THERE IS NO “THEORY OF EVERYTHING” INSIDE Eg

JACQUES DISTLER AND SKIP GARIBALDI

ABSTRACT. We analyze certain subgroups of real and complex formsedfigngroupEs,

and deduce that any “Theory of Everything” obtained by endbegithe gauge groups of
gravity and the Standard Model into a real or complex formgfacks certain representation-
theoretic properties required by physical reality. Theiargnts themselves amount to rep-
resentation theory of Lie algebras along the lines of Dysldtassic papers and are written
for mathematicians.

1. INTRODUCTION

Recently, the preprint[1] by Garrett Lisi has generated aflpopular interest. It boldly
claims to be a sketch of a “Theory of Everything”, based oridiea of combining the local
Lorentz group and the gauge group of the Standard Model ialdaem of Eg (necessarily
not the compact form, because it contains a group isogendIs(2, C)). The purpose of
this paper is to explain some reasons why an entire classcbfrawdels—which include
the model in[[1]—cannot work, using mostly mathematics wétatively little input from
physics.

The mathematical set up is as follows. Fix a real Lie gréupWe are interested in
subgroup$L(2,C) andG of E so that:

(ToE1) G is connected, reductive, compact, and centraltig®, C)

We complexify and decompodge(E) ® C as a direct sum of representationssdf(2, C)
andG. We identifySL(2, C) x C with SLq ¢ x SLo ¢ and write

(1.1) LieB)= @ men@ V.

m,n>1
wherem andn denote the irreducible representatiorbah ¢ of that dimension an#t;,, ,,
is a complex representation 6f x C. (Physicists would usually writ2 and2 instead of
2 ® 1 andl ® 2.) Of course,

MmNV, 2n®me Vi,
and since the action &fL.(2, C).G on Lie(E) is defined oveR, we deduce thak,, ,, ~
Vi,m. We further demand that
(ToE2) V5,1 is a complex representation 6f and
(ToE3) Vien =0if m+n > 4.
We recall the definition of complex representation and @rplee physical motivation for
these hypotheses in the next section. Roughly speaking&1(Tis a trivial requirement

based on trying to construct a Theory of Everything alonglithes suggested by Lisi,
(ToE2) is the statement that the gauge theory (with gauggagr) is chiral, as required by
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the Standard Model, and (ToE3) is the requirement that thdehmmt contain any “exotic”
higher-spin particles. In fact, physics requires sligtstisonger hypotheses dn, ,,, for
m + n = 4. We will not impose the stronger version of (TOE3).

Definition 1.2. A ToE subgroumf a real Lie groufE is a subgroup generated by a copy
of SL(2, C) and a subgroug such that (ToE1), (ToE2), and (ToE3) hold.

Our main result is:

Theorem 1.3. There are no ToE subgroups in (the transfer of) the comEleror in any
real form ofEs.

Notation. Unadorned Lie algebras and Lie groups mean ones over thaugdiers. We
use a subscripf to denote complex Lie groups—e.§l., ¢ is the (complex) group of
2-by-2 complex matrices with determinant 1. We can vied+dmensional complex Lie
groupGc as a2d-dimensional real Lie group, which we denote ByG¢). (Algebraists
call this operation the “transfer” or “Weil restriction otalars”.) We use the popular
notation of SL(2, C) for the transferR(SLy ) of SLa c; it is a double covering of the
“restricted Lorentz group”, i.e., of the identity compon80 (3, 1), of SO(3,1).

1.4. Strategy and main resultsOur strategy for proving Theoreml.3 will be as follows.
We will first catalogue, up to conjugation, all possible entieg of SL(2, C) satifying
the hypotheses of (TOE3). The list is remarkably short. Bigady, every ToE subgroup
of E is contained irSL(2, C) - Gmax, WhereGy,.« is the maximal compact, connected,
reductive subgroup of the centralizer$it(2, C) in E. The proof of Theorerfill.3 shows
that the only possibilities are:

E Grmax
Egs) Spin(5) x Spin(7)
Eg(—24) Spin(11) or Spin(9) x Spin(3)
R(Esc) E7, Spin(13) or Spin(12).
We then note that the representatidf,;, of Gmax (@nd hence, of angz C Gmay) has a
self-conjugate structure. In other words, (ToE2) fails.

2. PHYSICS BACKGROUND

One of the central features of modern particle physics isttreaworld is described by
achiral gauge theory
2.1.Let M afour dimensional pseudo-Riemannian manifold, of sigregt) 1), which we
will take to be oriented, time-oriented and spin. Kebe a compact Lie group. The data
of agauge theory oM/, with gauge groups consists of a connectiom, on a principal
G-bundle,P — M, and some “matter fields” transforming as sections of vemtioidle(s)
associated to unitary representationg:of

Of particular interest are thfiermionsof the theory. The orthonormal frame bundle of
M is a principalSO(3, 1), bundle. A choice of spin structure defines a lift to a printipa
Spin(3,1)p = SL(2,C) bundle. LetS;y — M be the irreducible spinor bundles, asso-
ciated, via the defining two-dimensional representatiahitsicomplex conjugate, to this
SL(2, C) principal bundle.

Thefermions of our gauge theogre denoted

Y el (S V), pel(S_aV)

whereV — M is a vector bundle associated to a (typically reduciblejesgntationR,
of G.
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Definition 2.2. A real structureon a representatioi (overC) is an antilinear map/ :
V — V, satisfyingJ? = 1. Physicists call a representation possessing a real steuct
real.

A quaternionic structuren a representatiori (overC) is an antilinear map/ : V' —
V, satisfyingJ? = —1. Physicists call a representation possessing a quatécisioacture
pseudoreal

Subsuming these two subcases, we will say that a representatoverC) has aself-
conjugate structurd there is an antilinear mag : V — V, satisfyingJ* = 1. Physicists
call a representatioli, which does not possess a self-conjugate structoraplex

For an alternative view, we suppose thats an irreducible representation (ov@) of
a real reductive Lie grou@ and exploitl[2§7]. If V' has a real structuré, then the subset
V' of elements oV fixed by.J is a real vector space that is a representatiafd efich that
Endg (V') = RandV’ ® C is canonically identified with/. A quaternionic structure on
V defines a real structure dn @ V via (v1,v2) — (Juve, —Jv1) such thalV @ V) is
irreducible withEndg ((V @ V)') = H. If V is complex, thei” @ V has an essentially
unique real structure arfthd ((V @ V)') = C.

Definition 2.3. A gauge theory, with gauge group, is said to bechiral if the representa-
tion, R by which the fermiond{2l1) are defined, is complex in the ats®nse. By contrast,
a gauge theory is said to enchiralif the representatio® in 21 has a self-conjugate
structure.

Note that whether a gauge theory is chiral depends cruaiallyhe choice of5. A
gauge theory might be chiral for gauge gradpbut nonchiralfor a subgroupd C G,
because there exists a self-conjugate structur® ocompatible withH, even though no
such structure exists, compatible with the full gratip

Conversely, suppose that a gauge theory is nonchiral fogalage groug-. It is also
necessarily nonchiral for any gauge gratdpc G.

2.4. GUTs.The Standard Model is a chiral gauge theory with gauge group
Gsm := (SU(3) x SU(2) x U(1))/(Z/6Z)

Various grand unified theories (GUTSs) proceed by embed@ing is some (usually sim-
ple) group,Geur. Popular choices fo&gur areSU(5) [3], Spin(10), Eg, and the Pati-
Salam group(Spin(6) x Spin(4))/(Z/27Z) [4].

It is easiest to explain what the fermion representatio@ gy is after embeddingrsy
in Gaur := SU(5). Let W be the five-dimensional defining representatioS6{5). The
representatio® from[Z1 is the direct sum of three copies of

Ro=NWaoW

Each such copy is called a “generation” and is 15-dimensid@h@e identifies each of the
15 weights ofR, with left-handed fermions: 6 quarks (two in a doublet, eathhiree
colors), two leptons (e.g., electron and its neutrino), Bgararks, and a positron. With
three generationd? is 45-dimensional.

For the other choices of GUT group, the analogue of a gewerdit,) is higher-
dimensional, containing additional fermion which are neers at low energies. When
decomposed undefsy € Ggur, the representation decomposesias+ R’, where
R’ is a real representation d@¥sy. In Spin(10), a generation is the 16-dimensional
half-spinor representation. IR, it is the 27, and for the Pati-Salam group, it is the
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(4,1,2) @ (4,2,1) representation. In each case, these representations rapesorep-
resentations (in the above sense)X&fyr, and the complex-conjugate representation is
called an “anti-generation.”

So far, we have described a chiral gauge theory in a fixed uydRiemannian structure
on M. Lisi’s proposal[[l] is to try to combine the spin connectmm}/, and the gauge
connection onP into a single dynamical framework. This motivates Defim{b2 of a
ToE subgroup.

Fix a TOE subgroup—say, withh = Ggy—in some real Lie groufe. The action of
central element-1 € SL(2,C) provides aZ/27Z grading on the Lie algebra df. This
Z,/27 grading allows one to define a sort of superconnection assatioE (precisely
what sort of superconnection is explained in a blog post byfitkt authorl[5].) In the pro-
posal of [1], we are supposed to identify each of the genesafd.ie(E) as either a boson
or a fermion. The Spin-Statistics Theorem [6] says that fens transform as spinorial
representations dpin(3, 1); bosons transform as “tensorial” representations (repres
tation which lift to the double coveSO(3, 1)). To be consistent with the Spin-Statistics
Theorem, we must, therefore, require that the fermionsiogtio the—1-eigenspace of the
aforementione® /27 action, and the bosons to the -eigenspace.

In fact, to agree with 211, we should require that thieeigenspace (when tensored with
C) decompose as a direct sum of two-dimensional represensatoverC) of SL(2,C),
corresponding to “left-handed” and “right-handed” fermspin the sense &f32.1.

Remark2.5. In the language of (TOE3)n + n = odd are fermions anth + n = even
are bosons. In Lisi’s setup, the bosons are 1-formaQrwith values in a vector bundle
associated to the aforementiorigdn (3, 1), principal bundle via then ® n representation
(with m + n even). The case: + n = 4 is special; these correspond to the gravitational
degrees of freedomin Lisi's theor{83 ® 1) & (1 ® 3) is the adjoint representation; these
correspond to the spin connection. The 1-form with valuethe?2 ® 2 representation
is the vierbein. It is a serious result from physics (seeigest13.1, 25.4 of([7]) that a
unitary interacting theory is incompatible with massleasdtiples in higher representation
(m+mn > 6). But, in light of the difficulties in making physical sensktloe bosonic sector
of Lisi's theory, it would be cleaner — meaning demanding legput from physics— to
focus on the fermionic sector and forbid the presence ofitjag (m + n = 5) or yet-
higher spin fermionic fields. (ToE3), as stated, forbidshbolin g8, we will revisit the
possibility of admitting gravitinos.

2.6. Dimension considerations.Elaborating on the discussion above, in a Theory of
Everything one wishes to identify weight vectorsli; and V; o with left- and right-
handed fermions. As there ade< 15 = 45 known fermions of each chirality, we find that
the —1-eigenspace must have dimension at I1@ast2 x 45 = 180.

In caseE is a real form ofEg, the —1-eigenspace has dimension 112 or 128 (this is
implicit in Elie Cartan’s classification of real forms B§ as in [8, p. 518, Table Vﬂ,so no
identification of the fermions as distinct weight vectord.in(E) (as in Table 9 in[[iL]) can
be compatible with the Spin-Statistics Theorem and the@xég of three generations.

1Alternatively, the marvelous bound on the trace frain [9, 3himplies that for every element of order 2
in a reductive complex Lie grou@¥, the —1-eigenspace ohAd(x) has dimensior< (dim G + rank G)/2. In
particular, wherG is a real form ofEg, the —1-eigenspace has dimensigh128.
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3. slo SUBALGEBRAS AND THEDYNKIN INDEX

3.1.In [10, §2], Dynkin defined théndexof an inclusionf : g; — g2 of simple complex
Lie algebras as follows. Fix a Chevalley basis of the two latgs, so that the Cartan
h, of g1 is contained in the Cartali, of g5. The Chevalley basis identifidg with the
complexification@; ® C of the coroot latticeR);” of g;, and the inclusionf gives an
inclusion@Y ® C — Q3 ® C. Fix the Weyl-invariant inner product ); on Q) so that
(a¥,aY); = 2 for short corootsy¥. Then theDynkin indexof the inclusion is the ratio
(f(av), f(aV))2/(aV,a" )1 wherea" is a short coroot of; . For example, the irreducible
representationl, — sl,, has index(”;rl) by [10, Eq. (2.32)].

3.2.We now consider the case where= sl and write simplyg andQ@" for g andQy .

In §8 of that same paper (or see[EW¥I11.11]), Dynkin proved that after conjugating by
an element of the automorphism groupgobne can assume that the Cartan subalgebra of
sly is contained in the given Cartan subalgebrg ahd that the imagé of a simple root
of sl in QY ® C satisfies the strong restrictions:

h = ps6” forps real and non-negative L0, Lemma 8.3],
sen

whereA denotes the set of simple rootsgénd further that
d(h) € {0,1,2} forall§ € A.

But note that for each simple roét the fundamental irreducible representatiorg afith
highest weight dual té has weighp; (as a representation ek,), hencep; is an integer.

As a consequence of this and specificallyl [10, Lemma 8.2],aameidentify ansls-
subalgebra of up to conjugacy by writing the Dynkin diagramg#&nd putting the number
d(h) at each vertex; this is thmarked Dynkin diagrarof thes(, subalgebra.

Here is an alternative formula for computing the index ofsgnsubalgebra from its
marked Dynkin diagram. Write, andm" for the Killing form and dual Coxeter number
of g. We have:

. 1 1 1
(3.3)  (Dynkinindex = §(h, h) = Wﬁg(h, h) = Sy Z a(h)?,

positive rootsx of g
where the second equality is by, e.g..1[32], and the third is by the definition af;. One

can calculate the number(h) by writing « as a sum of positive roots and applying the
marked Dynkin diagram fok.

Lemma 3.4. For every simple complex Lie algebgathere is a unique copy et in g of
index1, up to conjugacy.

Proof. The index of arsl,-subalgebra igh, h)/2, where the defining vectdr belongs to
the coroot lattice)V. If g is not of type B, then the coroot lattice is not of type C, anel th
claim amounts to the statement that the vectors of mininmgjtiein the coroot lattice are
actually roots. This follows from the constructions of tetrlattices in[[1B§12.1].
Otherwiseg has type B and iso,, for some oddh > 5. The conjugacy class of aits-
subalgebra is determined by the restriction of the naturdimensional representation;
they are parameterized by partitionsrof(i.e., > n; = n) so thatn; > -+ > n, >
0, n1 > 1, and there are an even number of eveis [[14, §6.2.2]. The index of the
compositionsly — so,, — sl, is then}_ ("jl) we must classify those partitions such
that this sum equals the Dynkin index«f, — sl,,, which is 2. The unique such patrtition
is2>2>1>-.->1>0. Il
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If g has type CF4, or G, then the same argument shows that there is up to conjugacy
a unique copy ofl, in g with index 2, 2, or 3 respectively. We will see below that for
of type Bg, there are two conjugacy classess6f-subalgebras of index 2. This amounts
to the fact that there are vectors in tfg root lattice that are not roots but have the same
length as a root, cf. Exercise 5§42 of [13].

4. COPIES OFsly ¢ IN THE COMPLEX Eg

We first prove some facts about copiesBfc in the complex Lie algebra of typeEs.
The 69 conjugacy classes of such are listed in Table 20 onZoflJdd]; we are interested
in just a few of these, without using Dynkin's table.

Fix a pinning foreg; this includes a maximal toral subalgelyaa set of simple roots
D := {a; | 1 <14 <8} (humbered

1 3 456 7 8
2

as in [15]), and fundamental weights dual to«;. As all roots of theéig root system have
the same length, we can and do identify the root system vgtimierse root system.

(4.1)

Example 4.2. Taking any root oftlg, one can generate a copy$ c in eg with index 1.
Doing this with the highest root gives afy ¢ with marked Dynkin diagram

0 000 O0O0OT1
0

Every index 1 copy ofl, in eg is conjugate to this one by Lemrhal3.4.

index 1:

Example 4.3. One can find a copy ofls ¢ x sly ¢ in eg by taking the first copy to be
generated by the highest root B and the second copy to be generated by the highest
root of the obvioudt; subsystem. If you embed, ¢ diagonally in this algebra, you find

a copy ofsly ¢ with index 2 and marked Dynkin diagram

1 000 0OO
0

Proposition 4.4. The following collections of copies o ¢ in eg are the same:

(1) copies such that1 are weights otg (as a representation aff; ¢) and no other
odd weights occur.

(2) copies such that every weightafis in {0, £1, +2}.

(3) copies such that the inclusiet, ¢ C eg has Dynkin index or 2.

(4) copies ofsl; ¢ conjugate to one of those defined in Examplek 4[Zdr 4.3.

index 2:

The equality of (3) and (4) says thélt ¢'s of index 1 or 2 are determined (up to conju-
gacy) by their index. This is a small part of the data cont@&ineDynkin’s Table 20, which
is not used in our proof.

Proof of PropositiollZ4 One easily checks that (4) is contained in (1)—(3); we praee t
opposite inclusion.

For (3), we identifyh with the complexificatior) @ C of the (co)root lattic&), hence
hwith Y~ «a;(h)w;. By 33), the index of: satisfies:

1 2 1 2 2 L :
@%:a(h) @;@;ai(hxwim) z;<ai<h> Z< 60> )

«
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where the sums vary over the positive roots. We calculatedoh fundamental weight;
the numbel",, (wi, o)’ /60:

2 7 15 10 6 3 1
4

As the numbersy;(h) are all 0, 1, or 2, the numbers#.5) show thaor ansly ¢ with
Dynkin index 1 or 2 must be; (index 2) orws (index 1).

For (2), the highest roat of Es is @ = ), ¢;a;, wheree; = c¢g = 2 and the othee;’s
are all at least 3. A&(h) is a weight ofeg relative to a given copy ofls ¢, we deduce that
ansly ¢ as in (2) must havé = w; orws, as claimed.

(4.5)

Suppose now that we are given &arfor a copy ofsly ¢ as in (1). As£1 occur as
weights, there is at least one 1 in the marked Dynkin diagram.

But note that there cannot be three or more 1's in the markewkibydiagram forh.
Indeed, for every connected subseof vertices of the Dynkin diagram dfs, ), ¢ a; is
a root [15,8VI.1.6, Cor. 3b]. If the number of 1's in the marked diagramho at least
three, then one can pick so that it meets exactly three of the’s with «;(h) = 1, in
which case) ;g ;(h) is odd and at least 3, violating the hypothesis of (1).

For sake of contradiction, suppose that there are two 1lsamtarked diagram far. If
ag(h) anda; (k) are the two 1's, then one can find a rectf Eg where(w; + ws, «) is odd
and at least 3, i.e., the coefficientscgfandasg in o have opposite parities and sum at least
3. This is a contradiction, so we may assume that both 1'sdmrthrked Dynkin diagram
lie in the E; subdiagram. Repeating this argument with smaller and smsilibsystems
shows the contradiction.

We are left with the case the there is exactly one 1 in the naadkegram forh. If
a;(h) = 1 for somei # 1,8, then we find a contradiction because there is a toot Eg
with a;-coordinate 3. Therefore; (k) = 1 only fori = 1 or 8 and not for both. By the
fact used two paragraphs aboye;= ). «; is a root ofEg, sog(h) = > a;(h) is odd
and must be 1. It follows that = w; or ws. O

4.6. Centralizer for index 1. Thesl, ¢ of index 1 ineg has centralizer the regular subalge-
brae; of typeE~. Indeed, it is clear that; centralizes thisl; ¢, and conversely; x sl ¢
is a maximal proper subalgebragf so the centralizer cannot be any larger.

5. INDEX 2 COPIES OF5[27C IN THE COMPLEX Eg

Lemma 5.1. The centralizer of the index2, ¢ in es from Exampl€Z13 is a copy 663
contained in the regular subalgebsa; 4 of es.

Proof. The centralizer of thel, ¢ of index 2 ineg is contained in the centralizer of the
defining vectorh; this centralizer is reductive with semisimple part theulagsubalgebra
so014 Of typeD~. The centralizer oél; ¢ contains the centralizer of th, ¢ x sly ¢ from
Example[Z1B, which is the regular subalgeboa, of type Dg. Furthermore, using the
standard representation theorystf ¢, it is easy to see that that the the centralizesigt
has dimension 78 (as is implicitly claimed in the statemdhe lemma).

The regularso4 does not centralize thisl; c. On the other hand, the centralizer is
strictly bigger tharso,, because it includes a copy gif, ¢ obtained by embedding diago-
nally in thesly ¢ x sly ¢ generated by nilpotents corresponding to the highest rioibteo
D~ subsystem and-«s. (To check that thisl, ¢ centralizes the index 2 copy we started
with, it is helpful to have a table of structure constantse[d€].) Together withso;2, this
generates ao,3 subalgebra ofo14. Dimension count gives the claim. O



8 JACQUES DISTLER AND SKIP GARIBALDI

5.2. Implicit in the proof above is an inclusion a@b;3 in ¢g and a comparison of the
pinnings of the two algebras, and in particular an inclusibooroot lattices in terms of
those pinnings. Number the simple rootssofs according to the diagram

1 2 3 4 5 6

We write 3 for the simple coroot corresponding to the simple rodiere is a translation
table between the coroots &f,3 and the (co)roots ofs:

sois | Y By BY By B B¢

es |a3 oy a5 ag ar o2+ a3+ 204 + 205 + 206 + 207

The index 2s(; ¢ and the copy ofo;3 ¢ give ansly ¢ X s013,c Ssubalgebra ofs ¢, and
as a representatioey ¢ decomposes as a direct sum of irreducibles:

1®so3c @& 2®@(spinn & 3®1 & 3® (vecton

Example 5.3. By Dynkin's game of adding the highest root to the Dynkin dé&yg and
deleting a vertex as ilL[1@p], s013,c contains a maximal subalgel@ ¢ xsp, . Inturn,
s0g contains a maximal subalgels@a x sp, [L4, Th. 1.4]. This gives asly x'sp4 X 5Py
subalgebra ofo 3.

We remark that thisl; has index 2 ireg. As the inclusionsog C s013 C eg have index
1, it suffices to check thaf, has index 2 irsog. This follows from the fact that the adjoint
representation ofos has index 12, whereas its restrictionste decomposes as six copies
of the 3-dimensional irreducible representation and aifrfedsional trivial representation
[18, p. 260], so has index- 4 + 10 - 0 = 24.

The main result of this section is the following:

Proposition 5.4. Up to conjugacy, there is a unique copy3dfz ¢ x SLa ¢ in Eg ¢ so that
each inclusion oSL; ¢ in Eg ¢ has index 2. The Lie algebra of the centralizer of this
SLa ¢ x SLa ¢ is ansp, ¢ X sp, ¢ subalgebra oboy; c in es.

Proof. An analysis similar to the one in the proof of Proposifiad<4But more compli-
cated because there is more than one root lengtl pind; has a nontrivial center—shows
that there are two conjugacy classes of copieslpin so,5 of index 2, corresponding to
marked Dynkin diagrams

@ 2 00 0O0O0 and (b) O 0 0 1 0 O

We can pair each of (a) and (b) with the copys6f from Exampld’Z1 to get asi> x sl
subalgebra oés where bothsl;’s have index 2. Clearly, these represent the only Bye
conjugacy classes of such subalgebras. With the markediDgidgram in hand, it is not
difficult to calculate the decomposition @f into a direct sum of irreducible representations
of sly x sly.

In case (a), every irreducible summandx n hasm + n even. Therefore, this copy of
sly X sly is the Lie algebra of a subgroup Bf isomorphic to(SLy x SLs)/(—1, —1).

In case (b), we have the following table of multiplicities fa ® n:

|1 2 3 m

1120 20 6
n 220 16 4

3] 6 40

In particular, it is the Lie algebra of a copy 8f.5 x SLs in Eg. Combining thesly’s from
Example§413 anld 3.3 gives sl x sl» subalgebra with bothl,'s of index 2 and the same

(5.5)
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decomposition otg into irreducible representations, so it is in the same apenjy class.
Clearly, its centralizer contains the copyspf, x sp, from Exampld513, and the number
20 in the upper-left corner of{3.5) shows tkat x sp, is the whole centralizer. O

5.6. We can decompossg into a direct sum of irreducible representations of shex
sly x sp, x sp, subalgebra from the proposition by combining the decontjposof eg
into irreducible representations o x so13 from[&2 with the tables il [18]. Recall that
sp, has two fundamental irreducible representations: ondghatlimensional symplectic
and another that is 5-dimensional orthogonal; we denota tetheir dimensions. With
this notation anf 111, we find:

‘/271:5®4, V172:4®5, ‘/273:1(84, and ‘/372:4®1.

6. CoPIES OFSL(2,C) IN A REAL FORM OF Eg

Suppose now that we have a copySif(2, C) inside a real Lie grouft of type Es.
Over the complex numbers, we decompdseE) ® C into a direct sum of irreducible
representations &fL(2, C) x C = SLy ¢ x SLg ¢; each irreducible representation can be
written asm ® n wherem andn denote the dimension of an irreducible representation of
the first or secon8L, ¢ respectively. The goal of this section is to prove:

Proposition 6.1. Maintain the notation of the previous paragraphLik(E) contains no
irreducible summands: ®n withm-+n > 4, then the identity component of the centralizer
of SL(2,C)inEisa
(1) aregular subgrougpin(7,5) if E is split; or
(2) a regular subgrouspin(9, 3) or Spin(11, 1) if the Killing form of Lie(E) has
signature—24.

Proof. Complexifying the inclusion oSL(2,C) in E and going to Lie algebras gives an
inclusion ofsly ¢ x slp ¢ in the complex Lie algebras from §. The hypothesis on the
irreducible summands ®n amounts to the statement that each of thedlye's has index

1 or 2 by Propositiof4l14. As complex conjugation interctesdpe two components, they
must have the same index.

Suppose first that bo#,'s have index 1. Lemmia3.4 (twice) gives that this x sl5 is
conjugate to the one generated by the highest roBdfom ExampldZR (so the second
slo belongs to the centralizer of tyfi;) and by the highest root of tHe; subsystem and
makes up the first two summands of € x sly x so;5 subalgebra as in 10, pp. 147,
148]. As this subalgebra has rank 8, it follows that the Lgehra of the centralizgrof
SL(2,C) in E is a real form ofspin,,.

We can decompodéde(E)®C into irreducible representations @fl; x sl x spin; 5 ) @C
using the tables iri.[18] to find the adjoint representatiarspl

21854, 125, and 2@2QYV,

whereSy denotes the half-spin representationsigifi,, andV is the vector representa-
tion. ButLie(E) is a real representation gf so we deduce thaf is also a real represen-
tation of3 but S, andS_ are not; they are interchanged by the Galois action. The first
observation shows thatis spin(12 — a, a) for some0 < a < 6. The second shows that
must be 1, 3, or 5, as claimed.

It remains to prove the correspondence betweand the real forms dfs. Fora = 5,
this is clear: the subgroup generateddly(2, C) andSpin(7, 5) has real rank 6, so it can
only be contained in the split real form. Now suppose that 3 or 1 and thaSL(2, C)
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is in the splitEg; we will obtain a contradiction. OveE, SL(2,C) is conjugate to the
copy of SLs ¢ x SLa ¢ in Eg c generated by the highest root B and the highest root
of the natural subsystem of tyfi%,. One calculates using the tables[inl[15], e.g., that the
element-1 € SL(2, C), equivalently(—1, —1) € SLg x SLy iS hq, (—1) hay(—1) where
ha, is the cocharacter corresponding to the cor@btas in [I9]. That is, the subgroup
fixed by conjugation by this-1 has root system consisting of roetssuch thatw,, «) is
even. These roots form the natufal subsystem oEg and ourSL(2, C) - Spin(12 — a, a)

is a standard subgroup. The vector representation oflkisestricts to a sum of the
vector representation &fpin(12 — a, a) and the 4-dimensional vector representation of
SL(2, C) (which factors througl8O(3, 1)). In particular, this representation is real, so this
Dg subgroup is, according t6_[20, p. 161], isogenouS@i8, 8). But then the invariant
symmetric bilinear form on the vector representation hgsatiure 0 but restricts to have
sighaturet(12 — 2a) € {£6,+£10} and+2 on each summand, which cannot add up to
get 0. This is a contradiction, so far= 3 or 1, the real form ofg is neither split nor
compact.

Now suppose that botfiy’s have index 2. When we decompaseas in[11, we find
the representatioh 3 with positive multiplicity 4 by [5.5), which violates our pgthesis
on theSL(2, C) subgroup off. O

7. NO THEORY OFEVERYTHING IN A REAL FORM OF Eg

We now prove the second claim in TheorEml 1.3, namely that ezadiformE of Eg
contains no ToE subgroups. Supp@seontains a copy dfL(2, C) (soE is non-compact)
and a subgrougr satisfying (ToE1) and (ToE3). We will show that (ToE2) fails

The —1-eigenspace ifLie(E) is a real representation 8L.(2,C) - G. By Proposition
E1, G is contained in a copy d¥pin(12 — a,a) fora = 1, 3, or 5. As in the proof of
Propositiof &1, there is a representafioiof SL(2, C) x Spin(12 — a, a) defined oveiR
that is isomorphic to

2R1esSy) @ (1e2®S5-)

overC. Now G is contained in the maximal compact subgrougspfn(12 — a,a), i.e.,
Lie(G) is asubalgebraafo(11), s0(9) xs0(3), orso(7) xso(5). The restriction of the two
half-spin representations 8pin(12 — a, a) to the compact subalgebra are equivalznt [18,
p. 264], and we see that in each case the restrictignagernionic (To see this, one uses
the standard fact that the spin representatioso (¢ + 1) is real for¢ = 0,3 (mod 4) and
quaternionic fo¥ = 1,2 (mod 4).) That s, the restrictions &f , S_, and their complex
conjugates to the maximal compact subgroup are all equivédeerC), hence the same
is true for their further restrictions t@, and (ToEZ2) fails. d

Remark7.1 Itis worthwhile noting that, in each of the three cases, jitdssible to embed
Gsy in the centralizer, thus showing that (ToE1) is satisfiedie@isuch an embedding, a
simple computation verifies explicitly that, has a self-conjugate structure as a represen-
tation of Gsyr.

First considerSpin(11,1). There is an obvious embedding 6yt := Spin(10).
Under this embeddindy; decomposes as the direct sum of the two half-spinor represen
tations,i.e.as a generation and an anti-generation.

For Spin(7,5), there is an obvious embedding of the Pati-Salam grdupyr =
(Spin(6) x Spin(4))/(Z/2Z). Again, S, decomposes as the direct sum of a generation
and an anti-generation.
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Finally, Spin(3, 9) containgSU(3) x SU(2) x SU(2) x U(1))/(Z/67Z) as a subgroup.
Under this subgroup,
S+ - (3’ 27 2)1/6 D (g’ 27 2)—1/6 + (17 2; 2)—1/2 + (1a 27 2)1/2

where the subscript indicates th&1) weights, and the overall normalization is chosen
to agree with the physicists’ convention for the weightshef Standard Model'®(1)y .
Embedding theSU(2) of the Standard model in one of the tdJ(2)s, we obtain an
embedding ofGsy C Spin(3,9) where, againS,. has a self-conjugate structure as a
representation affsy;.

8. NO THEORY OFEVERYTHING IN COMPLEX Eg

We now complete the proof of Theoréml1.3 by showing that thezeno ToE subgroups
in the transfelE := R(Eg,c) of the complex Lie group of typEs.

8.1. First, recall the transfeR(G¢) of a complex groupg=c as described, e.g., ib[21,
§2.1.2]. Its complexification can be viewed@gs x G¢, where complex conjugation acts
via
(8.2) (9,9') = (. 9)-
One can viewR(G¢) as the subgroup of the complexification consisting of elemxed
by B2).

Now consider an inclusiop: SL(2,C) = R(SLa ¢) — R(Es,c). Complexifying, we
identify R(SLqa,c) x C with SLa ¢ x SLa ¢ and similarly forR(Esg ) and write outp as:
(8.3) ?(91,92) = (¢1(91)92(9g2), ¥1(91)¥2(g2))

for some homomorphisms;, ¢z, ¥1, 12 : SLac — Egc. As ¢ is defined overR, we
have:

d(91,92) = ¢(92,97) = (¥1(92)¥2(91), $1(52)P2(97))
and it follows thati1 (g1) = ¢2(g1) andys2(g2) = ¢1(g2). Conversely, given any two
homomorphisms;, ¢2: SLy ¢ — Eg ¢ (overC) with commuting images, the same equa-
tions define a homomorphisi SL(2,C) — R(Eg ¢) defined oveRR.
8.4. Plan of the proof. Now suppose that we have a subgréiig2, C) - G of R(Es c)
satisfying (ToE1) and (ToE3). Writ€ for the identity component of the centralizer of the
image of the mag¢:, ¢2): SLa ¢ x SLa.c — Es ¢ from (83). ClearlyG is contained in
the transfeR(C) of C. In each of the cases below, we verify that

(8.5) C is semisimple,

so the maximal compact subgroupRfC) is the compact real forr@r of C'. Furthermore,
in each of the cases below, we will observe that

(8.6) —1isin the Weyl group of”.

It follows that Cr is an inner form, hence every irreducible representatio@ois real
or quaternionic, hence every representatio@gfis self-conjugate. That is, (TOE2) fails,
which is the desired contradiction.

8.7. Case 1l:¢; or ¢ is trivial. Consider the easiest-to-understand case whek ¢-
is the zero map, say,. Thatis,¢ is the transfer of a homomorphisp : SLy ¢ — Es ¢,
which by Propositiofi4l4 has index 1 or 2.

If $1 has index 1, thed is simply connected of typE~, hencel[8)) and{d.6) hold. If
¢1 has index 2, then' is isogenous t&pin,; - by LemmdXll, and agaib(8.5) aid{8.6)
hold.
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8.8. Case 2ip; and ¢, are injections. Finally, we consider the case whete and¢, are
both injections. Again, (ToE3) and Propositionl4.4 implikat ¢; and ¢, have Dynkin
index 1 or 2.

If ¢1 and¢, both have index 1, then ov€rthis is the same embedding$its ¢ x SLa ¢
in Eg ¢ as the one in the proof of Propositibnle.1. The centraliZzes the standardg
subgroup ofts ¢.

If 1 andg, both have index 2, thes; x ¢» gives an embedding as in Proposition 5.4,
andC has Lie algebrap, ¢ x sp, ¢ of type B, x Ba. Note that (TOE3) fails in this case
by &.3).

Suppose finally thap, has index 1 an@- has index 2. We conjugate so thaf(sls) is
the copy ofsl from ExampldZ413, and (by LemniaB.4 for the centralizgg of ¢z (sl2))
we can takep, (sl2) to be a copy oél; generated by the highest rootSyjin, ;. Calculating
the weights of the representation of thig x sl oneg gives the following decomposition
into irreducibles:

| 1 2 3
1139 18 1
n 232 16 0
3]10 2 0

with the same notation aE{5.5). In particular, the x By subgroup ofSpin, 5 that cen-
tralizes the image ap; x ¢- is all of the identity componen®’ of the centralizer irEs.
Again {83) andI(816) hold. (Of cours€.(B.9) shows that @pfails anyway.)

This completes the proof of Theordmll.3. O

m

(8.9)

9. RELAXING (TOE3)

Technically,(m,n) = (2,3) and(3, 2) arepossiblein an interacting theory, but only in
the presence of local supersymmetry (i.e., in supergrévégries)[2R]. Lisi's framework
is not compatible with local supersymmetry, so we excludhslipossibility above. If we
relax (ToE3) by replacing it with

(TOE3)) Vig=Vi1=0andV,,, =0if m+n>6

then we still don't find anything further. More precisely, Wwave the following strength-
ening of Theorerf 113.

Theorem 9.1. There are no subgroup.(2, C) - G satisfying (ToE1), (TOE2), and (TOE3’)
in the (transfer of the) compldxg or any real form ofts.

Proof. Note that (TOE3’) still forces thatin the decompositiodéé(E), the representation
Vinn = 0if m > 3 orn > 3, so each of the twel; ¢ summands in the complexification
of SL(2, C) have index 1 or 2 by Propositign#.4. Looking back, we seewmaalready
proved the theorem for the transfer of the comgigxn §8.

Suppose we have &8IL(2,C) - G subgroup of a real fornk of Eg. Imitating the
proof in §4, we appeal to Propositidn $.1. We now have the additionssipdity that
the complexificatiorSLy ¢ x SLg ¢ of the SL(2, C) subgroup is such that bo8L; ¢’s
have index 2 as if3. The centralizer of such &1.(2, C) is a real form ofsp, ¢ x sp, ¢
by Propositio 5. When we decompaseas in[11, we findiz ; and %,Q'as in[(2.6.
As complex conjugation interchanges these two represensatit follows that complex
conjugation interchanges the twp, (. factors, i.e., the centralizer 8L.(2, C) has identity
component the transfet(Sp, ) of Sp, ¢. Its maximal compact subgroup is the compact
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form of Sp,  (also known asSpin(5)), all of whose irreducible representations are self-
conjugate. Therefore, (ToE2) fails. O

Remark9.2 As we have already mentioned, weakening (ToE3) to (ToE33ply consis-
tent in supergravity theories. In the case at hand, @ithx = Spin(5), we find

(9.3) Vo~ Vo3 =4, Vo1 >Via=4@16

where we have indicated the irreducible representatior$pof(5) by their dimensions.
Since the gravitinos transform nontrivially und@r,ax and, given their multiplicity, the
only consistent possibility would be a gaugat = 4 supergravity theory (for a recent
review of such theories, see [23]). Unfortunately, the oé¢he matter content (it suffices
to look atV5 1) is not compatible with\' = 4 supersymmetry. Even if it werey’ =

4 supersymmetry would, of course, necessitate that the yHemmon-chiral, making it
unsuitable as a candidate Theory of Everything.

10. CONCLUSION

In paragrapli2Zl6 above, we observed by an easy dimensior tttatmno proposed
Theory of Everything constructed using subgroups of a @ahf of Eg has a sufficient
number of weight vectors in the1-eigenspace to identify with all known fermions. The
proof of our Theorerl 113 was quite a bit more complicatedjttriso gives much more.
It shows that you cannot obtairchiral gauge theory foany ToE subgroupf E, whether
E is a real form or the complex form dfs. In particular, it is impossible to obtain even
the one-generation Standard Model in this fashion.
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