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Abstract. For a nondegenerate quadratic form ϕ on a vector space V of dimen-
sion 2n + 1, let Xd be the variety of d-dimensional totally isotropic subspaces of
V . We give a sufficient condition for X2 to be 2-incompressible, generalizing in a
natural way the known sufficient conditions for X1 and Xn. Key ingredients in
the proof include the Chernousov-Merkurjev method of motivic decomposition as
well as Pragacz and Ratajski’s characterization of the Chow ring of (X2)E , where
E is a field extension splitting ϕ.

1. Preliminaries

Before stating our results in the next section, we begin by recalling the notions
of canonical p-dimension, p-incompressibility, and higher Witt index.

Let X be a scheme over a field F , and let p be a prime or zero. A field extension
K of F is called a splitting field of X (or is said to split X) if X(K) 6= ∅. A splitting
field K is called p-generic if, for any splitting field L of X, there is an F -place
K ⇀ L′ for some finite extension L′/L of degree prime to p. In particular, K is
0-generic if for any splitting field L there is an F -place K ⇀ L.

The canonical p-dimension of a scheme X over F was originally defined [1, 7] as
the minimal transcendence degree of a p-generic splitting field K of X. When X
is a smooth complete variety, the original algebraic definition is equivalent to the
following geometric one [7, 10].

Definition 1.1. Let X be a smooth complete variety over F . The canonical p-
dimension cdimp(X) of X is the minimal dimension of the image of a morphism
X ′ → X, where X ′ is a variety over F admitting a dominant morphism X ′ → X
with F (X ′)/F (X) finite of degree prime to p. The canonical 0-dimension of X is
thus the minimal dimension of the image of a rational morphism X 99K X.

In the case p = 0, we will drop the p and speak simply of generic splitting fields
and canonical dimension cdim(X).

For a third definition of canonical p-dimension as the essential p-dimension of the
detection functor of a scheme X, we refer the reader to Merkurjev’s comprehensive
exposition [10] of essential dimension.

For a smooth complete variety X, the inequalities

cdimp(X) ≤ cdim(X) ≤ dim(X)

are clear from Definition 1.1. Note also that if X has a rational point, then
cdim(X) = 0 (though the converse is not true).

Definition 1.2. When a smooth complete variety X has canonical p-dimension as
large as possible, namely cdimp(X) = dim(X), we say that X is p-incompressible.
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It follows immediately that if X is p-incompressible, it is also incompressible (i.e.
0-incompressible).

We next recall the definitions of absolute and relative higher Witt indices, intro-
duced by Knebusch in [8]. Our discussion follows [5, §90]. The Witt index i0(ϕ) of
a quadratic form ϕ is the number of copies of the hyperbolic plane H which appear
in the Witt decomposition of ϕ. Now let ϕ be a nondegenerate quadratic form over
a field F and set F0 := F and ϕ0 := ϕan, the anisotropic part of ϕ. We proceed to
recursively define Fk := Fk−1(ϕk−1), ϕk := (ϕFk

)an for k = 1, 2, . . ., stopping at Fh

such that dimϕh ≤ 1.

Definition 1.3. For k ∈ {0, 1, . . . , h}, the k-th absolute higher Witt index jk(ϕ) of

ϕ is defined to be i0(ϕFk
). For k ∈ {1, 2, . . . , h}, the k-th relative higher Witt index

ik(ϕ) of ϕ is defined to be the difference

ik(ϕ) := jk(ϕ) − jk−1(ϕ).

The 0-th relative higher Witt index of ϕ is the usual Witt index i0(ϕ).

It follows from the definition that

0 ≤ j0(ϕ) < j1(ϕ) < · · · < jh(ϕ) = [(dimϕ)/2] .

Moreover, it can be shown that the set {j0(ϕ), . . . , jh(ϕ)} of absolute higher Witt
indices of ϕ is equal to the set of all Witt indices i0(ϕK) for K an extension field of F .

2. Introduction

Let ϕ be a nondegenerate quadratic form on a vector space V of dimension 2n+1
over a field F . Associated to ϕ there are smooth projective varieties X1,X2, . . . ,
Xn, where Xd is the variety of d-dimensional totally isotropic subspaces of V . The
variety X1 is simply the projective quadric hypersurface associated to the quadratic
form ϕ.

We recall the following result proved in [6] and also in [5, Ch. XIV and §90].

Theorem 2.1 (Karpenko, Merkurjev). If the quadric X1 is anisotropic, then

cdim2(X1) = cdim(X1) = dim(X1) − i1(ϕ) + 1.

In particular, X1 is 2-incompressible if and only if i1(ϕ) = 1.

At the other extreme is the variety Xn of maximal totally isotropic subspaces
of V . In [5, Ch. XVI], building on a result of Vishik from [12], the canonical 2-
dimension of Xn is computed in terms of the J-invariant of ϕ. The following result
is a corollary.

Theorem 2.2 (Karpenko, Merkurjev). If deg CH(Xn) = 2n
Z, then Xn is 2-incom-

pressible.

To compute the canonical 2-dimension of a general Xd appears to be difficult
because of the complexity of the Chow ring when d /∈ {1, n}. In this paper, we
complete a small piece of this general program by determining a sufficient condition
for the variety X2 to be 2-incompressible. We assume everywhere that n ≥ 3, the
n = 2 case having already been dealt with.
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Theorem 2.3. If deg CH(X2) = 4Z and i2(ϕ) = 1, then X2 is 2-incompressible. In

particular,

cdim2(X2) = cdim(X2) = dim(X2) = 4n − 5.

This result concerning X2 is a natural generalization of what is already known
aboutX1 andXn. To see this, note thatX1 being anisotropic means that deg CH(X1)
= 2Z. Furthermore, deg CH(Xn) = 2n

Z implies that jn−1(ϕ) = n− 1, from which it
immediately follows that in(ϕ) = 1. One might then conjecture, for general d, that

deg CH(Xd) = 2d
Z, id(ϕ) = 1

are sufficient conditions for Xd to be 2-incompressible.

3. Higher Witt indices

In this section we collect two results concerning higher Witt indices which will be
needed later.

Proposition 3.1. If deg CH(X2) = 4Z, then j1(ϕ) = 1.

Proof. Let K be a field of degree 2 over F such that the anisotropic part of ϕ has
a rational point over K. Then i0(ϕK) > i0(ϕ). By [5, Prop. 25.1], it follows that
i0(ϕK) ≥ j1(ϕ). If j1(ϕ) ≥ 2 then so is i0(ϕK), which implies that the variety X2

has a rational point over K. Since K has degree 2 over F , this contradicts the
assumption. Thus j1(ϕ) = 1 and j0(ϕ) = 0. �

From this proposition, we see that the hypothesis of our Theorem 2.3 implies

j2(ϕ) = j1(ϕ) + i2(ϕ) = 1 + 1 = 2.

Proposition 3.2. If j2(ϕ) = 2, then i0(ϕF (X2)) = 2.

In fact, one need only assume that some absolute higher Witt index of ϕ is equal
to 2 (possibly j0(ϕ) or j1(ϕ)), but we don’t need this generality for our purposes.

Proof. The variety X2 has a rational point over F (X2), so i0(ϕF (X2)) ≥ 2.
We prove that i0(ϕF (X2)) ≤ 2 by contradiction. If ϕ̃ is the anisotropic part of

ϕF (ϕ), then ϕF (ϕ) ≃ H ⊥ ϕ̃, since our assumption j2(ϕ) = 2 implies that j1(ϕ) = 1.

We define two varieties over F ′ := F (ϕ). Let Y1 be the projective quadric corre-
sponding to ϕ̃, and let Y2 be the variety of totally isotropic subspaces of dimension
2 with respect to ϕ̃. Since

i0(ϕF ′(Y1)) = i0(ϕF (ϕ)(ϕ̃)) = j2(ϕ) = 2,

the varietyX2 has a rational point over F ′(Y1). If i0(ϕF (X2)) ≥ 3, then i0
(

ϕ̃F ′((X2)F ′)

)

≥ 2, so Y2 has a rational point over F ′ ((X2)F ′). We thus have two rational mor-
phisms between varieties over F ′:

Y1 99K (X2)F ′ 99K Y2.

By [2, Lem. 6.1], since X2 is smooth and Y2 is complete, there exists a rational mor-
phism from Y1 to Y2, i.e. (Y2)F ′(Y1) has a rational point. But this is a contradiction,
since j1(ϕ̃) = j2(ϕ) − 1 = 1. �
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4. Shapes and multiplicities

A quadratic form ϕ is split if i0(ϕ) = [(dimϕ)/2], the greatest possible value.
Given a quadratic form ϕ over F , we fix an extension field E/F such that ϕE is
split and define ϕ̄ := ϕE and X̄d := (Xd)E . Let CH(Xd), called the reduced Chow

group, denote the image of the change of field homomorphism CH(Xd) → CH(X̄d).
Elements of CH(Xd) will be called rational cycles.

In this section we prove a technical lemma, based on a characterization given by
Pragacz and Ratajski in [11] of the Chow ring of the variety X̄2.

Lemma 4.1. If γ ∈ CHr(X̄2) with r ∈ {2n− 3, 2n− 2}, then 2γ is a rational cycle.

We begin by fixing notation and recalling some definitions. Let XB := X̄2, the
variety of 2-dimensional isotropic subspaces of V with respect to the split nondegen-
erate quadratic form ϕ̄. Recall that V has dimension 2n + 1. Let XC denote the
variety of 2-dimensional isotropic subspaces of a vector space W of dimension 2n
with respect to a nondegenerate alternating form ψ on W .

The next group of definitions are adapted for our purposes from Macdonald’s [9].

Definition 4.2. A partition is a finite, strictly decreasing sequence of positive in-
tegers

λ∗ = (λ∗1, λ
∗
2, . . . , λ

∗
s).

The ∗ in our notation will take on the value t for “top” or b for “bottom,” de-
pending on the role the partition plays in a shape, defined below. The length l(λ∗)
of the partition above is just s, while the weight of the partition is defined to be
|λ∗| :=

∑s
k=1 λ

∗
k. The empty partition, denoted ∅, is the sequence with no terms.

Partitions are visualized as diagrams of boxes. The diagram D∗
λ of a partition λ∗

has λ∗k boxes in the kth row, beginning with the top row. For example, the partition
(4, 3, 1) has diagram:

Note that the length of a partition is just the number of rows in its diagram, while
the weight is just the number of boxes.

A skew diagram D∗
µ\D

∗
λ is obtained by removing the boxes in the intersection of

D∗
µ and D∗

λ from D∗
µ. For example, the skew diagram (4, 3, 1)\(2, 1) is as follows:

The remaining definitions are adapted from [11].

Definition 4.3. With n fixed as above, a pair λ = (λt//λb) of partitions λt and λb

is called a shape if λt
1, λ

b
1 ≤ n, l(λt) ≤ n− 2, l(λb) ≤ 2, and λt

n−2 > l(λb).
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The diagram Dλ of a shape is drawn by stacking the diagram Dt
λ of the first

partition on top of the diagram Db
λ of the second, with a horizontal line in between.

For example, the shape ((4, 2)//(3)) has diagram:

The inequalities in the definition of a shape λ amount to imposing three require-
ments on its diagram Dλ:

(1) Dt
λ must fit into a rectangle with height n− 2 and width n

(2) Db
λ must fit into a rectangle with height 2 and width n

(3) Dλ must contain the “triangle” of boxes lying on and above the diagonal
beginning at the box in the diagram’s lower-left corner and proceeding to
the “northeast”.

We display once again the diagram of the shape ((4, 2)//(3)), this time shading in
the triangle of boxes required by the third condition above:

The weight of a shape λ = (λt//λb) is defined in terms of the weights of the
partitions λt, λb as

|λ| := |λt| + |λb| −

(

n− 1

2

)

.

This definition is chosen so that the shape π0 := ((n−2, n−3, . . . , 1)//∅) of minimal
weight will have weight 0.

We refer to [11] for the definitions of extremal and related components, (µ− λ)-
boxes, and compatible shapes.

The set of all shapes, denoted P2, can be mapped bijectively onto bases for each
of CH(XB) and CH(XC). We name the maps

σ : P2 −→ CH(XB)

τ : P2 −→ CH(XC)

and we call cycles in the images of the maps basic cycles.
For i = 0, 1, 2, consider the shapes πi := ((n−2+ i, n−3, n−4, . . . , 1)//∅). When

n = 5, their diagrams are as follows:

π0 π1 π2
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If we set σi := σ(πi), τi := τ(πi), then σ0, τ0 are the respective multiplicative
identities of the Chow rings, while σ1, σ2 (resp. τ1, τ2), called special cycles, are the
nontrivial Chern classes of the tautological bundle over XB (resp. XC). Pragacz
and Ratajski prove that τ1, τ2 algebraically generate CH(XC) (Cor. 1.8 and Lem.
3.2), while σ1, σ2 only generate CH(XB) after tensoring with Z[1/2] (Thm. 10.1).

With the weight |λ| of a shape defined as above, we have σ(λ) ∈ CH|λ|(XB) and

τ(λ) ∈ CH|λ|(XC). In particular, codim(σi) = |πi| = i and codim(τi) = |πi| = i.
The multiplication rules in CH(XB) and CH(XC) are very similar, differing only

by some factors of 2 in certain multiplicities. Indeed, for any shape λ ∈ P2, i = 1, 2,
we have the Pieri-type formulas

σ(λ) · σi =
∑

2eB(λ,µ)σ(µ)

τ(λ) · τi =
∑

2eC(λ,µ)τ(µ)

for multiplying a basic cycle by a special cycle [11, Thms. 2.2 and 10.1]. Here, the
sums are over all µ compatible with λ satisfying |µ| = |λ|+ i, and eB(λ, µ), eC(λ, µ)
are the cardinalities of certain sets of components of the skew diagram Db

µ\D
b
λ.

For our purposes, what we need is that for compatible λ, µ with |µ| = |λ| + i,
the difference eB(λ, µ) − eC(λ, µ) equals the number of extremal components of
Db

µ\D
b
λ. (This follows from the fact that an extremal component is not related

and has no (µ − λ)-boxes lying over it, by parts 2 and 4 of the definition [11,
Def. 2.1] of compatible shapes.) The skew diagram Db

µ\D
b
λ clearly has at most

one extremal component. There is exactly one extremal component if and only if
l(µb) > l(λb), which by part 5 of the definition of compatible shapes is equivalent
to l(µb) = l(λb) + 1. There are no extremal components if and only if l(µb) = l(λb).
Putting all of this together, we conclude that

(1) eB(λ, µ) − eC(λ, µ) = l(µb) − l(λb) ∈ {0, 1}.

To describe the product of several special cycles, we need to extend the notion
of compatibility to sequences of shapes. For nonnegative integers a1, a2, define a
compatible (a1, a2)-chain to be a sequence of shapes

Λ = (π0 =λ0, λ1, . . . , λa1+a2)

such that for i = 1, 2, . . . , (a1 +a2), the shapes λi and λi−1 are compatible, |λi| −
|λi−1| ∈ {1, 2}, and |λa1+a2 | = a1 + 2a2.

We now can write down formulas for an arbitrary product of special cycles in
CH(XB) or CH(XC). In CH(XB), the formula is

σa1
1 · σa2

2 =
∑

compatible (a1, a2)-chains
Λ=(λ0,λ1,...,λa1+a2

)

2bΛσ(λa1+a2),

where

bΛ = eB(λ0, λ1) + eB(λ1, λ2) + · · · + eB(λa1+a2−1, λa1+a2),

and in CH(XC), the formula is

τa1
1 · τa2

2 =
∑

compatible (a1, a2)-chains
Λ=(λ0,λ1,...,λa1+a2

)

2cΛτ(λa1+a2),
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where

cΛ = eC(λ0, λ1) + eC(λ1, λ2) + · · · + eC(λa1+a2−1, λa1+a2).

It follows from equation (1) that

bΛ − cΛ = [l(λb
1) − l(λb

0)] + [l(λb
2) − l(λb

1)] + · · · + [l(λb
a1+a2

) − l(λb
a1+a2−1)]

= l(λb
a1+a2

) − l(∅)(2)

= l(λb
a1+a2

).

We now are ready to prove the lemma.

Proof. It is enough to take γ to be a basic cycle, say γ = σ(λ) for some shape λ of
weight r. Since τ1 and τ2 generate the ring CH(XC), there exist integers uj such
that

τ(λ) =

⌊r/2⌋
∑

j=0

uj

(

τ r−2j
1 · τ j

2

)

∈ CHr(XC).

Define

γ′ :=

⌊r/2⌋
∑

j=0

uj

(

σr−2j
1 · σj

2

)

∈ CHr(XB).

This is a rational cycle, since σ1, σ2 are Chern classes of the tautological bundle over
XB = X̄2 and are therefore defined over the base field F .

It remains to show that γ′ = 2γ. The key is that for any shape λ = (λt//λb)
of weight 2n − 3 or 2n − 2, l(λb) = 1. Indeed, it follows easily from the conditions
imposed in the definition of a shape λ that l(λb) = 0 implies |λ| ≤ 2n − 4, and
l(λb) = 2 (the greatest value possible) implies |λ| ≥ 2n − 1. The case n = 5 is
illustrated below, where we shade the “π0 boxes” which don’t contribute to the
weight |λ|. Diagram I corresponds to the shape of maximal weight 2n − 4 = 6
among shapes λ with l(λb) = 0. Diagram II corresponds to the shape of minimal
weight 2n− 1 = 9 among shapes λ with l(λb) = 2.

I II

Expanding the products in the expression for τ(λ), we get

τ(λ) =

⌊r/2⌋
∑

j=0

uj

∑

compatible (r−2j, j)-chains
Λ=(λ0,λ1,...,λr−j)

2cΛτ(λr−j).
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The maps σ and τ induce a group isomorphism “σ ◦ τ−1” : CH(XC) → CH(XB)
which when applied to the equation above yields

(3) σ(λ) =

⌊r/2⌋
∑

j=0

uj

∑

compatible (r−2j, j)-chains
Λ=(λ0,λ1,...,λr−j)

2cΛσ(λr−j).

On the other hand, expanding the expression for γ′ yields

(4) γ′ =

⌊r/2⌋
∑

j=0

uj

∑

compatible (r−2j, j)-chains
Λ=(λ0,λ1,...,λr−j)

2bΛσ(λr−j),

which differs from the expression for σ(λ) only in that the exponent cΛ has been
changed to bΛ. By equation (2) and our length computation above, bΛ − cΛ =
l(λb

r−j) = 1 for any compatible (r−2j, j)-chain Λ, since

|λr−j| = (r − 2j) + 2j = r ∈ {2n − 3, 2n − 2}.

Thus each term on the right-hand side of (4) is twice the corresponding term on the
right-hand side of (3) and γ′ = 2σ(λ) = 2γ. �

5. Proof of 2-incompressibility

We now have the ingredients necessary for a proof of the main theorem, whose
statement we repeat below.

Theorem 5.1. If deg CH(X2) = 4Z and i2(ϕ) = 1, then X2 is 2-incompressible. In

particular,

cdim2(X2) = cdim(X2) = dim(X2) = 4n − 5.

We briefly recall some terminology from [5, §62 and §75]. Let X and Y be schemes
with dimX = e. A correspondence of degree zero δ : X  Y from X to Y is just a
cycle δ ∈ CHe(X × Y ). The multiplicity mult(δ) of such a δ is the integer satisfying
mult(δ) · [X] = p∗(δ), where p∗ is the push-forward homomorphism

p∗ : CHe(X × Y ) → CHe(X) = Z · [X].

The exchange isomorphism X × Y → Y ×X induces an isomorphism

CHe(X × Y ) → CHe(Y ×X)

sending a cycle δ to its transpose δt.

Proof. To prove that a variety X is 2-incompressible, it suffices to show that for any
correspondence δ : X  X of degree zero,

(5) mult(δ) ≡ mult(δt) (mod 2).

Indeed, suppose we have f : X ′ → X and a dominant g : X ′ → X with F (X ′)/F (X)
finite of odd degree. Let δ ∈ CH(X ×X) be the pushforward of the class [X ′] along
the induced morphism (g, f) : X ′ → X ×X. By assumption, mult(δ) is odd, so by
(5) we have that mult(δt) is odd. It follows that f∗([X

′]) is an odd multiple of [X]
and in particular is nonzero, so f is dominant.

We will check that the condition (5) holds for the variety X2. A correspondence of
degree zero δ : X2  X2 is just an element of CH4n−5(X2 ×X2). Using the method
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of Chernousov and Merkurjev described in [3], we can decompose the motive of
X2 ×X2 as follows. See also [4] for examples of similar computations.

We first realize X2 as a projective homogeneous variety. Let G denote the special
orthogonal group corresponding to the quadratic form ϕ on V . Let Π be a set of
simple roots for the root system Σ of G. If e1, . . . , en are the standard basis vectors
of R

n, we may take

Π = {α1 :=e1−e2, . . . , αn−1 :=en−1−en, αn :=en}.

Then X2 is a projective G-homogeneous variety, namely the variety of all parabolic
subgroups of G of type S, for the subset S = Π\{α2} of the set of simple roots.

Let W denote the Weyl group of the root system Σ. When n ≥ 4, there are
six double cosets D ∈ WP\W/WP with representatives w listed in the first column
below (where we write αk when we mean the reflection wαk

). The second column
lists the effect of w−1 on the first four ei (the rest not being affected). The third
column gives the subset of Π associated to w. When n = 3, there are only five
double cosets. In this case, the table may be amended by deleting the final row and
removing all mention of e4 from the remaining rows.

w (αk here means wαk
) w−1(e1, e2, e3, e4) RD

1 (e1, e2, e3, e4) Π\{α2}
α2 · · ·αn · · ·α2 (e1,−e2, e3, e4) Π\{α1, α2}

(α2 · · ·αn · · ·α2)α1(α2 · · ·αn · · ·α2) (−e2,−e1, e3, e4) Π\{α2}
α1 (e1, e3, e2, e4) Π\{α1, α2, α3}

α2α1(α3 · · ·αn · · ·α2) (e3,−e2, e1, e4) Π\{α1, α2, α3}
(α2α1)(α3α2) (e3, e4, e1, e2) Π\{α2, α4}

From [3, Thm. 6.3], we deduce the following decomposition of the motive of
X2 × X2, where the last summand is removed for the case n = 3. We denote
by Xd1,d2,...,ds

the variety of flags of totally isotropic subspaces of V of dimensions
d1, d2, . . . , ds.

M(X2 ×X2) ≃M(X2) ⊕M(X1,2)(2n − 3) ⊕M(X2)(4n − 5)

⊕M(X1,2,3)(1) ⊕M(X1,2,3)(2n − 2) ⊕
[

M(X2,4)(4)
]

This in turn yields a decomposition of the middle-dimensional component of the
Chow group of X2 ×X2.

CH4n−5(X2 ×X2) ≃ CH4n−5(X2) ⊕ CH2n−2(X1,2) ⊕ CH0(X2)

⊕ CH4n−6(X1,2,3) ⊕ CH2n−3(X1,2,3) ⊕
[

CH4n−9(X2,4)
]

It now suffices to check the congruence mult(δ) ≡ mult(δt) (mod 2) for δ in the
image of any of these summands. The embedding of the first summand CH4n−5(X2)
is induced by the diagonal morphism X2 → X2 ×X2, so the multiplicities are equal
by symmetry.

Any element δ of the third summand CH0(X2) has degree divisible by 4 by as-
sumption, hence its image in the Chow group CH0(X̄2) is divisible by 4. (Here we
use that CH0(X̄2) is generated by a single element of degree 1.) The image of δ in
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CH4n−5(X̄2 × X̄2) is then also divisible by 4, and since multiplicity does not change
under field extension, mult(δ) ≡ 0 ≡ mult(δt) (mod 4).

The second summand requires our work from the previous section. Since X1,2 is
a projective bundle over X2, there is a motivic decomposition M(X1,2) ≃M(X2)⊕
M(X2)(1), so that

CH2n−2(X1,2) ≃ CH2n−2(X2) ⊕ CH2n−3(X2).

It is enough to consider δ equal to the image of some β ∈ CHr(X2), where r ∈
{2n − 3, 2n − 2}. By the same reasoning as in the previous paragraph, it suffices
to show that the image of β in CHr(X2) ⊂ CHr(X̄2) is divisible by 2 in CHr(X̄2).

Suppose it is not. Then the image β̂ of β in the modulo-2 Chow group

Chr(X̄2) := CHr(X̄2)/2CHr(X̄2)

is nonzero. By [7, Rem. 5.6], the “cellular” variety X̄2 is “2-balanced,” i.e. the

bilinear form (β̂, γ̂) 7→ deg(β̂ · γ̂) on Ch(X̄2) is nondegenerate. Hence there exists
γ ∈ CHr(X̄2) such that

deg(β · γ) ≡ 1 (mod 2).

Since 2γ is rational by our Lemma 4.1, we have

deg CH0(X2) ∋ deg(β · 2γ) ≡ 2 (mod 4).

Degree does not change under field extension, so this contradicts our assumption
that deg CH(X2) = 4Z.

The last three summands of the decomposition are dealt with by the following
proposition, whose proof uses our results on higher Witt indices. This will complete
the proof of the theorem. �

Proposition 5.2. Let Fl := Xd1,d2,...,ds
be a variety of totally isotropic flags with

ds > 2 and let the correspondence α : Fl X2 ×X2 induce an embedding

α∗ : CHr(Fl) →֒ CH4n−5(X2 ×X2).

Then for any δ in the image of α∗, mult(δ) ≡ 0 ≡ mult(δt) (mod 2).

Proof. Consider the diagram below of fiber products, where we select either of the
projections pi and choose the other morphisms accordingly.

(Fl)F (X2)

((RRRRRRRRRRRRR

(Fl ×X2)F (X2)
//

��

66lllllllllllll

(X2)F (X2)
//

��

SpecF (X2)

��
Fl ×X2 ×X2

//

��

X2 ×X2 p2

p1 // X2

Fl

Taking push-forwards and pull-backs, we get the following diagram which com-
mutes except for the triangle at the bottom. The push-forward by pi takes a cycle
δ ∈ CH4n−5(X2 ×X2) to mult(δ) if we chose the first projection p1 or to mult(δt) if
we chose the second projection p2.
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CH0

(

(Fl)F (X2)

)

deg

**VVVVVVVVVVVVVVVVVVVVVV

CH0

(

(Fl ×X2)F (X2)

)

//

44iiiiiiiiiiiiiiiii

CH0

(

(X2)F (X2)

)

deg
// Z

CH4n−5 (Fl ×X2 ×X2) //

OO

CH4n−5 (X2 ×X2)
(mult)◦(transpose)

mult //

OO

Z

CHr(Fl)
α∗

88OO

Any δ ∈ im(α∗) also lies in the image of CH4n−5 (Fl ×X2 ×X2), by the definition
of the push-forward. Chasing through the diagram, one sees that mult(δ) (and
similarly mult(δt)) must lie in deg CH0

(

(Fl)F (X2)

)

. By Proposition 3.1, we know
that j2(ϕ) = 2. Hence by Proposition 3.2, ϕF (X2) ≃ 2H ⊥ ψ for some anisotropic
quadratic form ψ over F (X2). In order for the variety FlF (X2) to have a rational
point over a field extension K of F (X2), ψ must be isotropic over K, due to the
assumption ds > 2. By Springer’s Theorem, if the degree of the extension K is finite
then it must be divisible by 2, so

deg CH0

(

(Fl)F (X2)

)

⊂ 2Z.

�

This completes the proof of the theorem.
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