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Abstract. Let F be an arbitrary field. Let A be a central simple F -algebra. Let G be
the algebraic group AutA of automorphisms of A. Let XA be the class of finite direct
products of projective G-homogeneous F -varieties (the class XA includes the generalized
Severi-Brauer varieties of the algebra A).

Let p be a positive prime integer. For any variety in XA, we determine its canonical
dimension at p. In particular, we find out which varieties in XA are p-incompressible.
If A is a division algebra of degree pn for some n ≥ 0, then the list of p-incompressible
varieties includes the generalized Severi-Brauer variety X(pm; A) of ideals of reduced
dimension pm for m = 0, 1, . . . , n.

We also determine the structure of the Chow motives with coefficients in Fp of the
varieties in XA. More precisely, it is known that the motive of any variety in XA de-
composes (in a unique way) into a sum of indecomposable motives, and we describe the
indecomposable summands which appear in the decompositions. An application of the
above results is a proof of the hyperbolicity conjecture on orthogonal involutions.

1. Introduction

A smooth complete irreducible variety X over a field F is said to be incompressible, if
any rational map X 99K X is dominant.

An important (at least by the amount of available applications, see, e.g., [16], [11], or
[5]) example of an incompressible variety is as follows. Let p be a positive prime integer.
Let D be a central division F -algebra of degree a power of p, say, pn (where n ≥ 1). For
any integer i, the generalized Severi-Brauer variety X(i; D) is the F -variety of right ideals
in D of reduced dimension i. The variety X(1; D) (the usual Severi-Brauer variety of D)
is incompressible.

In fact, the variety X = X(1; D) has a stronger property: it is p-incompressible, mean-
ing that for any element α in the Chow group CHdim X(X × X) of the product of two
copies of X, the multiplicity of α over the first factor is divisible by p if and only if the
multiplicity of α over the second factor is so. The original proof, given in [16] and [14],
makes use of Quillen’s computation of the K-theory of Severi-Brauer varieties. A recent
proof, given in [21], makes use of Steenrod operations on the modulo p Chow groups (it
better explains the reason of the p-incompressibility but works only over fields of char-
acteristic 6= p). A third, particularly simple proof is given here (see Remark 2.19 and
Corollary 2.22).
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The main result of the present paper is Theorem 3.7 which says that the variety
X(pm; D) is p-incompressible also for m = 1, . . . , n−1 (in the case of p = 2 and m = n−1
this was shown earlier by Bryant Mathews [19] using a different method). The remain-
ing results of this paper are either obtained on the way to the main result or are quite
immediate consequences of it.

We start by associating to each integer m = 0, 1, . . . , n an indecomposable motive Mm,D

in the category of Chow motives with coefficients in Fp. This is the summand of the
complete motivic decomposition of the variety X(pm; D) such that the 0-codimensional
Chow group of Mm,D is non-zero.

Then we show (see Theorem 3.3) that the motive of any finite product of generalized
Severi-Brauer varieties of the algebra D decomposes into a sum of twists of the motives
Mm,D (with various m). In fact, we prove this for more general related to D varieties: for
products of projective (Aut D)-homogeneous varieties (that is, for products of varieties of
flags of ideals in D).

Even more generally, for an arbitrary central simple F -algebra A, we consider the class
XA of finite direct products of projective (Aut A)-homogeneous F -varieties. Taking as
D the p-primary component of a central division algebra Brauer-equivalent to A, we
decompose the motive (still with coefficients in Fp) of any variety in XA into a sum of
twists of the motives Mm,D (see Corollary 3.4). Therefore we solve the case of the inner
type An of the following general problem.

Let G be a semisimple affine algebraic group over a field. According to [9] (see also §2a
here), the motive (still with Fp coefficients, p a fixed prime) of any product of projective
G-homogeneous F -varieties decomposes and in a unique way in a finite direct sum of
indecomposable motives. For simple groups G of any given type, the problem is to describe
the indecomposable summands which appear this way.

The situation with the types Bn and Dn however is very complicated: numerous exam-
ples of motivic decompositions of projective quadrics are produced (e.g., in [26]) which do
not leave a hope of a simple general answer. Therefore a reasonable answer for the inner
type An obtained here is a fortune.

With this in hand, we prove two structure results concerning the motives Mm,D (Theo-
rem 3.6). We show that the d-dimensional Chow group of Mm,D, where d = dim X(pm; D),
is also non-zero. This result is equivalent to the p-incompressibility of the variety X(pm; D),
so that we get the main result of the paper (Theorem 3.7) at this point. The second struc-
ture result on the motive Mm,D is a computation of the p-adic valuation of its rank. In
fact, we can not separate the proofs of these two structure results: we prove them simul-
taneously by induction on deg D (and using Theorem 3.3).

Now we start getting consequences of the main result. We recall (in §2e) the notion
of canonical dimension at p (or canonical p-dimension) cdp(X) of a smooth complete
irreducible algebraic variety X. This is a certain non-negative integer satisfying cdp X ≤
dim X; moreover, cdp X = dim X if and only if X is p-incompressible. In particular, by
our main result, cdp X(pm; D) = dim X(pm; D) = pm(pn − pm). The canonical dimension
at p of any variety in XA (where A is an arbitrary central simple F -algebra) can be easily
computed in terms of cdp X(pm; D) (where D is the p-primary part of a division algebra
Brauer-equivalent to A), see Corollary 3.8.
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In spite of a big number of obtained results, one may say that (the motivic part of) this
paper raises more questions that it answers. Indeed, although we show that the motives
of the varieties in XD decompose into sums of twists of Mm,D (and find a restriction on m
in terms of a given variety), we do not precisely determine this decomposition: neither we
know how many copies of Mm,D (for a given m and a given variety) do really appear in
the decomposition, nor we determine the twisting numbers. Moreover, the understanding
of the structure of the motives Mm,D themselves is not satisfactory. It may happen that
Mm,D is always the whole motive of the variety X(pm, D) (that is, the motive of this
variety probably is indecomposable): we do not possess a single counter-example. In fact,
the variety X(pm, D) is indecomposable for certain values of p, n, and m. Two cases are
known for a long time: m = 0 (the Severi-Brauer case, see Remark 2.19) and m = 1 with
p = 2 = n (reducing the exponent of D to 2, we come to the case of an Albert quadric
here, where we can refer to [26], [10], or [12]). The Albert case is generalized in Example
3.5. The other values of p, n, m should be studied in this regard.

But the qualitative analysis is done (for instance, the properties of Mm,D we establish
show that this motive behaves essentially like the whole motive of the variety X(pm, D)
even if it is “smaller”). And the proofs are not complicated. This is a study of generalized
Severi-Brauer varieties which are twisted forms of grassmannians, and there is no single
Young diagram in the text! Combinatorics or complicated formulas do not show up at all,
in particular, because we neglect the twisting numbers of motivic summands. The results
we are getting this way are less precise but, as we believe, they contain the essential piece of
information. They can be (and are) applied (in [13]) to prove the hyperbolicity conjecture
on orthogonal involutions, which was the main motivation to study the problems of this
paper.

We conclude the introduction by some remarks on the motivic category we are using.
First of all, the category of Chow motives with coefficients in Fp, in which we are working
in this paper, can be replaced by a simpler category. This simpler category is constructed
in exactly the same way as the category of Chow motives with the only difference that
one kills the elements of Chow groups which vanish over extensions of the base field
(see Remark 2.7). Working with this simpler category, we do not need the nilpotence
tricks (the nilpotence theorem and its standard consequences, cf. §2a) anymore. This
simplification of the motivic category does not harm to any external application of our
motivic results. So, this is more a question of taste than a question of necessity that we
stay with the usual Chow motives.

On the other hand, somebody may think that our category of usual Chow motives
is not honest or usual enough because these are Chow motives with coefficients in Fp

and not in Z. Well, there are at least three arguments here. First, decompositions into
sums of indecomposables are not unique for coefficients in Z, even in the case of projective
homogenous varieties of inner type An (see [9, Example 32] or [7, Corollary 2.7]). Therefore
the question of describing the indecomposables does not seem so reasonable for the integral
motives. Second, any decomposition with coefficients in Fp lifts (and in a unique way) to
the coefficients Z/pn

Z for any n ≥ 2, [23, Corollary 2.7]. Moreover, in the case of varieties
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in XA, where A is a central simple algebra of a p-primary index, it also lifts to Z (non-
uniquely this time), [23, Theorem 2.16]. And third, may be the most important argument
is that the results on motives with coefficients in Fp are sufficient for the applications.

2. Preliminaries

This section is long because it also includes some non-standard (but simple) staff.

2a. Chow motives with finite coefficients. Our basic reference for Chow groups and
Chow motives (including notation) is [10]. We fix an associative unital commutative ring
Λ (most frequently Λ will be the finite field Fp of p elements, where p is a prime) and for
a variety (i.e., a separated scheme of finite type over a field ) X we write CH(X; Λ) for its
Chow group with coefficients in Λ. We use a simplified notation CH(X) for the integral
Chow group CH(X; Z), and a simplified notation Ch(X) for the modulo p Chow group
CH(X; Fp) = CH(X)/p. Our category of motives is the category CM(F, Λ) of graded
Chow motives with coefficients in Λ, [10, definition of §64]. By a sum of motives we always
mean the direct sum. We also write Λ for the motive M(Spec F ) ∈ CM(F, Λ). A Tate
motive is the motive Λ(i) with i an integer (which may differ from ±1).

We shall often assume that our coefficient ring Λ is finite. This simplifies significantly
the situation (and is sufficient for most applications). For instance, for a finite Λ, the
endomorphism rings of finite sums of Tate motives are also finite and the following easy
statement applies:

Lemma 2.1. An appropriate power of any element of any finite associative (not neces-
sarily commutative) ring is idempotent.

Proof. Since the ring is finite, any its element x satisfies xa = xa+b for some a ≥ 1 and
b ≥ 1. It follows that xab is idempotent. �

Let X be a smooth complete variety over F and let M be a motive. We call M split, if
it is a finite sum of Tate motives. We call X split, if its integral motive M(X) ∈ CM(F, Z)
(and therefore the motive of X with an arbitrary coefficient ring Λ) is split. We call M or
X geometrically split, if it splits over a field extension of F . We say that X satisfies the
nilpotence principle, if for any field extension E/F and any coefficient ring Λ, the kernel
of the change of field homomorphism End(M(X)) → End(M(X)E) consists of nilpotents.
Any projective homogeneous variety is geometrically split and satisfies the nilpotence
principle, [10, Theorem 92.4 with Remark 92.3].

Corollary 2.2. Assume that the coefficient ring Λ is finite. Let X be a geometrically
split variety satisfying the nilpotence principle. Then an appropriate power of any endo-
morphism of the motive of X is a projector.

Proof. Let F̄ /F be a splitting field of the motive M(X), that is, M(X)F̄ is a sum of Tate
motives. Let f be an endomorphism of M(X). Since Λ is finite, the ring End(M(X)F̄ )
is finite. Therefore a power of fF̄ is idempotent by Lemma 2.1, and (replacing f by an
appropriate power of f) we may assume that fF̄ is idempotent. Since X satisfies the
nilpotence principle, the element ε := f 2−f is nilpotent. Let n be a positive integer such
that εn = 0 = nε. Then (f + ε)nn

= fnn
because the binomial coefficients

(

nn

i

)

for i < n

are divisible by n. Therefore fnn
is a projector. �
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Lemma 2.3 (cf. [9, Theorem 28]). Assume that the coefficient ring Λ is finite. Let X
be a geometrically split variety satisfying the nilpotence principle and let π ∈ End(M(X))
be a projector. Then the motive (X, π) decomposes into a finite sum of indecomposable
motives.

Proof. If (X, π) does not decompose this way, we get an infinite sequence

π0 =π, π1, π2, . . . ∈ End(M(X))

of pairwise distinct projectors such that πi ◦ πj = πj = πj ◦ πi for any i < j.
Let F̄ /F be a splitting field of X. Since the ring End(M(X)F̄ ) is finite, we have

(πi)F̄ = (πj)F̄ for some i < j. The difference πi − πj is nilpotent and idempotent,
therefore πi = πj . �

A (non necessarily commutative) ring is called local, if the sum of any two non-invertible
elements differs from 1 in the ring. Since the sum of two nilpotents is never 1, we have

Lemma 2.4. A ring, where each non-invertible element is nilpotent, is local. In particu-
lar, by Corollary 2.2, so is the ring End(M(X)), if Λ is finite and X is a geometrically
split variety satisfying the nilpotence principle and such that the motive M(X) is inde-
composable. �

A complete decomposition of an object in an additive category is a finite direct sum
decomposition with indecomposable summands.

Theorem 2.5 ([2, Theorem 3.6 of Chapter I]). Let M be an object of a pseudo-abelian cat-
egory which is a direct sum of a finite number of indecomposable objects having local
endomorphism rings. Then any finite direct sum decomposition of M can be refined to
a complete one, and there is only one (up to a permutation of the summands) complete
decomposition of M .

To be precise, the uniqueness part of Theorem 2.5 states that if

M = M1 ⊕ · · · ⊕ Mm = N1 ⊕ · · · ⊕ Nn

are two complete decompositions of M , then m = n and there exists a permutation σ of
the set {1, 2, . . . , n} such that Mi ≃ Nσ(i) for any i. The isomorphism here is meant to be
an isomorphism of abstract objects: in general, there is no such isomorphism respecting
the embeddings into M . Later on, when we speak of “isomorphism of summands” of a
motive, we always mean an isomorphism of abstract motives between the summands.

We say that the Krull-Schmidt principle holds for a given object of a given additive
category, if every direct sum decomposition of the object can be refined to a complete one
(in particular, a complete decomposition exists) and there is only one (up to a permutation
of the summands) complete decomposition of the object. In the sequel, we are constantly
using the following statement which is an immediate consequence of Lemmas 2.3 and 2.4
and Theorem 2.5:

Corollary 2.6 (cf. [9, Corollary 35]). Assume that the coefficient ring Λ is finite. The
Krull-Schmidt principle holds for any twist of any summand of the motive of any geo-
metrically split F -variety satisfying the nilpotence principle. In other words, the Krull-
Schmidt principle holds for the objects of the pseudo-abelian Tate subcategory in CM(F, Λ)
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generated by the motives of the geometrically split F -varieties satisfying the nilpotence
principle. �

Remark 2.7. Replacing the Chow groups CH(−; Λ) by the reduced Chow groups CH(−; Λ)
(cf. [10, §72]) in the definition of the category CM(F, Λ), we get a “simplified” motivic
category CM(F, Λ) (which is still sufficient for the main purpose of this paper). Working
within this category, we do not need the nilpotence principle any more. In particular, the
Krull-Schmidt principle holds (with a simpler proof) for the twists of the summands of
the motives of the geometrically split F -varieties.

2b. Outer summands. We assume here that the coefficient ring Λ is connected. We
shall often assume that Λ is finite.

The following definition is extending some terminology of [25].

Definition 2.8. Let M ∈ CM(F, Λ) be a summand of the motive of a smooth complete
irreducible variety of dimension d. The summand M is called left-outer, if CH0(M ; Λ) 6= 0.
The summand M is called right-outer, if CHd(M ; Λ) 6= 0. The summand M is called outer,
if it is left-outer and right-outer simultaneously.

For instance, the whole motive of a smooth complete irreducible variety is an outer
summand of itself.

Given a correspondence, an element α ∈ CHdimX(X × Y ; Λ) of the Chow group of the
product of smooth complete irreducible varieties X and Y , we write mult α ∈ Λ for the
multiplicity (or multiplicity over the first factor) of α, [10, definition of §75]. Multiplicity of a
composition of two correspondences is the product of multiplicities of the composed corre-
spondences (cf. [16, Corollary 1.7]). In particular, multiplicity of a projector is idempotent
and therefore ∈ {0, 1} because the coefficient ring Λ is connected.

Lemma 2.9. Let X be a smooth complete irreducible variety. The motive (X, π) given
by a projector π ∈ CHdimX(X ×X; Λ) is left-outer if and only if mult π = 1. The motive
(X, π) is right-outer if and only if mult πt = 1, where πt is the transpose of π.

Proof. The group CH0
(

(X, π); Λ
)

, defined as Hom
(

(X, π), Λ
)

, is the image of the endo-

morphism of the group CH0(X; Λ) = Λ · [X] given by the multiplication by mult π. The
group CHd

(

(X, π); Λ
)

, defined as Hom
(

Λ(d), (X, π)
)

, is the image of the endomorphism

of the same group CHd(X; Λ) = CH0(X; Λ) = Λ · [X] given by the multiplication by
mult πt. �

Lemma 2.10. Let d be a non-negative integer and let X be a smooth complete irreducible
variety of dimension d such that the degree homomorphism deg : CHd(X; Λ) → Λ is an
isomorphism. The following three statements on a summand M of M(X) ∈ CM(F, Λ)
are equivalent:

• M is right-outer;
• the subgroup CHd(M) of the group CHd(X; Λ) coincides with CHd(X; Λ);
• CHd(M) 6= 0.

Proof. Let π ∈ CHd(X × X; Λ) be the projector giving M . Let x be an element of
CHd(X; Λ) with deg x = 1 ∈ Λ. In particular, x is a generator of the Λ-module CHd(X; Λ).
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Then the Λ-module CHd(M) = Hom(M, Λ(d)) coincides with the submodule of CHd(X; Λ)
generated by (mult πt) · x. �

Lemma 2.11. Assume that a summand M of the motive of a smooth complete irreducible
variety of dimension d decomposes into a sum of Tate motives. Then M is left-outer if
and only if the Tate motive Λ is present in the decomposition; it is right-outer if and only
if the Tate motive Λ(d) is present in the decomposition.

Proof. For any i ∈ Z we have: CH0(Λ(i); Λ) 6= 0 if and only if i = 0; CHd(Λ(i); Λ) 6= 0 if
and only if i = d. �

Remark 2.12. Assume that the coefficient ring Λ is finite. Let X be an irreducible
geometrically split variety satisfying the nilpotence principle. Then the complete motivic
decomposition of X contains precisely one left-outer summand and it follows by Corollary
2.6 that a left-outer indecomposable summand of M(X) is unique up to an isomorphism
(of motives, not of summands). Of course, the same is true for the right-outer summands.

Lemma 2.13. Assume that the coefficient ring is finite. Let X be an irreducible geomet-
rically split variety satisfying the nilpotence principle. Let M be a motive. Assume that
there exist morphisms α : M(X) → M and β : M → M(X) such that mult(β ◦ α) = 1.
Then the irreducible left-outer summand of M(X) is isomorphic to a summand of M .

Proof. By Corollary 2.2, the composition π := (β ◦ α)◦n ∈ End M(X) is a projector
for some integer n ≥ 1. Therefore τ := (α ◦ β)◦2n ∈ End M is also a projector and
the summand (X, π) of M(X) (which is left-outer by Lemma 2.9) is isomorphic to the
summand (M, τ) of M given by the image of τ : mutually inverse isomorphisms are, say,

α ◦ (β ◦ α)◦(2n) : (X, π) → (M, τ) and β ◦ (α ◦ β)◦(4n−1) : (M, τ) → (X, π) .

Consequently, any (in particular, an irreducible left-outer) summand of (X, π) is isomor-
phic to a summand of M . �

2c. Rank of a motive. We are still assuming that the coefficient ring Λ is connected.

Definition 2.14. Let M be a geometrically split motive. Over an extension of the base
field the motive M becomes isomorphic to a finite sum of Tate motives. The rank rk M
of M is defined as the number of summands in this decomposition.

Remark 2.15. The number of summands in the above definition does not depend on
the choice of the extension or of the decomposition. This is simply the rank of the free
Λ-module colimL/F CH(ML; Λ), where the colimit is taken over all field extensions L/F .

Example 2.16. Let n be a positive integer and let i be an integer in the interval [0, n].
Let A be a central simple F -algebra of degree n. Since the variety X = X(i, A) (see §2d)
is a twisted form of the grassmannian of i-planes in an n-dimensional vector space, the
rank of the motive of X coincides with the rank of the motive of the grassmannian and
is equal to

(

n
i

)

.

Remark 2.17. Let M be a direct summand of a geometrically split variety X satisfying
the nilpotence principle. Then we have: rk M = 0 if and only if M = 0; rkM = rk M(X)
if and only if M = M(X).
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For any integer l, we write vp(l) for the exponent of the highest power of p dividing l.

Lemma 2.18. Let M be a direct summand of the motive with coefficients in Fp of a
geometrically split equi-dimensional variety X. Let d be the greatest common divisor
(gcd) of the degrees of the closed points on X. Then vp(d) ≤ vp(rk M).

Proof. Let π ∈ End M(X) = CHdimX(X × X)/p be the projector defining the summand
M . Let n = vp(d). Let π′ ∈ CHdim X(X×X)/pn be a lifting of π. By Lemma 2.1, replacing
π′ by its appropriate power, we may assume that π′ is a projector. The rank of the motive
(X, π′) ∈ CM(F, Z/pn) coincides with rk M . Let L/F be a splitting field of the motive
(X, π′). Mutually inverse isomorphisms between (X, π′)L and a sum of m = rk M Tate
motives are given by two sequences of homogeneous elements a1, . . . , am and b1, . . . , bm in
CH(XL; Z/pn) satisfying π′

L = a1×b1 + · · ·+am×bm and such that for any i, j = 1, . . . , m
the degree deg(aibj) is 0 for i 6= j and 1 ∈ Z/pn for i = j. The pull-back of π′ via the
diagonal morphism of X is therefore a 0-cycle class on X of degree m (modulo pn). �

Remark 2.19. Lemma 2.18 gives a new, particularly simple proof of the fact that the
motive with coefficients in Fp of the Severi-Brauer variety X of a central division algebra
of degree pn (n ≥ 0 an integer) is indecomposable: since rkM(X) = pn and the gcd
of the degrees of the closed points on X is also pn, the rank of any summand of M(X)
is 0 or pn by Lemma 2.18. The original proof of indecomposability of M(X), given in
[14], makes use of Quillen’s computation of the K-theory of X and actually gives a more
precise statement: the reduced Chow group ChdimX(X ×X) is generated by the diagonal
class (while the above argument only shows that the diagonal class is the only non-zero
projector).

2d. Varieties (of flags) of ideals. Let A be a central simple F -algebra. The F -
dimension of any right ideal in A is divisible by the degree deg A of A; the quotient
is the reduced dimension of the ideal. For any integer i, we write X(i; A) for the general-
ized Severi-Brauer variety of the right ideals in A of reduced dimension i. In particular,
X(0; A) = Spec F = X(deg A; A) and X(i, A) = ∅ for i outside of the interval [0, deg A].
The variety X(1, A) is the usual Severi-Brauer variety of A studied in [1].

For a finite sequence of integers i1, . . . , ir, we write X(i1, . . . , ir; A) for the variety
of flags of right ideals in A of reduced dimensions i1, . . . , ir (non-empty if and only if
0 ≤ i1 ≤ · · · ≤ ir ≤ deg A).

By an index reduction formula of [22], we have

ind AF (X(i1,...,ir;A)) = gcd(i1, . . . , ir, ind A).

Another classical property of the variety X(i1, . . . , ir; A) which we are using frequently
is that the greatest common divisor of the degrees of its closed points is equal to

ind A/ gcd(i1, . . . , ir, ind A).

The varieties introduced above are projective homogeneous under the natural action of
the algebraic group AutA. As in Introduction, we write XA for the class of finite direct
products of such varieties.
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Lemma 2.20. Let A be a central simple F -algebra. Let n be a positive integer. Let Mn(A)
be the F -algebra of (n×n)-matrices with entries in A. Let X be a variety in XMn(A). Let
m = vp(ind AF (X)).

Then the motive M(X) (with integral and therefore also with arbitrary coefficients)
decomposes into a sum of twists of motives of projective (AutA)-homogeneous F -varieties
Y satisfying vp(ind AF (Y )) ≤ m.

Proof. By the assumption on X we have X = X1 × · · · × Xr, where X1, . . . , Xr are some
projective (Aut Mn(A))-homogeneous F -varieties. Since m = minr

i=1{vp(ind AF (Xi))}, we
may assume that m = vp(ind AF (X1)). According to [9], the motive of X decomposes into
a sum of twists of motives of projective (Aut Mn(A))-homogeneous varieties Y admitting
a morphism to X1. In particular, X1(F (Y )) 6= ∅ and consequently vp(ind AF (Y )) ≤ m.
Therefore we may assume that X is a projective (Aut Mn(A))-homogeneous F -variety,
that is, X = X(n1, . . . , nr; Mn(A)) for some positive integer r and some integers n1, . . . , nr

satisfying 0 ≤ n1 ≤ · · · ≤ nr ≤ deg Mn(A).
According to [15] (see also [8]), the motive of X decomposes into a sum of twists of

motives of products of n varieties

Y = X(i11, . . . , i1r; A) × · · · × X(in1, . . . , inr; A)

where i11, . . . , inr run over the integers satisfying 0 ≤ ij1 ≤ · · · ≤ ijr ≤ deg A for any
j = 1, . . . , n and i1k+· · ·+ink = nk for any k = 1, . . . , r. Since minjk vp(ijk) ≤ mink vp(nk),
it follows that

vp(ind AF (Y )) =

min{ind A, min
jk

vp(ijk)} ≤ min{ind A, min
k

vp(nk)} =

vp(ind AF (X)) = m,

and we are done. �

2e. Canonical dimension. The notion of canonical dimension was introduced in [4], of
canonical dimension at p in [17], of essential dimension in [6], and of essential dimension
at p in [24]. We refer to [17] and [20] for proofs of the statements cited below.

Let X be a smooth complete variety over F . We associate to X a functor

FX : Fields/F → Sets ,

where Fields/F is the category of field extensions of F and Sets is the category of sets.
For a field L/F such that X(L) = ∅ the value FX(L) is empty. For a field L/F such
that X(L) 6= ∅ the value FX(L) is the singleton {L}. Canonical dimension cd X of X
is defined as the essential dimension (see [3, Definition 1.2] or [18, §1.3] or [20, §1.1]) of
the functor FX . For a positive prime integer p, canonical dimension at p, or canonical
p-dimension cdp X of X is defined as the essential dimension at p (see [18, §1.3] or [20,
§1.1]) of the functor FX .

If L/F is a finite field extension of degree prime to p, then cdp XL = cdp X.
If two smooth complete irreducible F -varieties X1 and X2 are such that there exist

rational maps X1 99K X2 and X2 99K X1, then cd X1 = cd X2 and cdp X1 = cdp X2 for
any p.
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Assume that X is irreducible.
One has cdp X ≤ cd X ≤ dim X.
The variety X is called incompressible (minimal in [20]) if cd X = dim X and p-

incompressible (p-minimal in [20]) if cdp X = dim X. A p-incompressible (for some prime
p) variety is incompressible.

The variety X is incompressible if and only if any rational map X 99K X is dominant.
The variety X is p-incompressible if and only if for any element α ∈ CHdimX(X × X)

the multiplicity mult(α) is divisible by p if and only if the multiplicity mult(αt) of the
transpose αt of α is divisible by p.

Lemma 2.21. A smooth complete irreducible variety X is p-incompressible if and only if
any left-outer summand of the motive of X with coefficients in Fp is outer.

Proof. A left-outer summand of M(X) is given by a projector

π ∈ CHdimX(X × X; Fp).

Since the summand is left-outer, mult(π) = 1 ∈ Fp. If X is p-incompressible, then
mult(πt) 6= 0; therefore mult(πt) = 1 and the summand is right-outer.

Conversely, let α ∈ CHdimX(X × X; Fp) be an element with mult(α) 6= 0. A power
(with respect to the composition of correspondences) of α is a projector which determines a
left-outer summand of M(X). If this summand is also right-outer, then mult(αt) 6= 0. �

Corollary 2.22. If the motive with coefficients in Fp of a smooth complete variety X is
indecomposable, then the variety X is p-incompressible. �

3. Basic Theorems

Let p be a positive prime integer. The coefficient ring Λ is Fp in this section.
Let n be a non-negative integer. Let F be a field. Let D be a central division F -algebra

of degree pn.

Definition 3.1. For any integer l satisfying 0 ≤ l ≤ n, we write Ml,D for the indecompos-
able left-outer (see Definition 2.8 and Remark 2.12) summand of the Chow motive (with
coefficients in Fp) of the generalized Severi-Brauer variety X(pl, D).

Remark 3.2. It can be seen using Lemma 2.13 that the motive Ml,D is also the inde-
composable left-outer motivic summand of the variety X(i, D) for any integer i satisfying
0 ≤ i ≤ deg D and vp(i) = l.

The first basic theorem of the present paper is as follows:

Theorem 3.3 (First basic theorem). Any indecomposable summand of the Chow motive
with coefficients in Fp of any variety X in the class XD (see §2d) is isomorphic to a twist
of Ml,D for some l ≤ vp(ind DF (X)).

Proof. We proof Theorem 3.3 by induction on n. The base of the induction is n = 0 and
trivial (the class XD consists of one variety Spec F whose motive is equal to Fp = Mn,D).

From now on we are assuming that n ≥ 1 and that Theorem 3.3 is already proven for
p-primary central division algebras (over all fields) of degree less than deg D = pn.
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Let X be a variety in XD and let m = vp(ind DF (X)). We have 0 ≤ m ≤ n. The
statement of Theorem 3.3 is trivial in the case of m = n (because X = Spec F and
M(X) = Fp = Mn,D in this case). We assume that m < n in the sequel.

Let M be an indecomposable summand of M(X). We have to show that M is isomor-
phic to a twist of Ml,D for some l satisfying 0 ≤ l ≤ m.

Let L be the function field of the variety X(pn−1, D). Therefore ind DL = pn−1. Let
C be a central division L-algebra Brauer-equivalent to DL. By Lemma 2.20, the motive
M(X)L decomposes into a sum of twists of motives of projective (Aut C)-homogeneous
L-varieties Y satisfying ind CL(Y ) ≤ pm. It follows by the induction hypothesis (applied
to C), that the summands of the complete decomposition of M(X)L are twists of Ml,C

with 0 ≤ l ≤ m. The complete decomposition of ML is a part of the above decomposition
(in the sense of the Krull-Schmidt principle, see §2a).

Each summand of the complete decomposition of ML decomposes over an algebraic
closure L̄ of L into a sum of Tate motives. This gives a decomposition of M̄ = ML̄ into
a sum of Tate motives. Let us choose a Tate summand Fp(i) with the smallest i in the
decomposition of M̄ . This summand comes from the decomposition of the ith twist of
some M̄l,C for some integer l with 0 ≤ l ≤ m. We shall show that M ≃ Ml,D(i) for these
l and i.

By Lemma 2.13 and since M is indecomposable, it suffices to construct morphisms

α : M
(

X(pl, D)
)

(i) → M and β : M → M
(

X(pl, D)
)

(i)

satisfying mult(β ◦ α) = 1.
The fixed above summand Fp(i) of M̄ is produced by two elements b ∈ Chi(X̄) and

a ∈ Chi(X̄) such that deg(a · b) = 1 ∈ Fp. Let M t
l,C be the summand of M

(

X(pl, C)
)

obtained by transposing the projector giving the summand Ml,C(i). Since Ml,C is the
indecomposable left-outer motivic summand of the variety X(pl, C), a twist of M t

l,C is
the indecomposable right-outer motivic summand of the same variety. (Later on we shall
prove that the left-outer indecomposable motivic summand of X(pl, C) coincides with
the right-outer one, but this fact not needed here.) The element a is the image under
the embedding Ch(M̄ t

l,C) →֒ Ch(X̄) of the class of a rational point in Ch
(

X̄(pl, C)
)

(see Lemma 2.10). Therefore the element aL̄(X(pl,D)) is L(X(pl, D))-rational. The field

extension L(X(pl, D))/F (X(pl, D)) is purely transcendental. Consequently, the element
aL̄(X(pl,D)) is F (X(pl, D))-rational and lifts to an element α1 ∈ Ch

(

X(pl, D) × X
)

. We
mean here a lifting with respect to the composition

Ch
(

X(pl, D) × X
)

→→ Ch(XF (X(pl,D)))
res

L̄(X(pl,D))/F (X(pl,D))
−−−−−−−−−−−−−−→ Ch(XL̄(X(pl,D)))

where the first map is the epimorphism given by the pull-back with respect to the mor-
phism XF (X(pl,D)) → X(pl, D) × X induced by the generic point of the variety X(pl, D).

We define the morphism α as the composition

M
(

X(pl, D)
)

(i)
α1−−−→ M(X) −−−→ M.

The element b is the image of the class [X(pl, C)] under the embedding Ch(M̄l,C) →֒
Ch(X̄). Let β1 ∈ Ch

(

X(pl, C) × X(pl, DL)
)

be the class of the closure of the graph of a

rational map (of L-varieties) X(pl, C) → X(pl, DL). Let β2 be the image of β1 under the
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composition of the homomorphisms

Ch(X(pl, C) × X(pl, DL)) → Ch(Ml,C ⊗ M(X(pl, DL))) → Ch(XL × X(pl, DL)).

Since the field extension L(X)/F (X) is purely transcendental, the element (β2)L(X) is
F (X)-rational. Consequently, it lifts to an element β3 ∈ Ch(X×X×X(pl, D)) (where we
use the generic point of the second factor in this triple direct product). Let π ∈ Ch(X×X)
be the projector defining the summand M of M(X). Considering β3 as a correspondence
from X to X ×X(pl, D), we define β4 ∈ Ch(X ×X ×X(pl, D)) as the composition β3 ◦π.
We get β5 ∈ Ch(X ×X(pl, D)) as the image of β4 under the pull-back with respect to the
diagonal of X. Finally, we define the morphism β as the composition

M −−−→ M(X)
β5

−−−→ M
(

X(pl, D)
)

(i).

We finish the proof by checking that mult(β ◦ α) = 1. Since the multiplicity is not
changed under extension of scalars, we may do the computation over the field L̄. Decom-
positions of the motives of the varieties X̄(pl, D) = X(pl, D)L̄ and X̄ = XL̄ into sums of
Tate motives give certain homogeneous Fp-bases of their Chow groups with coefficients
in Fp. Let us use an arbitrary motivic decomposition of X̄(pl, D) and we use a decom-
position of X̄ which is a refinement of the decomposition into the sum of M̄ and the
complementary summand. Then the elements a and b are in the basis of Ch(X̄). The
basis of Ch

(

X̄(pl, D)
)

contains the class 1 = [X̄(pl, D)] and the class x of a rational point.
We consider the Chow group of the products

X̄(pl, D) × X̄, X̄ × X̄(pl, D), and X̄(pl, D) × X̄(pl, D)

together with the bases given by the external products of the elements of the bases of
the Chow groups of the factors. We have ᾱ1 = 1 × a + . . . , where “. . . ” stands for a
linear combination of basis elements whose first factor has codimension > codim 1 = 0.
The projector π which determines the summand M of the motive of X looks over L̄ as
π̄ = b× a + . . . , where “. . . ” stands for a linear combination of basis elements whose first
factor has codimension > codim b = i. Since α = π ◦ α1, it follows that ᾱ = 1 × a + . . . ,
where “. . . ” still stands for a linear combination of basis elements whose first factor is of
positive codimension.

Now let us go through the construction of β. To describe β̄1, we fix a homogeneous
basis of Ch

(

X̄(pl, C)
)

and use it to built up a basis of Ch
(

X̄(pl, C)×X̄(pl, D)
)

. Abusing

notation we write 1 also for the unit class in Ch
(

X̄(pl, C)
)

.

We have β̄1 = 1×x + . . . with the usual convention on the meaning of “. . . ”. Then we
have β̄2 = b×x+. . . . For β3 we have β̄3 = b×1×x+. . . , where 1 is the unit of Ch(X̄) and
“. . . ” stands for a linear combination of basis elements of Ch

(

X̄ × X̄ × X̄(pl, D)
)

which
have a second factor of positive codimension or the first factor of dimension < dim b = i.
The element β̄4 has the same shape with the additional property that the dimension of
the first factor in each basis element appearing in the linear combination is ≤ i. By
this reason β̄5 and also β̄ look as b × x + . . . . Therefore β̄ ◦ ᾱ = 1 × x + . . . , that is,
mult(β̄ ◦ ᾱ) = 1. �

Corollary 3.4. For an arbitrary central simple F -algebra A, let D be the p-primary com-
ponent of a central division F -algebra Brauer-equivalent to A. The motive with coefficients
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in Fp of any variety in XA decomposes into a sum of twists of motives Ml,D (with various
l).

Proof. We may replace F by a finite field extension of prime to p degree over which A is
Brauer-equivalent to D. Then the motive of any variety in XA decomposes into a sum of
twists of motives of varieties in XD and we may apply Theorem 3.3. �

Using Theorem 3.3, we give a new example of a generalized Severi-Brauer variety with
indecomposable motive:

Example 3.5. Let F be a field. Let D be a central division F -algebra of degree 2n with
n ≥ 1. Then the motive with coefficients in F2 of the variety X(2; D) is indecomposable
(this is trivial for n = 1, well known for n = 2, recently proved using K-theory by Maksim
Zykhovich for n = 3, new for n ≥ 4).

Proof. Let us prove it by induction on n. Assume that n ≥ 2 and that the statement is
already proved for algebras (over all fields) of degree < 2n. By Theorem 3.3 and Remark
2.19, if the motive of X(2; D) is decomposable (for a given D), then some twist of the
motive of the Severi-Brauer variety X(1; D) is a summand of M

(

X(2; D)
)

. We can check

however that no twist of M
(

X(1; D)
)

L
is a summand of M

(

X(2; D)
)

L
where L/F is a

field extension such that ind DL = 2n−1.
Indeed, let C be a central division L-algebra Brauer-equivalent to DL. The complete

decompositions of the motives of these two varieties over L are:

M
(

X(1; D)
)

L
= M

(

X(1; C)
)

⊕ M
(

X(1; C)
)

(2n−1) = M0,C ⊕ M0,C(2n−1)

and (we apply the induction hypothesis to C)

M
(

X(2; D)
)

L
=

M
(

X(2; C)
)

⊕
(

M
(

X(1; C)
)

⊗ M
(

X(1; C)
)

)

(2n−1 − 1) ⊕ M
(

X(2; C)
)

(2n) =

M1,C ⊕ M0,C(2n−1 − 1) ⊕ M0,C(2n−1) ⊕ · · · ⊕ M0,C(2n − 2) ⊕ M1,C(2n).

Note that the motives M0,C and M1,C are not isomorphic because, for instance, they have

different ranks (see Example 2.16): rkM0,C = rk M
(

X(1, C)
)

=
(

deg C
1

)

= 2n−1 and

rk M1,C = rk M
(

X(2, C)
)

=

(

deg C

2

)

= 2n−2(2n−1 − 1). �

We come back to an arbitrary central division F -algebra of degree pn. The second basic
theorem describes some properties of the motives Mm,D, 0 ≤ m ≤ n:

Theorem 3.6 (Second basic theorem). The summand Mm,D of the motive of the variety
X(pm, D) is outer and

vp(rk Mm,D) = n − m.

Proof. We prove Theorem 3.6 by induction on n. The base of the induction is the case of
n = 0 which is trivial. Below we are assuming that n ≥ 1.

The statement is trivial for m = n. Below we are assuming that m < n.
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We are proving Theorem 3.6 for a given n by induction on m. The base of the induction
is the case of m = 0 where we know (see Remark 2.19) that M0,D = M

(

X(1, D)
)

and

rk M
(

X(1, D)
)

= pn. Below we are assuming that m ≥ 1.
We ask the reader to note that in this proof we do not pay attention to the twisting

numbers of summands in motivic decompositions: when we say that a motive W is a
summand of a motive V , we mean that a twist of W is a summand of V .

Let L be the function field of the variety X(pn−1, D). Let C be a central division L-
algebra (of degree pn−1) Brauer-equivalent to DL. The motive M

(

X(pm, D)
)

L
decomposes

into the sum (of some twists) of the motives

(i1, . . . , ip) := M
(

X(i1, C) × X(i2, C) × · · · × X(ip, C)
)

,

where i1, . . . , ip run over the non-negative integers satisfying i1 + i2 + · · ·+ ip = pm. The
left-outer summand in this decomposition is (pm, 0, . . . , 0) = M

(

X(pm, C)
)

.

Let M = Mm,D. Since the summand M of M
(

X(pm, D)
)

is left-outer, the L-motive
ML contains the summand Mm,C of the summand (pm, 0, . . . , 0). We claim that in fact
ML contains the p summands Mm,C coming from each of the p summands

(pm, 0, . . . , 0) = M
(

X(pm, D)
)

, (0, pm, 0, . . . , 0) = M
(

X(pm, D)
)

,

. . . , (0, . . . , 0, pm) = M
(

X(pm, D)
)

.

Indeed, since the degree of any closed point on the variety X(pm, D) is divisible by pn−m,
we have vp(rk M) ≥ n − m by Lemma 2.18. On the other hand, by the induction hy-
pothesis, vp(rk Mm,C) = n − 1 − m. The remaining summands of the complete motivic
decomposition of X(pm, D)L are Ml,C with l ≤ m− 1; vp of their ranks are at least n−m
(by the induction hypothesis once again).

We have in particular proved that ML contains the summand Mm,C coming from the
right-outer summand (0, . . . , 0, pm) of M

(

X(pm, DL)
)

. Since Mm,C is a right-outer sum-
mand of X(pm, C) (by the induction hypothesis), it follows that M is right-outer.

It remains to prove the statement on the rank of M = Mm,D.
To do this, we look at ranks of the summands in the complete decomposition of ML. We

have p summands Mm,C with vp(rk Mm,C) = n−1−m. So, we have vp(rk M⊕p
m,C) = n−m

for this part of the complete decomposition of ML.
The summands Ml,C with l ≤ m − 2 have vp(rk Ml,C) ≥ n − m + 1; so, we do not care

about the number of such summands.
In order to show that vp(rk M) = n − m, it suffices to show that the number of the

summands Mm−1,C (which have vp(rk Mm−1,C) = n − m) in the complete decomposition
of ML is divisible by p.

Let us first count the number of summands Mm−1,C in the complete motivic decom-
position of X(pm, D)L. We use the complete decomposition of X(pm, D)L which is a
refinement of the decomposition into a sum of (i1, . . . , ip) considered above. There are
two types of such summands Mm−1,C : those which appear as summands of M

(

X(pm, C)
)

(if any) and all the others. Since the number of the summands M
(

X(pm, C)
)

is p, the
number of the summands Mm−1,C of the first type is divisible by p.

The summands of the second type are summands of the summands (i1, . . . , ip) with
minj vp(ij) = m − 1. There is precisely one such summand (i1, . . . , ip) with i1 = · · · = ip,
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namely, the summand (pm−1, . . . , pm−1). All the other such summands (i1, . . . , ip) can be
divided into disjoint groups which are orbits of the action of the cyclic group Z/p on the
indices: the group containing a given (i1, . . . , ip) consists of

(i1, . . . , ip), (i2, . . . , ip, i1), . . . , (ip, i1, . . . , ip−1)

(note that these are p different summands because the integer p is prime). So, the
number of the summands Mm−1,C coming from the summands (i1, . . . , ip) different from
(pm−1, . . . , pm−1) is divisible by p.

As to the remaining summand (pm−1, . . . , pm−1) = M
(

X(pm−1, C)×p
)

, we can show (us-
ing the induction hypothesis) that the number of the summands Mm−1,C in its complete
motivic decomposition is also divisible by p. More generally, we can show that the num-
ber of the summands Mm−1,C in the complete motivic decomposition of X(pm−1, C)×r is
divisible by p as far as r ≥ 2. Indeed,

vp

(

rk M
(

X(pm−1, C)×r
)

)

= r(n − m) > n − m

(we recall that m < n). The complete motivic decomposition of X(pm−1, C)×r consists
of the motives Ml,C with l ≤ m − 1. Finally, vp(rk Ml,C) > n − m for l < m − 1 and
vp(rk Mm−1,C) = n − m.

We have shown that the number of summands Mm−1,C in the complete motivic decom-
position of X(pm, D)L is divisible by p. We finish by showing that the number of those
summands Mm−1,C which are not in the complete decomposition of ML is also divisible
by p.

If a summand Mm−1,C is not in ML = (Mm,D)L, then it is in (Mm−1,D)L. However
the number of summands Mm−1,C in Mm−1,D is divisible by p because vp(rk Mm−1,C) =
n − m and vp(d) = n − m + 1, where d is the gcd of the degrees of the closed points on
X(pm−1, D). �

Theorem 3.6 together with Lemma 2.21 give the main theorem:

Theorem 3.7 (Main theorem). Let p be a positive prime integer. Let n be a non-negative
integer. Let F be a field. Let D be a central division F -algebra of degree pn. Let m be an
integer in the interval [0, n]. Then the variety X(pm; D) is p-incompressible. �

For an arbitrary central simple F -algebra A, canonical p-dimension of the varieties in
XA is computed as follows:

Corollary 3.8. Let X be a variety in XA. Let n = vp(ind A) and m = vp(ind AF (X)).
Then cdp X = pm(pn − pm).

Proof. Let D be the p-primary part of a central division F -algebra Brauer-equivalent to
A. Let L/F be a finite field extension of prime to p degree such that the L-algebra
AL is Brauer-equivalent to DL. There exist rational maps XL 99K X(pm, DL) and
X(pm, DL) 99K XL. It follows that

cdp X = cdp XL = cdp X(pm, DL) = dim X(pm, D) = pm(deg D − pm) = pm(pn − pm). �
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UPMC Univ Paris 06, Institut de Mathématiques de Jussieu, F-75252 Paris, FRANCE

Web page: www.math.jussieu.fr/~karpenko

E-mail address : karpenko at math.jussieu.fr


