φ ⊗ b, and not on the choice of
diagonalization of b.

The Sarkisov program [Co94] predicts that any birational map between
quadrics (in fact between any two Mori fibre spaces) factors as a chain of com-
posites of “elementary links”. In 2.16 we will explicitly factor many of Totaro’s
birational maps into chains of elementary links, and also prove the following
theorem.

Theorem 0.2. For r = 0, 1, 2 and n ≥ 3, or r = 3 and n = 3, for each
of the birational equivalences from Prop. 0.1, there is a birational map which
factors into two elementary links, each of which is the blow up of a reduced
subscheme followed by a blow down. Furthermore, if r 6= 1 or φ is not hyperbolic,
then the intermediate Mori fibre space of this factorization will be the projective
homogeneous variety X(J) of traceless rank one elements in a Jordan algebra
J .
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The birational map from a quadric to X(J) will be the codimension 1 re-
striction of a birational map between projective space and the projective variety
VJ of rank one elements of J , first written down by Jacobson [Ja85, 4.26].

0.3 Motivic decompositions. Let G a semisimple linear algebraic group of
inner type, and X a projective homogeneous G-variety such that G splits over
the function field of X , which is to say, X is generically split (see [PSZ08, 3.6]
for a convenient table). Then [PSZ08] gives a direct sum decomposition of the
Chow motive M(X ; Z/pZ) of X . They show that it is the direct sum of some
Tate twists of a single indecomposable motiveRp(G), which generalizes the Rost
motive. This work unified much of what was previously known about motivic
decompositions of anisotropic projective homogeneous varieties.

In the non-generically split cases less is known. Quadrics are in general not
generically split, but much is known by the work of Vishik and others, especially
in low dimensions [Vi04].

Theorem 0.4. (See Thm. 3.6) The motive of the projective quadric defined by
the quadratic forms in Prop. 0.1 may be decomposed into the sum, up to Tate
twists, of Rost motives and higher forms of Rost motives.

In the present paper we will use this knowledge of motives of quadrics to
produce motivic decompositions for the non-generically split projective homoge-
neous G-varieties X(J) which appear in Thm. 0.2. The algebraic groups G are
of Lie type 2An−1, Cn and F4, and are automorphism groups of simple reduced
Jordan algebras of degree ≥ 3. These varieties X(J) come in four different types
which we label r = 0, 1, 2 or 3, corresponding to the 2r dimensional composition
algebra of the simple Jordan algebra J (see Thm. 2.4 for a description of X(J)
as G/P for a parabolic subgroup P ).

Theorem 0.5. (See Thm. 3.12) The motive of X(J) is the direct sum of a
higher form of a Rost motive, F r

n , together with several Tate twisted copies of
the Rost motive Rr.

The r = 1 case of this theorem provides an alternate proof of Krashen’s
motivic equivalence [Kr07, Thm. 3.3]. On the other hand, the r = 1 case of this
theorem is shown in [SZ08, Thm. (C)] by using Krashen’s result (See Remark
3.14).

0.6 Notational conventions. We will fix a base field k of characteristic 0
(unless stated otherwise), and an algebraically closed (equivalently, a separably
closed) field extension k̄ of k. We only use the characteristic 0 assumption to
show the varieties X(J) and Z1 are homogeneous. We will assume a scheme
over k is a separated scheme of finite type over k, and a variety will be an
irreducible reduced scheme.
For a scheme X over k, X = X ×k k̄.
G denotes an algebraic group over k.
ai are coefficients of the r-Pfister form φ over k.
bi are coefficients of the n-dimensional quadratic form b over k.
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q denotes a quadratic form over k, and Q is the associated projective quadric.
iW (q) is the Witt index of the quadratic form q.
C is a composition algebra (not to be confused with the Lie type Cn), and ci

are elements of C.
J is a Jordan algebra, x is an element of J , and u is an idempotent in J .
X(J), Q(J, u), Z1 and Z2 are complete schemes over k defined in Section 2.
F r

n and Rr are motives defined in Section 3.1 (not to be confused with the Lie
type F4).
M(X) denotes the motive of a smooth complete scheme X , and M{i} denotes
the ith Tate twist of the motive M .

The paper is organized as follows. In Section 1 we will recall the terminology
and classification of reduced simple Jordan algebras. In Section 2 we describe
the variety X(J) and show it is homogeneous. Also we will define the birational
map v2 from a quadric to X(J) and show that it is a Sarkisov link by analyzing
its scheme of base points. In Section 3 we deduce motivic decompositions for
a class of quadrics, as well as for the indeterminacy locus of v2 introduced
in Section 2. Finally we put these decompositions together to give a motivic
decomposition of X(J).

1 Jordan algebras

A Jordan algebra over k is a commutative, unital (not necessarily associative)
k-algebra J whose elements obey the identity

x2(xy) = x(x2y) for all x, y ∈ J.

A simple Jordan algebra is one with no proper ideals. An idempotent in J is
an element u2 = u 6= 0 ∈ J . Two idempotents are orthogonal if they multiply
to zero, and an idempotent is primitive if it is not the sum of two orthogonal
idempotents in J . For any field extension l/k, we can extend scalars to l by
taking Jl = J ⊗k l, for example J̄ = J ⊗ k̄. A Jordan algebra has degree n if
the identity in J̄ decomposes into n pairwise orthogonal primitive idempotents
over k̄. A degree n Jordan algebra is reduced if the identity decomposes into n
orthogonal primitive idempotents over k.

The classification of reduced simple Jordan algebras of degree ≥ 3 is closely
related to the classification of composition algebras. A composition algebra
over k is a unital k-algebra C together with a non-degenerate quadratic form
φ on C (called the norm form) such that for any c1, c2 ∈ C we have that
φ(c1c2) = φ(c1)φ(c2). Two composition algebras are isomorphic as k-algebra
iff their norm forms are isometric. Every norm form is an r-fold Pfister form,
which is to say

φ = 〈〈a1, · · · , ar〉〉 := 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−ar〉.

Furthermore, r must be 0, 1, 2 or 3, and for any such r-fold Pfister form φ, there
is a composition algebra with φ as its norm form and a natural conjugation map
− : C → C.
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Let C be a composition algebra with norm form φ = 〈〈a1, · · · , ar〉〉, and
let b = 〈b1, · · · , bn〉 be a non-degenerate quadratic form. Then we can define
a reduced Jordan algebra in the following way. Let Γ = diag(b1, · · · , bn), and
let σb(x) := Γ−1x̄tΓ define a map from Mn(C) to Mn(C). Then σb is an
involution (i.e. an anti-homomorphism such that σ2

b = σb), so we can define
Sym(Mn(C), σb) to be the commutative algebra of symmetric elements (i.e.
elements x such that σb(x) = x). The product structure is defined by x ◦ y =
1
2 (xy + yx), using the multiplication in C. When C is associative (i.e. r = 0, 1
or 2) we know Sym(Mn(C), σb) is Jordan. For r = 3, it is only Jordan when
n ≤ 3, so in what follows we will always impose this condition in the r = 3 case.

The Jordan algebra isomorphism class of Sym(Mn(C), σb) only depends on
the isomorphism classes of b and C, and not on the diagonalization we have
chosen for b. The following theorem states that in degrees ≥ 3 these make up
all of the reduced Jordan algebras up to isomorphism.

Theorem 1.1. (Coordinatization [Mc04, 17],[Ja68, p.137]) Let J be a re-
duced simple Jordan algebra of degree n ≥ 3. Then there exists a composition al-
gebra C and an n-dimensional quadratic form b such that J ∼= Sym(Mn(C), σb).

2 The Sarkisov link

We will define a birational map from a projective quadric to a projective homo-
geneous variety, X(J), and show it is an elementary link in terms of Sarkisov
(see 2.17).

Let r = 0, 1, 2, 3 and n ≥ 3, and if r = 3 then n = 3. Throughout we
will fix a composition algebra C of dimension 2r over k, and elements bi ∈
k∗ such that b = 〈b1, · · · , bn〉 is a non-degenerate quadratic form. Let J =
Sym(Mn(C), σb) (see Section 1). Then J is a central simple reduced Jordan
algebra. Jacobson defined the closed subset VJ ⊂ PJ of rank 1 elements of J
(he used the terminology reduced elements) and showed it is a variety defined
over k [Ja85, §4].

2.1 The Veronese map. The following rational map is a generalization of the
r = 0 case where it is the degree 2 Veronese morphism [Ch06, 3] [Za93, Last
page].

v2 : P(Cn) 99K PJ

[c1, · · · , cn] 7→ [bicic̄j ].

If the composition algebra is associative (so r 6= 3), then the set-theoretic image
of v2 (where it is defined) is precisely VJ . If r = 3, then the set-theoretic image
of v2 isn’t closed, but its closure is VJ [Ch06, Prop. 4.2]. Note that this map de-
pends on the choice of n orthogonal primitive idempotents, v2([0, · · · , 1, · · · , 0]),
so it depends on more than just the isomorphism class of J .

Let us restrict the map v2 to the projective space defined by cn ∈ k1, and
abuse notation by sometimes considering v2 as a rational map from P(Cn−1 ×
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k) 99K VJ . This map is an isomorphism on the open subset U = (cn 6= 0) ⊂
P(Cn−1 × k) [Ja85, Thm. 4.26], and hence birational. The projective homoge-
neous variety we will be interested in is X(J) ⊂ VJ the hyperplane of traceless
matrices, which has dimension 2r(n− 1)− 1.

2.2 The quadric Q(J, u). Define the quadric Q(J, u) ⊂ P(Cn−1 × k) by

φ⊗ 〈b1, · · · bn−1〉 ⊥ 〈bn〉 = (
n−1
∑

i=1

bicic̄i) + bnc2
n = 0.

Here φ is the norm form of C. The right hand side is simply the trace in VJ ,
so the restriction of the birational map v2 to Q(J, u) has image in X(J). We
will often further abuse notation and consider v2 to be the birational map from
Q(J, u) to X(J).

Although the definition of Q(J, u) depends on the diagonalization of b, the
isomorphism class of Q(J, u) depends only on the isomorphism class of J to-
gether with a choice of primitive idempotent u, which we will usually take to
be u = diag(0, · · · , 0, 1) ∈ J , as we have done above.

Remark 2.3. Since the birational class of Q(J, u) is independent of u ∈ J , we
have another proof of Prop. 0.1 when r ≤ 3, and if r = 3 then n = 3. For more
on this, see 2.16.

For connected algebraic groups G over k̄, projective homogeneous G-varieties
G/P are classified by conjugacy classes of parabolic subgroups P in G. Further-
more, the conjugacy classes of parabolics are classified by specifying subsets θ
of the set ∆ of nodes of the Dynkin diagram of G, as in [Ti65, 1.6]. In fact we
will use the compliment to his notation, so that θ = ∆ corresponds to a Borel
subgroup P∆ = B, and θ = ∅ corresponds to P∅ = G. We use the Bourbaki
root numberings. G0 denotes the connected component of the identity in G.

Theorem 2.4. VJ is the union of two Aut(J)-orbits: X(J) and VJ − X(J).
Furthermore, we have:
(r=0): X(J) ∼= G/Pθ, for G = Aut(J̄) ∼= SO(n), if n 6= 4 then θ = {1}, and if
n = 4 then the Dynkin diagram is two disjoint nodes, where θ is both nodes. In
all cases, these varieties are quadrics.
(r=1): X(J) ∼= G0/Pθ, for G = Aut(J̄) ∼= Z/2 ⋉ PGL(n) and θ = {1, n− 1},
this is the variety of flags of dimension 1 and codimension 1 linear subspaces in
a vector space.
(r=2): X(J) ∼= G/Pθ, for G = Aut(J̄) ∼= PSp(2n) and θ = {2}, this is the
second symplectic Grassmannian.
(r=3): X(J) ∼= G/Pθ, for G = Aut(J̄) ∼= F4 and θ = {4}, this may be viewed
as a hyperplane section of the Cayley plane.

Proof. Aut(J) acts on VJ , since the rank is preserved by automorphisms. So it
is sufficient to prove this theorem for k = k̄. Every element of VJ −X(J) is [u]
for some rank one idempotent u [Ch06, Prop. 3.8], and Aut(J) is transitive on
rank one idempotents by Jacobson’s coordinatization theorem, since the field is
algebraically closed [Mc04, 17].
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Clearly X(J) is preserved by Aut(J), since the trace is preserved by au-
tomorphisms. All that remains is to show that Aut(J) is transitive on X(J),
which we will do in cases. Consider the 2r−1n(n−1)+n dimensional Aut(J) rep-
resentation J = k ⊕ J0, where J0 is the subrepresentation of traceless elements
in J . In all cases we will show that J0 is an irreducible Aut(J) representation,
find the highest weight, and show that there is a closed orbit in P(J0) which is
contained in X(J) and is of the same dimension. Therefore, by uniqueness of
the closed orbit, which follows from the irreducibility of J0, X(J) is the closed
orbit.

Case r = 0: For simplicity, we will modify the definition of J . Instead
of taking n × n matrices such that xt = x, we will take matrices such that
M−1xtM = x where

M =

[

0 Im

Im 0

]

for n = 2m, and M =





0 Im 0
Im 0 0
0 0 1



 for n = 2m + 1.

This change is justified by recalling that any two orthogonal involutions in the
same matrix algebra over an algebraically closed field are isomorphic. Now
the Lie algebra of derivations Der(J) ∼= so(n) is in the more standard form,
and we can choose elements of the Cartan subalgebra h as diagonal matrices
Hi = Ei,i−Em+i,m+i as in [FH91, 18]. Following the conventions of [FH91], we
have a dual basis Li(Hj) = δij of h∗, and we wish to find the highest weight of
the representation J0.

For n = 2m, the roots of so(2m) are ±Li ± Lj for 1 ≤ i 6= j ≤ m. One can
check that the non-zero weights of J0 are ±Li±Lj for all i, j. In particular, the
element E1,m+1 is a weight vector in J0 for the weight 2L1, and the irreducible
representation with highest weight 2L1 is of the same dimension as J0. Therefore
J0 is the irreducible representation with highest weight 2L1, and since Aut(J)
is simple, there is a unique closed orbit in P(J0), and it is the orbit of E1,m+1.
To determine the dimension of the orbit, we ask which root spaces g−αi

in the
Lie algebra for the negative simple roots −αi, kill the weight space of 2L1. For
n = 4, neither root space, for −α1 = −L1 − L2 nor α2 = −L1 + L2, kills this
weight space. For any n ≥ 6 even, all of the negative simple root spaces kill the
weight space 2L1 except for the one for −L1 + L2. In either case the dimension
of the parabolic fixing E1,m+1 is 2m2− 3m + 2, so the dimension of the orbit is
n − 2. This is the dimension of the closed invariant subset X(J), which must
contain a closed orbit. Since there is only one closed orbit, X(J) must be the
entire orbit.

A similar analysis may be carried out in the n = 2m + 1 case, where again
E1,n+1 is a weight vector for the highest weight 2L1.

Case r = 1: We have the action of the connected component Aut(J)0 =
PGL(n) on J ∼= Mn(k), acting by conjugation. The induced action of the
Lie algebra of derivations Der(J) ∼= sl(n) on J0 is just the adjoint action on
sl(n). With the standard diagonal Cartan subalgebra, and choice of positive
roots dual to Hi = Ei,i − Ei+1,i+1, the highest weight is in the representation
J0 is 2L1 + L2 + · · ·+ Ln−1 with multiplicity 1. A dimension count shows this
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representation is irreducible, and the dimension of the parabolic fixing a highest
weight vector is n2 − 2n + 2. So the dimension of the unique closed orbit is
2n− 3, which is the dimension of X(J). Therefore X(J) is the closed orbit.

Case r = 2: As in the r = 0 case, we will change our symplectic involution
σ(x) = x̄t to σM (x) = M−1xtM for

M =

[

0 In

−In 0

]

.

Then the Lie algebra of derivations Der(J) ∼= sp(2n) is in the standard form, by
choosing a Cartan subalgebra of diagonal matrices, with Hi = Ei,i − En+i,n+i

and dual basis Li ∈ h∗. The roots of sp(2n) are ±Li ± Lj for all i, j, and the
non-zero weights of J0 are ±Li±Lj for i 6= j. In particular, the highest weight is
L1+L2 in the standard weight ordering of [FH91, p.257]. Comparing dimensions
shows that J0 is irreducible, and the parabolic fixing a highest weight vector is
of dimension 2n2 − 3n + 5. So the unique closed orbit in P(J0) is of dimension
4n − 5, which is the same as the dimension of X(J). Therefore X(J) is the
unique closed orbit.

Case r = 3: First notice that J0 is a 26-dimensional non-trivial rep-
resentation of F4 = Aut(J). It is well-known that such a representation is
unique, and has a 15-dimensional unique closed orbit in P(J0). Since X(J) is a
15-dimensional closed invariant subset, it must be equal to the closed orbit.

Remark 2.5. Over the complex numbers the varieties with exactly two G-orbits
for some semisimple algebraic group G, one of which is of codimension one, have
been classified by [Ah86]. The varieties VJ account for most of these.

2.6 Blowing up the base loci

Any birational map of projective varieties over a field can be expressed as a blow
up followed a blow down of closed subschemes (Prop. 2.7). In this section we will
show that these closed subschemes, for our birational map from Q(J, u) to X(J),
are (usually) smooth varieties, and hence see that the map is an elementary link
in terms of Sarkisov.

Given a rational map between projective varieties f : Y 99K X , we can define
the scheme of base points of f as a closed subscheme of Y [Ha77, II. Example
7.17.3].

Proposition 2.7. Let f : Y 99K X be a birational map of projective varieties
over a field k with g : X 99K Y the inverse birational map. Let ZY and ZX be
the schemes of base points of f and g respectively. Then the blow up Ỹ of Y
along ZY is isomorphic to the blow up X̃ of X along ZX .

Proof. Let U ⊂ Y be the open subset on which f is an isomorphism. Then the
graph Γf of f |U is a subset of U × f(U) ⊂ Y ×X . The closure of Γf in Y ×X ,

7



given the structure of a closed reduced subscheme, is the blow up Ỹ [EH00,
Prop. IV.22]1.

Similarly, X̃ is the closure of Γg ⊂ U × f(U). Since the inverse of f on U

is g, we have that X̃ and Ỹ are both closures in Y × X of the same subset
of U × f(U). So they have the same structure as reduced schemes, and hence
X̃ ∼= Ỹ .

2.8 Indeterminacy locus of v2. Let Z1 be the closed reduced subscheme
associated to the scheme of base points in Q(J, u) of the birational map v2. We
will show that Z1 is isomorphic to the scheme of base points. We denote by
Aut(J, u) the subgroup of automorphisms of J that fix the primitive idempotent
u.

Theorem 2.9. Z1 is homogeneous under an action of Aut(J, u).

Proof. To describe the action we will use the vector space isomorphism Cn−1 ∼=
J 1

2

(u) = {x ∈ J |x · u = 1
2x}. Here, as above, we take u = diag(0, · · · , 0, 1) =

En,n. This isomorphism is given by sending an element c ∈ Cn−1 to the matrix
element in J 1

2

(u) ⊂Mn(C) with nth row equal to [c, 0].

So we have an Aut(J, u) action on P(Cn−1). By considering the defining
equations, one see that Z1 is isomorphic to the reduced subscheme of P(J 1

2

(u))

defined by the matrix equation x2 = 0. So it is clear that the underlying closed
subset is stable under Aut(J, u).

Finally, to show the action is transitive, it is enough to show it after extend-
ing scalars to an algebraically closed field k̄. We will use similar arguments as
in the proof of Thm. 2.4.

Case r = 2: Using the notation from the proof of Thm. 2.4, the roots
of the Lie algebra of Aut(J, u) are ±Li ± Lj for i, j ≤ n − 1 together with
±2Ln. One can check that the non-zero weights of the representation J 1

2

(u)

are ±Li ± Ln for i ≤ n− 1. A dimension count reveals that J 1

2

(u) is therefore
an irreducible representation with highest weight L1 + Ln. The only negative
simple roots that don’t kill a highest weight vector are L2 − L1 and −2Ln, so
the dimension of the parabolic subgroup that fixes a point in the unique closed
orbit in P(J 1

2

(u)) is 2n2 − 5n + 6. So the dimension of this orbit is 2n− 2.

To see this is the same as the dimension of Z1, consider the affine cone Z̃1

over Z1 inside J 1

2

(u). Then consider Jacobian matrix of the equations given

by {xix̄j = 0} with respect to the 4(n − 1) variables: 4 variables for each
coordinate xi ∈ C. The rank of this matrix at any point in the affine cone over
Z1 is ≤ dim(J 1

2

(u))− dim(Z̃1), where equality holds if the ideal spanned by the

polynomials {xix̄j} is radical. By choosing a convenient point, we see that the
dimension of Z1 is at most 2n − 2, which is the dimension of the closed orbit.
So if Z1 contained another Aut(J, u)-orbit, then it would contain another closed
orbit. But the closed orbit is unique, and therefore Z1 is the closed orbit.

1They assume Y is affine, but we can drop this assumption since the blow up is determined

locally.
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Case r = 3: It is well known that the Aut(J, u) ∼= Spin(9) representation
given by J 1

2

(u) for u = E3,3 is the 16-dimensional spin representation. The

unique closed orbit in P(J 1

2

(u)) is therefore the 10-dimensional spinor variety.
Using a similar argument to the r = 2 case, we can show the dimension of Z1 is
at most 10, so by the uniqueness of the closed orbit we can conclude that Z1 is
the closed orbit.

Case r = 1: This case is slightly different from the other two because
Aut(J, u) ∼= Z/2 ⋉ GL(n− 1) is a disconnected group, and the connected com-
ponent has two closed orbits in P(J 1

2

(u)). The argument is similar to the r = 2

case, except we find that the sl(n − 1)-representation J 1

2

(u) is the direct sum
of the standard representation V with its dual V ∗. So the two closed orbits in
P(J 1

2

(u)) are the orbits of weight vectors for the weights L1 − Ln and Ln −L1,

which are the respective closed orbits in PV and PV ∗. Each sl(n − 1)-orbit
has dimension n − 2. Furthermore, the Z/2 part of Aut(J, u) swaps these two
representations, since it acts on matrices as the transpose. So there is a unique
closed Aut(J, u)-orbit, and it is of dimension n− 2.

As in the r = 2 case, by considering the rank of the Jacobian at a closed
point in Z̃1, we see that the dimension of Z1 is at most n − 2. Since Z1 is
Aut(J, u)-stable, we can conclude that it is the closed orbit.

Corollary 2.10. The reduced scheme Z1 is isomorphic to the scheme of base
points of v2 in Q(J, u).

Proof. The r = 0 case is trivial, since v2 is a morphism and hence Z1 is empty.
It is sufficient to assume k is algebraically closed.

The other cases follow from the proof of Thm. 2.9, as follows. We can choose
a convenient closed point in the scheme of base points, and show that the rank
of the Jacobian of the defining polynomials given by {v2(x) = 0} is equal to the
codimension. This implies the scheme is smooth at that point (and therefore at
all points), so in particular, it is reduced.

Corollary 2.11. Over k̄, the smooth subscheme Z1 is isomorphic to the follow-
ing.
(r = 0) : ∅
(r = 1) : P

n−2 ⊔ P
n−2

(r = 2) : P
1 × P

2n−3

(r = 3) : The 10-dimensional spinor variety

Proof. This follows from our representation theoretic understanding of Z1 from
the proof of Thm. 2.9.

There are much more explicit ways of understanding the r 6= 3 cases. For
example, in the r = 2 case, if c = [c1, · · · , cn−1] ∈ P(M2(k̄)n−1) is in Z1, then
the ci’s are rank 1 matrices that have a common non-zero vector in their kernels.
This can be used to get an explicit isomorphism with P

1 × P
2n−3.

Remark 2.12. These varieties are written in [Za93, Final pages], where it is
implicitly suggested that they are the base locus of the rational map v2.
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Remark 2.13. It is shown in [Kr07] that Z1
∼= Spec(k(

√
a1)) ×k P

n−2, where
〈〈a1〉〉 is the norm form associated to C. So the above corollary shows that Z1

is irreducible over k except for the single case when r = 1 and C is split.

2.14 Indeterminacy locus of v−1
2 . Let Z2 be the scheme of base points of

the inverse birational map v−1
2 : X(Jn) 99K Q(J, u). We have that v−1

2 ([xij ]) =
[xn,1, · · · , xn,n], where this is defined.

We will use the notation Jn−1 = Sym(Mn−1(C), σ〈b1,··· ,bn−1〉), and some-
times Jn = J for emphasis. The isomorphism class of Jn−1 depends on the
choice of primitive idempotent u = En,n ∈ J , but is otherwise independent of
the diagonalization of 〈b1, · · · , bn−1〉.

Lemma 2.15. The scheme of base points Z2 is isomorphic to the smooth sub-
variety X(Jn−1).

Proof. The indeterminacy locus of v−1
2 is simply the closed subset of matrices

in X(Jn) whose bottom row (and therefore right-most column) is zero. In other
words, Z2 is defined by linear polynomials. The ideal of these polynomials is
radical, and therefore the scheme Z2 is reduced. For n ≥ 4, one sees that Z2 is
isomorphic to X(Jn−1). For n = 3, by considering the matrix equation x2 = 0,
we see that the base locus of Z2 is the quadric defined by φ ⊗ 〈b1〉 ⊥ 〈b2〉 = 0.
We will define X(J2) to be this quadric.

2.16 The chain between two quadrics

The Sarkisov program [Co94] predicts that any birational map between two
Mori fibre spaces X and Y factors into a chain of elementary links between
intermediate Mori fibre spaces. An example of such a link (of type II [Co94,
3.4.2]) would be X ← W → V where both morphisms are blow ups of smooth
subvarieties, and X and V are projective homogeneous varieties with Picard
number 1 (and hence Mori fibre spaces).

Theorem 2.17. For r 6= 1 or C non-split, the birational map v2 from Q(J, u)
to X(J) is an elementary link of type II.

Proof. We have that Z1 is irreducible (see Remark 2.13). The blow up of an
irreducible smooth subscheme increases the Picard number by 1, and a blow
down decreases it by 1. So in this situation, by Lemma 2.15 and Lemma 2.10
we see that X(J) has Picard number 1. So by Prop. 2.7 we have that v2 is a
blow up of a smooth subvariety followed by a blow down to a smooth subvariety,
and therefore it is an elementary link of type II.

Let b′ = 〈b′1, · · · , b′n〉, and q′ = φ ⊗ 〈b′1, · · · , b′n−1〉 ⊥ 〈b′n〉. Then Totaro’s
Prop. 0.1 states that if φ ⊗ b ∼= φ ⊗ b′, then the quadrics defined by q and q′

are birational. By defining the Jordan algebra J ′ using φ and b′, we have a
birational map v′2 from Q(J ′, u′) to X(J ′).

Proof of Thm. 0.2. If φ ⊗ b ∼= φ ⊗ b′, then the Jordan algebras J ∼= J ′ are
isomorphic as algebras ([KMRT98, Prop. 4.2, p. 43], [Ja68, Ch. V.7, p. 210]),
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and therefore the varieties X(J) ∼= X(J ′) are also isomorphic. So, as noted in
Remark 2.3, Q(J, u) is birational to Q(J ′, u′), and moreover by Thm. 2.17 this
map is the composition of two elementary links, with intermediate variety X(J).
Notice that if C is a split composition algebra (equivalently, φ is hyperbolic)
then Q(J, u) and Q(J ′, u′) are already isomorphic.

2.18 Transposition maps. Now we will explicitly factor the birational maps of
Roussey and Totaro, which in general have more than two elementary links. The
most basic case they consider, though, is that of transposition. This corresponds
to finding a birational map between quadrics q and q′, where b′i = bi for 1 ≤
i ≤ n − 2, and b′n−1 = bn, b′n = bn−1. So b and b′ differ by transposing the
last two entries. Totaro proves Prop. 0.1 by finding a suitable chain of such
transposition maps.

Proposition 2.19. For r = 0, 1, 2 and n ≥ 3, and if r = 3 then n = 3, Totaro’s
transposition map factors as the composite of two elementary links.

Proof. Let q and q′ be as above, and let J = Sym(Mn(Cφ), σb). Then the
quadric (q = 0) = Q(J, u) is defined using the idempotent u = diag(0, · · · 0, 1) ∈
J (see 2.2). General rational points on this quadric are elements in P(Cn−1×k)
such that v2([c1, · · · , cn]) ∈ PJ has trace zero. Here ci ∈ C for i 6= n, and
cn ∈ k. The inverse birational map v−1

2 simply takes the nth row of the matrix
in J .

Then the quadric for (q′ = 0) = Q(J, u′) can be defined using the idempotent
u′ = diag(0, · · · , 1, 0) ∈ J . General rational points on this quadric are elements
in P(Cn−2 × k × C) such that v′2([c

′
1, · · · , c′n]) ∈ PJ has trace zero, where we

use the same Jordan algebra J . Here c′i ∈ C for i 6= n − 1, and c′n−1 ∈ k. The
inverse birational map (v′2)

−1 takes the n− 1th row of the matrix in J .
So the composition (v′2)

−1 ◦ v2 defines a birational map from Q(J, u) to
Q(J, u′). From Thm. 2.17 this is the composite of two elementary links. So it
remains to show this composite is the same as Totaro’s transposition map.

To see this, consider the map (v′2)
−1 ◦ v2 over k̄, and observe where it sends

a general point from Q(J, u). Recall that v2 sends [c1, · · · , cn] to the matrix
[bicicj ] ∈ X(J), and then taking the n− 1th row of this matrix gives us

[bn−1cn−1c1, · · · , bn−1cn−1cn−1, bn−1cn−1cn] ∈ Q(J, u′) ⊂ P(Cn−2 × k̄ × C).

After using the isomorphism P(Cn−2 × k × C) ∼= P(Cn−1 × k) to swap the last
two coordinates, we can now recognize that this is exactly a map from [To08,
Lemma 5.1], where the “multiplication” of elements in C, is x ∗ y := xȳ.

Remark 2.20. We may also view this chain of birational maps as a “weak
factorization” in the sense of [AKMW02]. They prove that any birational map
between smooth projective varieties can be factored into a sequence of blow ups
and blow downs of smooth subvarieties. But a chain of Sarkisov links (of type
II) is stronger, because then each blow up is immediately followed by a blow
down, and the intermediate varieties are Mori fibre spaces.
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3 Motives

For a smooth complete scheme X defined over k, we will denote the Chow
motive of X with coefficients in a ring Λ by M(X ; Λ), following [EKM08] (see
also [Vi04], [Ma68]). We will briefly recall the definition of the category of
graded Chow motives with coefficients in Λ.

Let us define the category C(k, Λ). The objects will be pairs (X, i) for X a
smooth complete scheme over k, and i ∈ Z, and the morphisms will be corre-
spondences :

HomC(k,Λ)((X, i), (Y, j)) =
⊔

m

CHdim(Xm)+i−j(Xm ×k Y, Λ).

Here {Xm} is the set of irreducible components of X . If f : X → Y is a mor-
phism of k-schemes, then the graph of f is an element of HomC(k,Λ)((X, 0), (Y, 0)).
There is a natural composition on correspondences that generalizes the compo-
sition of morphisms of schemes.

We denote the additive completion of this pre-additive category by CR(k, Λ).
Its objects are finite direct sums of objects in C(k, Λ), and the morphisms are
matrices of morphisms in C(k, Λ). Then CR(k, Λ) is the category of graded
correspondences over k with coefficients in Λ.

Finally, we let CM(k, Λ) be the idempotent completion of CR(k, Λ). Here the
objects are pairs (A, e), where A is an object in CR(k, Λ) and e ∈ HomCR(k,Λ)(A, A)
such that e ◦ e = e. Then the morphisms are

HomCM(k,Λ)((A, e), (B, f)) = f ◦HomCR(k,Λ)(A, B) ◦ e.

This is the category of graded Chow motives over k with coefficients in Λ. For
any smooth complete scheme X over k, we denote M(X) = ((X, 0), idX) its
Chow motive, and M(X){i} = ((X, i), idX) its ith Tate twist. Any object in
CM(k, Λ) is the direct summand of a finite sum of motivesM(X){i}.

In this section we will describe direct sum motivic decompositions of Q(J, u),
Z1 and finally X(J). A non-degenerate quadratic form q of dimension ≥ 2
defines a smooth projective quadric Q, and we will sometimes write M(q) =
M(Q).

3.1 Motives of neighbours of multiples of Pfister quadrics

In this section until Example 3.7 we can assume our base field k is of any
characteristic other than 2, and r ≥ 1 may be arbitrarily large. Given an r-
fold Pfister form φ and an n-dimensional non-degenerate quadratic form b =
〈b1, · · · , bn〉 over k we will describe the motivic decomposition of the projective
quadric Q defined by

q = φ⊗ 〈b1, · · · , bn−1〉 ⊥ 〈bn〉.

This quadric is dependent on the choice of diagonalization of b. We will use
Vishik’s following motivic decomposition of the quadric defined by φ⊗ b.
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Theorem 3.2. ([Vi04, 6.1])
For n ≥ 1, there exists a motive F r

n such that

M(φ⊗ b) =

2r−1
⊕

i=0

F r
n{i} ⊕

{

∅ if n is even
M(φ){2r−1(n− 1)} if n is odd.

Vishik uses the notation Fφ(M(b)) for F r
n , and calls it a higher form of

M(b). It only depends on the isometry classes of φ and b.
If φ is anisotropic, Rost defined an indecomposable motive Rr such that

M(φ) is the direct sum of Tate twists of Rr. This is called the Rost motive of
φ. If φ is split, then this motive is no longer indecomposable, but we will still
call Rr = Z⊕Z{2r−1 − 1} the Rost motive. In fact, F r

2 is just the Rost motive
of φ⊗ b (which is similar to a Pfister form). Also note that F r

1 = 0.
In particular, for n ≥ 1, by counting Tate motives one sees that

F r
n |k̄ =

⌊n

2
⌋−1

⊕

i=0

(Z{2ri} ⊕ Z{2r(n− 1)− 2ri− 1}).

So the summand has 2⌊n
2 ⌋ Tate motives, which is the same number thatM(b)|k̄

has.
A summand M is said to start at d if d = min{i|Z{i} is a summand of Mk̄}.

Similarly, a summand M ends at d if d = max{i|Z{i} is a summand of Mk̄}.
We will use the following theorem of Vishik. Here iW (q) denotes the Witt index
of the quadratic form q. This is the number of hyperbolic plane summands in
q.

Theorem 3.3. ([Vi04, 4.15]) Let P, Q be smooth projective quadrics over k,
and d ≥ 0. Assume that for every field extension E/k, we have that

iW (p|E) > d⇔ iW (q|E) > m.

Then the indecomposible summand in M(P ) starting at d is isomorphic to the
(Tate twisted) indecomposible summand in M(Q) starting at m.

With this theorem, it becomes straight forward to prove the following motivic
decomposition (Thm. 3.6), by translating it into some elementary facts about
multiples of Pfister forms. First we will state two lemmas for convenience.

Lemma 3.4. Let φ be an r-fold Pfister form (r ≥ 1) and let b be an n-
dimensional non-degenerate quadratic form (n ≥ 2). For any 0 ≤ d ≤ ⌊n

2 ⌋ − 1,
we have iW (φ⊗ b) > 2rd implies iW (φ ⊗ b) > 2r(d + 1)− 1.

Proof. This follows from the fact that if φ is anisotropic then 2r divides iW (φ⊗b)
[Vi04, Lemma 6.2] or [WS77, Thm. 2(c)].

Lemma 3.5. If Q is a smooth projective quadric of dimension N , then for any
0 ≤ d ≤ N , an indecomposable summand of M(Q) starting at d is isomorphic
(up to Tate twist) to an indecomposable summand of M(Q) ending at N − d.
The same is true for indecomposable summands of F r

n for any r ≥ 1 and n ≥ 1.
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Proof. This is proved in [Vi04, Thm. 4.19] for anisotropic Q, but it is also true
for isotropic Q by using [Vi04, Prop. 2.1] to reduce to the anisotropic case. The
statement for the motive F r

n follows easily from its construction.

Theorem 3.6. Let φ be an r-fold Pfister form (r ≥ 1), and for non-zero bi and
n ≥ 2 we let q = φ⊗ 〈b1, · · · , bn−1〉 ⊥ 〈bn〉 over k of characteristic not 2. Then
we have the following motivic decomposition.

M(q) = F r
n ⊕

2r−1
⊕

i=1

F r
n−1{i}⊕

{

∅ if n is odd
⊕2r−1−1

j=1 Rr{2r−1(n− 1)− j} if n is even.

Proof. We will split the proof into steps, including one step for each of the three
summands. We will use the notation b′ = 〈b1, · · · , bn−1〉 and b = b′ ⊥ 〈bn〉. Note
that we can assume that φ is anisotropic, because when it is isotropic both sides
split into Tate motives, and we get the isomorphism by checking that on the
right hand side there is exactly one copy of Z{i} for each 0 ≤ i ≤ 2r(n− 1).

Step 1: The first summand. To show that F r
n is isomorphic to a summand

ofM(q), we need to show that given an indecomposable summand in F r
n starting

at d, then there is an isomoprhic indecomposable summand in M(q) starting
at d. In fact, by Lemma 3.5 it is enough to only consider indecomposable
summands starting in the ‘first half’, which is to say starting at i ≤ 2r−1(n−1).

Since the only Tate motives in the first half of F r
n |k̄ are Z[2rd] for some

0 ≤ d ≤ ⌊n
2 ⌋ − 1, by Thm. 3.3 it is enough to show that for each such d and

E/k field extension we have iW (φ⊗ b|E) > 2rd iff iW (φ⊗ b′ ⊥ 〈bn〉|E) > 2rd.
The “if” part is clear. So assume iW (φ ⊗ b|E) > 2rd. Then by Lemma 3.4

we know iW (φ⊗ b|E) ≥ 2r(d+1). So the 2r(d+1)-dimensional totally isotropic
subspace must intersect the 2r − 1-codimensional subform φ⊗ b′ ⊥ 〈bn〉 ⊂ φ⊗ b
in dimension at least 2rd + 1. In other words, iW (φ ⊗ b′ ⊥ 〈bn〉|E) > 2rd.

Step 2: The second summand. Fix a 1 ≤ i ≤ 2r − 1. As argued in Step
1, we want to show that if 0 ≤ d ≤ ⌊n

2 ⌋ − 1, and if there is an indecomposable
summand of F r

n−1 starting at 2rd, then there is an isomorphic indecomposable
summand of M(q) starting at 2rd + i. By Thm. 3.3 it is enough to show that
for any E/k we have iW (φ ⊗ b′|E) > 2rd iff iW (φ⊗ b′ ⊥ 〈bn〉|E) > 2rd + i.

iW (φ⊗ b′|E) > 2rd⇒ iW (φ⊗ b′ ⊥ 〈bn〉|E) > 2r(d + 1)− 1 Lemma 3.4

⇒ iW (φ⊗ b′ ⊥ 〈bn〉|E) > 2rd + i

⇒ iW (φ⊗ b′) > 2rd See below

The last implication follows since the ≥ 2rd+2 dimensional totally isotropic
subspace must intersect the codimension 1 subform in dimension at least 2rd+1.
So, by Lemma 3.5, any indecomposable summand of F r

n−1 has a corresponding
summand inM(q), so we have shown that F r

n−1{i} is isomorphic to a summand
ofM(q).

Step 3: The third summand. Assume n is even. Since the summand is
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empty for r = 1, we can assume r ≥ 2. Fix an 2r−1(n− 2) < i < 2r−1(n− 1).

iW (φ) > 0⇒ iW (φ) = 2r−1 Property of Pfister forms

⇒ iW (φ ⊗ b′ ⊥ 〈bn〉) > i

⇒ iW (φ) > 0 See below

For the last implication, we have that the hyperbolic part of φ ⊗ b′ ⊥ 〈bn〉
is of dimension ≥ 2r(n − 2) + 4. So the anisotropic part is of dimension ≤
2r − 2. So by the Arason-Pfister hauptsatz, φ⊗ b′ is hyperbolic. Now if φ were
anisotropic, then 2dim(φ) would divide dim(φ⊗b′) [WS77, Thm. 2(c)]. But this
says 2r+1|2r(n− 1), which is impossible for n even. Therefore φ is isotropic.

To finish Step 3, we use Thm. 3.3 to get the isomorphism of motivic sum-
mands.

Step 4: Counting Tate motives. To finish the proof, one needs to show
that the summands we have described in these three steps are all possible sum-
mands. This can easily be checked by counting the Tate motives over k̄. For a
visualization of this, see Example 3.7 below.

We have implicitly used [Vi04, Cor. 4.4] here. Note also that for the n = 2
case the second summand is zero.

Example 3.7. As an illustration of the counting argument in Step 4 above,
consider r = 2 and n = 4. Then Thm. 3.6 says thatM(〈〈a1, a2〉〉⊗ 〈b1, b2, b3〉 ⊥
〈b4〉) has 5 motivic (possibly decomposible) summands in this decomposition.
We can visualize this decomposition, as in [Vi04], with a node for each of the
12 Tate motives over k̄, and a line between the nodes if they are in the same
summand. Then the motive of the 11-dimensional quadric,M(q), is as follows,
with each summand labelled:

R2{5}

F 2

4

F 2

3
{1}

F 2

3
{2}

F 2

3
{3}

Notice that these summands might be decomposable, for example if the
Pfister form 〈〈a1, a2〉〉 is split. So this differs slightly from Vishik’s diagrams,
since he used solid lines to denote indecomposable summands, and dotted lines
for possibly decomposable ones.

3.8 The motive of the base locus Z1

Now we will use our understanding of Z1 from Thm. 2.9 and its proof, to
decompose its motive into the direct sum of Tate twisted Rost motives.

Proposition 3.9. (1) For r = 1, we have that M(Z1, Z/2) ∼= ⊕n−1
i=0 R1{i}

(2) For r = 2, we have that M(Z1, Z/2) ∼= ⊕2n−3
i=0 R2{i}.

(3) For r = 3, we have that M(Z1, Z/2) ∼= ⊕7
i=0R

3{i}.

15



Proof. For r = 1, it is shown in [Kr07] that Z1
∼= P

n−2 ×k Spec(k
√

a1). We
know that M(Spec(k[

√
a1])) ∼= R1, so the result follows because the motive of

projective space splits into Tate motives.
We have seen that in all cases Z1 is a smooth scheme that is homogeneous

for Aut(J, u). Moreover, for r = 2 or 3, we know that Z1 is a generically split
variety in the sense of [PSZ08]. So by their theorem [PSZ08, 5.17] we have
that M(Z1, Z/2) is isomorphic to a direct sum of Tate twisted copies of an
indecomposable motive R2(Aut(J, u)).

Now let V be the projective quadric defined by the r-Pfister form φ, the
norm form of the composition algebra C. It is a homogeneous SO(φ) variety.
Since C splits over the function field k(V ), by Jacobson’s coordinatization the-
orem J must also split over k(V ), and therefore so does the group Aut(J, u).
Furthermore, over k(Z1), we have a rational point in Z1. Then for any non-zero
coordinate ci ∈ C of such a point, there exists 0 6= y ∈ C such that ciy = 0 in
C. But then φ(ci)y = (c̄ici)y = c̄i(ciy) = 0, and so C has an isotropic vector,
and is therefore split. Therefore SO(φ) splits over k(Z1).

Now we may apply [PSZ08, Prop. 5.18(iii)] to conclude thatR2(Aut(J, u)) ∼=
R2(SO(φ)). Finally, observe that R2(SO(φ)) is isomorphic to the Rost motive
of φ ([PSZ08, Last example in 7]), which is the motive Rr. The proposition can
be deduced now by counting the Betti numbers of Z1.

3.10 Motivic decomposition of X(J)

We are ready to decompose the motiveM(X(J)) for any reduced simple Jordan
algebra J . Recall that X(J) is a homogeneous space for Aut(J) (Lemma 2.4).

Proposition 3.11. Let r = 0, 1, 2 or 3 and n ≥ 3, and if r = 3 then n = 3.
We have the following isomorphism of motives with coefficients in Z.

M(Q(Jn, u))⊕ (

d1−1
⊕

i=1

M(Z1){i}) ∼=M(X(Jn))⊕ (

d2−1
⊕

i=1

M(X(Jn−1)){i}).

Here di are the respective codimensions of the subschemes Bi. In particular, for
r 6= 0, d1 = 2r−1n− 2 and d2 = 2r.

Proof. If n is the degree of Jn, we have by Section 2.6 that the blow up of
X(Jn) along the smooth subvariety X(Jn−1) is isomorphic to the blow up of
Q(Jn, u) along the smooth subscheme Z1. So by applying the blow up formula
for motives [Ma68, p.463], we get the above isomorphism.

Theorem 3.12. Let r = 0, 1, 2 or 3, and n ≥ 3 (and if r = 3 then n = 3). And
let J = Sym(Mn(C), σb) where C is a 2r-dimensional composition algebra over
k, and b = 〈b1, · · · , bn〉 is a non-degenerate quadratic form over k. Then
(r = 0) :

M(X(J)) ∼= F 0
n =M(b),
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(r = 1) :

M(X(J), Z/2) ∼= F 1
n ⊕

⌊n−3

2
⌋

⊕

j=0





2⌊n

2
⌋

⊕

i=1

R1{i + 2j}



 ,

(r = 2) :

M(X(J), Z/2) ∼= F 2
n ⊕

⌊n−2

2
⌋

⊕

j=0





4⌊n−1

2
⌋+1

⊕

i=1

R2{i + 4j}



 ,

(r = 3) :

M(X(J), Z/2) ∼= F 3
3 ⊕

11
⊕

i=1

R3{i}.

Proof. The motive of Q(J, u) may be decomposed in terms of the motives F r
n ,

F r
n−1 and Rr (Thm. 3.6). The motive of Z1 with Z/2 coefficients may be

decomposed in terms of Rr (Prop. 3.9). The subvariety X(J2) is isomorphic to
the quadric defined by φ ⊗ 〈b1〉 ⊥ 〈b2〉 (see proof of Lemma 2.15), so we have
already decomposed its motive in terms of F r

2 and Rr (Thm. 3.6).
So the last ingredient we need is the cancellation theorem. It gives conditions

for when it is true that an isomorphism of motives A ⊕ B ∼= A ⊕ C implies an
isomorphism of motives B ∼= C. This does not hold in general; there are counter-
examples when Λ = Z [CPSZ06, Remark 2.8]. But if we take Λ to be any field,
then the stronger Krull-Schmidt theorem holds, which says that any motivic
decomposition into indecomposables is unique [CM06, Thm. 34]2.

When we put these pieces into the isomorphism from Prop. 3.11, we may
proceed by induction on n. One sees that we can cancel the F r

n−1 terms in the
decomposition, leaving us with the motiveM(X(J)) on the right hand side, F r

n

on the left hand side, and several Tate twisted copies of Rr on both sides. To
finish the proof one just needs to count the number of copies of Rr remaining
after the cancellation theorem, and verify that the given expressions are correct.
We leave this induction argument to the reader.

Remark 3.13. When φ is isotropic, the above motives split. When φ is anisotropic,
Rr is indecomposable, but the motive F r

n could still be decomposable, depending
on the quadratic form b.

Remark 3.14. The r = 1 case of the above theorem may be used to prove
Krashen’s motivic equivalence [Kr07, Thm. 3.3]. To see this, notice that a
1−Pfister form φ defines a quadratic étale extension l/k, and any hermitian form
h over l/k is defined by a quadratic form b over k. So in Krashen’s notation,
V (h) = X(J). Furthermore, his V (qh) is the projective quadric defined by φ⊗b,

2Although this theorem is only stated for Λ a discrete valuation ring, the same proof works

for any field.
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and his PL(N) is isomorphic to the base locus Z1. So in the notation of this
paper, his motivic equivalence is

M(φ⊗ b)⊕
n−2
⊕

i=1

M(Z1){i} ∼=M(X(J))⊕M(X(J)){1}.

Since we have motivic decompositions of all of these summands in terms of
F 1

n and R1 (see Thm. 3.2, Prop. 3.9 and Thm. 3.12), it is easy to verify his
motivic equivalence, at least for Z/2 coefficients.

On the other hand, the r = 1 case of Thm. 3.12 follows from Krashen’s
motivic equivalence, together with the r = 1 cases of Thm. 3.2 and Prop. 3.9;
this is pointed out in [SZ08, Thm. (C)].
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