GROTHENDIECK—SERRE CONJECTURE FOR ADJOINT GROUPS OF TYPES E_6 AND E_7

I. PANIN, V. PETROV, AND A. STAVROVA

ABSTRACT. Assume that R is a semi-local regular ring containing an infinite perfect field, or that R is a semi-local ring of several points on a smooth scheme over an infinite field. Let K be the field of fractions of R. Let H be a strongly inner adjoint simple algebraic group of type E_6 or E_7 over R. We prove that the kernel of the map

$$\mathrm{H}^1_{\acute{e}t}(R,H) \to \mathrm{H}^1_{\acute{e}t}(K,H)$$

induced by the inclusion of R into K is trivial. This continues the recent series of papers [PaSV], [Pa] on the Grothendieck—Serre conjecture [Gr, Rem. 1.11].

In what follows we use the notation and terminology of [PS]. Our numbering of vertices of Dynkin diagrams follows [B].

Lemma 1. Let R be a regular semi-local domain and let K be the field of fractions of R. Let H be a simple group scheme of inner type over R such that $H \times_{\operatorname{Spec} R} \operatorname{Spec} K$ is of strongly inner type. Then H is of strongly inner type.

Proof. Let A be a Tits algebra of H. By the condition, the class $[A \otimes_R K]$ is trivial in Br(K). By [Gr, Corollaire 1.10] [A] is trivial in Br(R). So all Tits algebras of H are trivial, and therefore H is strongly inner.

Lemma 2. Let R be a semi-local domain, and let H be a strongly inner simply connected simple group scheme of type E_6 (resp., E_7) over R. There exists an inner simply connected simple group scheme G of type E_7 (resp., E_8) over R, together with a maximal parabolic subgroup P of type $\{1, 2, 3, 4, 5, 6\}$ (resp., $\{1, 2, 3, 4, 5, 6, 7\}$), such that H is isomorphic to the derived subgroup of R Levi subgroup of R. Such a group scheme R is unique up to an isomorphism.

Proof. Let H_0 be a split simply-connected algebraic group over R of the same type as H, and let G_0 be a split simply-connected algebraic group over R of type E_7 (respectively, E_8) if H is of type E_6 (respectively, E_7). Let P_0 be a standard maximal parabolic subgroup of G_0 corresponding to the 7th (respectively, the 8th) vertex of the Dynkin diagram of G_0 . Then H_0 is isomorphic to the derived subgroup of a standard Levi subgroup L_0 of P_0 . By [PS, Th. 2 (2)] for any strongly inner form H of H_0 there exist an inner form G of G_0 , a parabolic subgroup P of G of the same type as P_0 in G_0 , and a Levi subgroup P of P, such that P0 is isomorphic to the derived subgroup of P1. By [PS, Th. 2 (3)] if P1 if P1 is P2 in P3, which is our case, such a P3 is unique up to an isomorphism. \square

Theorem 1. Let R be a semi-local domain. Assume moreover that R is regular and contains a infinite perfect field k, or that R is a semi-local ring of several points on a k-smooth scheme over an infinite field k. Let K be the field of fractions of R. Let K be an adjoint strongly inner simple group scheme of type E_6 or E_7 over R. Then the map

$$\mathrm{H}^1_{\acute{e}t}(R,H) \to \mathrm{H}^1_{\acute{e}t}(K,H)$$

induced by the inclusion of R into K has trivial kernel.

V. Petrov is partially supported by PIMS fellowship and RFBR 08-01-00756; V. Petrov and A. Stavrova are supported by RFBR 09-01-00878; I.Panin is supported by the joint DFG-RFBR project 09-01-91333-NNIO-a.

Proof. Let H_0 be a split simply-connected algebraic group over R of the same type as H. The elements of $\mathrm{H}^1_{\acute{e}t}(R,H)$ parametrize isomorphism classes of inner forms of H_0 . Let H_1 and H_2 be two inner forms of H_0 , and assume that

$$H_1 \times_{\operatorname{Spec} R} \operatorname{Spec} K \cong H_2 \times_{\operatorname{Spec} R} \operatorname{Spec} K$$
.

Assume that H_1 is of strongly inner type. Then H_2 is also of strongly inner type by Lemma 1. Now by Lemma 2 there exist two simply connected R-group schemes G_i , i=1,2, of inner type E_7 (resp., E_8), if H is of type E_6 (resp., E_7), together with parabolic subgroups P_i , i=1,2, of type $\{1,2,3,4,5,6\}$ (resp., $\{1,2,3,4,5,6,7\}$), such that H_i , i=1,2, is isomorphic to the derived subgroup of a Levi subgroup L_i of P_i . Since $H_1 \times_{\operatorname{Spec} R} \operatorname{Spec} K \cong H_2 \times_{\operatorname{Spec} R} \operatorname{Spec} K$, the uniqueness part of Lemma 2 applied to R=K implies that

$$G_1 \times_{\operatorname{Spec} R} \operatorname{Spec} K \cong G_2 \times_{\operatorname{Spec} R} \operatorname{Spec} K$$
.

Since the groups G_i , i=1,2, are isotropic, and are inner forms of each other, by [Pa, Th. 1.0.1, Th. 1.0.2] they are isomorphic over R. We can assume $G_1=G_2$. Since R is semi-local, by [SGA, Exp. XXVI Cor. 5.5 (iv)] there exists $g \in G_1(R)$ such that $gP_1g^{-1}=P_2$ and $gL_1g^{-1}=L_2$. Then the derived subgroups of L_1 and L_2 are isomorphic, that is, $H_1 \cong H_2$ over R.

Remark. Actually, the proof is also valid for adjoint (semi)simple algebraic groups of classical type.

References

- [B] N. Bourbaki, Groupes et algèbres de Lie. Chapitres 4, 5 et 6, Masson, Paris, 1981.
- [Gr] A. Grothendieck, Le groupe de Brauer II, Sém. Bourbaki 297 (1965/66).
- [SGA] M. Demazure, A. Grothendieck, Schémas en groupes, Lecture Notes in Mathematics, Vol. 151–153, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
- [PaSV] I. Panin, A. Stavrova, N. Vavilov, On Grothendieck—Serre's conjecture concerning principal G-bundles over reductive group schemes:I, Preprint (2009), http://www.math.uiuc.edu/K-theory/
- [Pa] I. Panin, On Grothendieck—Serre's conjecture concerning principal G-bundles over reductive group schemes:II, Preprint (2009), http://www.math.uiuc.edu/K-theory/
- [PS] V. Petrov, A. Stavrova, Tits indices over semilocal rings, Preprint (2008), available from http://www.arxiv.org/abs/0807.2140