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Abstract. We study structure properties of reductive group schemes
defined over a local ring and splitting over its étale quadratic extension.
As an application we prove Serre–Grothendieck conjecture on rationally
trivial torsors over a local regular ring containing a field of characteristic
0 for group schemes of type F4 with trivial g3 invariant.
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1. Introduction

In the present paper we prove the Grothendieck-Serre conjecture on ra-
tionally trivial torsors for group schemes of type F4 whose generic fiber has
trivial g3 invariant. The Grothendieck-Serre conjecture [Gr58], [Gr68], [S58]
asserts that if R is a regular local ring and if G is a reductive group scheme
defined over R then a G-torsor over R is trivial if and only if its fiber at the
generic point of Spec (R) is trivial. In other words the kernel of a natural
map H1

ét(R,G) → H1
ét(K,G) where K is a quotient field of R is trivial.
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2 V. CHERNOUSOV

Many people contributed to this conjecture by considering various partic-
ular cases. If R is a discrete valuation ring the conjecture was proven by Y.
Nisnevich [N]. If R contains a field k and G is defined over k this is due to
J.-L. Colliot-Thélène, M. Ojanguren [CTO] when k is infinite and it is due to
M. S. Raghunathan [R94], [R95] when k is perfect. The case of tori was done
by J.-L. Colliot-Thélène and J.-L. Sansuc [CTS]. For certain simple simply
connected group of classical type the conjecture was proven by Ojanguren,
Panin, Suslin and Zainoulline [PS], [OP], [Z], [OPZ]. For a recent progress
on isotropic group schemes we refer to preprints [PSV], [P09], [PPS].

In the paper we deal with a still open case related to group schemes of type
F4. Remind that if G is a group of type F4 defined over a field K of charac-
teristic 6= 2, 3 one can associate (cf. [S93], [GMS03], [PetRac], [Ro]) cohomo-
logical invariants f3(G), f5(G) and g3(G) of G in H3(K,µ2), H

5(K,µ2) and
H3(K,Z/3Z) respectively. The group G can be viewed as the automorphism
group of a corresponding 27-dimensional Jordan algebra J . The invariant
g3(G) vanishes if and only if J is reduced, i.e. it has zero divisors. The main
result of the paper is the following.

1.1. Theorem. Let R be a regular local ring containing a field of charac-
teristic 0. Let G be a group scheme of type F4 over R such that its fiber at
the generic point of Spec (R) has trivial g3 invariant. Then the canonical
mapping H1

ét(R,G) → H1
ét(K,G) where K is a quotient field of R has trivial

kernel.

We remark that for a group scheme G of type F4 we have Aut (G) ≃ G,
so that by the twisting argument the above theorem is equivalent to the
following:

1.2. Theorem. Let R be as above and let G0 be a split group scheme of type
F4 over R. Let H1

ét(R,G0){g3=0} ⊂ H1
ét(R,G0) be the subset consisting of

isomorphism classes [T ] of G0-torsors such that the corresponding twisted
group (T G0)K has trivial g3 invariant. Then a canonical mapping

H1
ét(R,G0){g3=0} → H1

ét(K,G0)

is injective.

The characteristic restriction in the theorem is due to the fact that we use
the main result in [P03] on rationally isotropic quadratic spaces which was
proven in characteristic zero only (the resolution of singularities is involved
in that proof). We remark that if the Panin’s result is true in full generality
(except probably characteristic 2 case) then our arguments can be easily
modify in such way that the theorem holds for all regular local rings where
2 is invertible1.

The proof of the theorem heavily depends on the fact that group schemes
of type F4 with trivial g3 invariant are split by an étale quadratic extension

1I. Panin has informed the author recently that it suffices to require in his theorem
that R contains an infinite perfect field.
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of the ground ring R. This is why the main body of the paper consists of
studying structure properties of simple group schemes of an arbitrary type
over R (resp. K) splitting by an étale quadratic extension S/R (resp. L/K)
which is of independent interest.

We show that the structure of such group schemes is completely deter-
mined by a finite family of units in R which we call structure constants of
G. These constants depend on a chosen maximal torus T ⊂ G defined over
R and splitting over S. Such a torus is not unique in G. Giving two tori T
and T ′ we find formulas which express structure constants of G related to
T in terms of that of related to T ′ and this leads us quickly to the proof of
the main theorem.

Of course we are using a group point view. It seems plausible that our
proof can be carried over in terms of Jordan algebras and their trace qua-
dratic forms, but we do not try to do it here.

The paper is divided into four parts. We begin by introducing notation,
terminology that are used throughout the paper as well as by reminding
properties of algebraic groups defined over a field and splitting by a qua-
dratic field extension. This is followed by two sections on explicit formulas
for cohomological invariants f3 and f5 in terms of structure constants for
groups of type F4 and their classification. In the third part of the paper we
study structure properties of group schemes splitting by an étale quadratic
extension of the ground ring. The proof of the main theorem is the content
of the last section.

2. Notation and lemma on representability of units

Throughout the paper R denotes a ring where 2 is invertible. Also, all
fields considered in the paper have characteristic 6= 2.

We let G0 denote a split reductive group scheme over R and we let T0 ⊂ G0

denote a maximal split torus over R. We use standard terminology related
to algebraic groups over rings. For the definition of reductive group schemes
(and in particular split reductive group schemes), maximal tori, root systems
of split group schemes and their properties we refer to [SGA3]. If G is a
reductive algebraic group and T ⊂ G is a maximal torus, we let Σ(G,T )
denote the root system of G with respect to T .

We number the simple roots of exceptional groups as in [Bourb68].
If G0 is a K-split simple algebraic group and T0 ⊂ G0 is a maximal K-

split torus we denote by c ∈ Aut(G0) an element such that c2 = 1 and
c(t) = t−1 for every t ∈ T0 (it is known that such an automorphism exists,
see e.g. [DG], Exp. XXIV, Prop. 3.16.2, p. 355). If G0 has type D4 or F4

such an element can be chosen inside the normalizer NG0
(T0) of T0).

If R is a local ring with the maximal ideal M we let k = R = R/M .
Similarly, if V is a free module on rank n over R we let V = V ⊗RR = V ⊗Rk
and for a vector v ∈ V we set v = v ⊗ 1. If R is a regular local ring it is
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a unique factorization domain ([Ma, Theorem 48, page 142]). Throughout
the paper a quotient field of R will be denoted by K.

Let f =
∑n

i=1 aix
2
i be a quadratic form over R where a1, . . . , an ∈ R×

given on a free module V . If I ⊂ {1, . . . , n} is a subset we denote by
fI =

∑

i∈I aix
2
i the corresponding subform of f . If v = (v1, . . . , vn) ∈ V we

set fI(v) =
∑

i∈I aiv
2
i . Finally, let g =

∏

I fi where the product is taken
over all subsets of {1, . . . , n}. For a vector v we set g(v) =

∏

I fI(v).

2.1. Lemma. Let f and g be as above. Assume k is infinite. Let a ∈ R× be
a unit such that f(v) = a for some vector v ∈ V . Then there exists a vector
u ∈ V such that f(u) = a and g(u) is a unit.

Proof. If n = 1, v has the required properties. Hence me may assume n ≥ 2.
If w ∈ V is a vector whose length f(w) with respect to f is a unit we denote
by τw an orthogonal symmetry with respect to w given by

τw(x) = x− 2f(x,w)f(w)−1w

for all vectors x in V . Since orthogonal symmetries preserve length of vec-
tors it suffices to find vectors w1, . . . , ws ∈ V such that g(τw1

· · · τws
(v))

is a unit. For that, in turn, it suffices to find w1, . . . , ws ∈ V such that
g(τw1

· · · τws
(v)) 6= 0.

It follows that we can pass to a vector space V over k. Consider a quadric

Qa = {x ∈ V | f(x) = a }
defined over k. We have v ∈ Qa(k), hence Qa(k) 6= ∅ implying Qa is a
rational variety over k.

Let U ⊂ V be an open subset given by g(x) 6= 0. It is easy to see that
Qa ∩ U 6= ∅. Since k is infinite, k-points of Qa are dense in Qa. Hence
Qa(k)∩U is nonempty. Take a vector w ∈ Qa(k)∩U . Since the orthogonal
group O(f) acts transitively on vectors of Qa there exists s ∈ O(f) such that
w = s(v). It remains to note that orthogonal symmetries generate O(f). �

3. Algebraic groups splitting by quadratic field extensions

The aim of this section is to remind structure properties of a simple
simply connected algebraic group G defined over a field K of characteristic
6= 2 and splitting over its quadratic extension L/K, say L = K(

√
d). There

is nothing special in type F4 and we will assume in this section that G is of
an arbitrary type of rank n. The only technical restriction (which we need
later on to simplify the exposition of the material) relates to the Weyl group
W of G. Namely, we will assume that W contains −1, i.e. an element which
takes an arbitrary root α into −α. For the proofs of all results contained in
this section without proofs we refer to [Ch].

Let τ be the nontrivial automorphism of L/K. If BL ⊂ GL is a Borel
subgroup over L in GL in generic position then BL∩τ(BL) = T is a maximal
torus in GL. Clearly, it is defined over K and splitting over L (because it is
contained in BL and all tori in BL are L-split). In many cases (for instance,
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for a group of type F4 which is the main target of this paper) the torus T is
K-anisotropic. Indeed, if GK is K-anisotropic so is T and there is nothing
to prove. If GK is K-isotropic then one needs to make the above mentioned
additional assumption on the Weyl group of G which holds for type F4.

3.1. Lemma. Assume that −1 ∈W . Then T is anisotropic over K.

Proof. The Galois group of L/K acts in a natural way on characters of T
and hence on the root system Σ = Σ(GK , T ) of GK with respect to T .
Thus we have a natural embedding Gal (L/F ) →֒ W which allows us to
view τ as an element of W . Since the intersection of two Borel subgroups
BL and τ(BL) is a maximal torus in GL, one of them, say τ(BL), is the
opposite Borel subgroup to the second one BL with respect to the ordering
on Σ determined by the pair (T, B). One knows that W contains a unique
element which takes BL to τ(BL) = B−

L . Since −1 ∈ W such an element is
necessary −1. Of course this implies τ = −1, hence τ acts on characters of
T as −1. In particular T is K-anisotropic. �

Our Borel subgroup BL determines an ordering of the root system Σ of
G, hence the system of simple roots Π = {α1, . . . , αn}. Let Σ+ (resp. Σ−)
be the set of positive (resp. negative) roots. Let us choose a Chevalley basis
[St]

(3.2) {Hα1
, . . . Hαn

, Xα, α ∈ Σ}
in the Lie algebra gL = L(GL) of GL corresponding to the pair (TL, BL).
This basis is unique up to signs and automorphisms of gL which preserve
BL and TL (see [St], §1, Remark 1).

Since GL is a Chevalley group over L, its L-structure as an abstract group,
i.e. generators and relations, is well known. For more details and proofs of
all standard facts about G(L) used in this paper we refer to [St]. Recall that
G(L) is generated by the so-called root subgroups Uα = 〈xα(u) | u ∈ L〉,
where α ∈ Σ and T is generated by the one-parameter subgroups

Tα = T ∩Gα = 〈hα(t) | t ∈ K∗ 〉.
Here Gα is the subgroup generated by U±α and hα : Gm,L → TL is the
corresponding cocharacter (coroot) of T whose image is Tα. Furthermore,
since GL is a simply connected group, the following relations hold in GL (cf.
[St], Lemma 28 b), Lemma 20 c) ):

(i) T ≃ Tα1
× · · · × Tαn

;

(ii) for any two roots α, β ∈ Σ and t, u ∈ L we have

hα(t)xβ(u)hα(t)−1 = xβ(t〈β,α〉u)

where 〈β, α〉 = 2 (β, α)/(α,α) and

(3.3) hα(t)Xβhα(t)−1 = t〈β,α〉Xβ
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If ∆ ⊂ Σ+ is a subset, we let G∆ denote the subgroup generated by
U±α, α ∈ ∆.

We shall now describe explicitly the K-structure of G, i.e. the action of
τ on the generators {xα(u), α ∈ Σ} of GL. As we already know τ(α) = −α
for any α ∈ Σ and this implies Tα ≃ R

(1)
L/K(Gm,L).

Let α ∈ Σ. Since τ(α) = −α there exists a constant cα ∈ L× such that
τ(Xα) = cαX−α. It follows that the action of τ on G(L) is determined
completely by the family {cα, α ∈ Σ}. We call these constants by structure
constants of G with respect to T and Chevalley basis (3.2). Of course,
they depend on the choice of T and a Chevalley basis. We summarize their
properties in the following two lemmas (for their proofs we refer to [Ch]).

3.4. Lemma. Let α ∈ Σ. Then we have

(i) c−α = c−1
α ;

(ii) cα ∈ K×;

(iii) if β ∈ Σ is a root such that α + β ∈ Σ, then cα+β = −cα cβ ; in
particular, the family {cα, α ∈ Σ} is determined completely by its subfamily
{cα1

, . . . , cαn
}.

3.5. Lemma. (i) τ [xα(u) ] = x−α(cατ(u)) for any u ∈ L and any α ∈ Σ;

(ii) the subgroup Gα of G is isomorphic to SL (1,D) where D is a quaternion
algebra over K of the form D = (d, cα).

4. Moving tori

The family {cα, α ∈ Σ} determining the action of τ on G(L) depends on
a chosen Borel subgroup B and the corresponding Chevalley basis. Given
another Borel subgroup and Chevalley basis we get another family of con-
stants and we now are going to describe the relation between the old ones
and the new ones.

Let B′ ⊂ G be a Borel subgroup over L such that the intersection
T ′ = B′ ∩ τ(B′) is a maximal K-anisotropic torus. Clearly both tori T
and T ′ are isomorphic over K (because both of them are isomorphic to

the direct product of n copies of R
(1)
L/K(Gm,L)). Furthermore, there exists

a K-isomorphism λ : T → T ′ preserving positive roots, i.e. which takes
(Σ′)+ = Σ(G,T ′)+ into Σ+ = Σ(G,T )+. Any such isomorphism can be
extended to an inner automorphism

ig : G −→ G, x→ g x g−1

for some g ∈ G(Ks), where Ks is a separable closure of K, which takes B
into B′ ( see [Hum], Theorem 32.1 ). Note that g is not unique since for any
t ∈ T (Ks) the inner conjugation by gt also extends λ and it takes B into B′.

4.1. Lemma. The element g can be chosen in G(L).
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Proof. Take an arbitrary g′ with the above properties. Since the restriction
ig′ |T is a K-defined isomorphism, we have

tσ = (g′)−1+σ ∈ T (Ks)

for any σ ∈ Gal (Ks/F ). The family {tσ, σ ∈ Gal (Ks/F )} determines
a cocycle ξ = (tσ) ∈ Z1(K,T ). Since T splits over L, resL(ξ) viewed
as a cocycle in T is trivial, by Hilbert’s Theorem 90. It follows there is
z ∈ T (Ks) such that tσ = z1−σ , σ ∈ Gal (Ks/L). Then g = g′z is stable
under Gal (Ks/L) implying g ∈ G(L) and clearly gBg−1 = B′. �

Let g be an element from Lemma 4.1 and let t = g−1+τ . Since t ∈ T (L),
it can be written as a product t = hα1

(t1) · · · hαn
(tn), where t1, . . . , tn ∈ L×

are some parameters. Using the equality t τ(t) = 1 and the fact that τ
acts on characters of T as multiplication by −1 one can easily see that
t1, . . . , tn ∈ K×.

The set

(4.2) {H ′
α1

= gHα1
g−1, . . . ,H ′

αn
= gHαn

g−1, X ′
α = gXαg

−1, α ∈ Σ}
is a Chevalley basis related to the pair (T ′, B′). Let {c′α, α ∈ Σ} be the
corresponding structure constants of G with restect to T ′ and Chevalley
basis (4.2).

4.3. Lemma. For each α ∈ Σ one has c′α = t
−〈α,α1〉
1 · · · t−〈α,αn〉

n · cα.
Proof. Apply τ to the equality X ′

α = gXαg
−1 and use relation (3.3). �

Our element g constructed in Lemma 4.1 has the property g−1+τ ∈ T (L).
It turns out that an arbitrary g ∈ G(L) with this property gives rise to a
new pair (B′, T ′) and hence to new structure constants {c′α}.
4.4. Lemma. Let g ∈ G(L) be an element such that t = g−1+τ ∈ T (L). Then
T ′ = gTg−1 is a K-defined maximal torus splitting over L and the restric-
tion of the inner automorphism ig to T is a K-defined isomorphism. The
structure constants {c′α} related to T ′ are given by the formulas in Lemma
4.3.

Proof. This is clear. �

4.5. Example. Let G,T be as above and let Σ = Σ(G,T ). Take an element

(4.6) g = xα

(

τ(v)

1 − cαvτ(v)

)

x−α(cαv)

where α ∈ Σ is an arbitrary root and v ∈ L× is such that 1 − cαvτ(v) 6= 0.
One easily checks that

g1−τ = hα

(

1

1 − cαvτ(v)

)

and hence g gives rise to a new torus T ′ = gTg−1 and to a new structure
constants.
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In what follows, we say that we apply an elementary transformation of T
with respect to a root α and the parameter v ∈ L× when we move from T
to T ′ = g−1Tg where g be given by (4.6).

4.7. Remark. The main property of an elementary transformation with
respect to a root α is that the new structure constant c′β with respect to

T ′ doesn’t change (up to squares) if β is orthogonal to α or 〈β, α〉 = ±2
and it is equal to (1 − cαvτ(v))cβ (up to squares) if 〈β, α〉 = ±1. Thus
in the context of algebraic groups this an analogue of an elementary chain
equivalence of quadratic forms.

4.8. Remark. An arbitrary reduced norm x ∈ NrdD in the quaternion
algebra D = (d, cα) can be written as a product of two elements of the form
1− cαvτ(v), hence in the case 〈β, α〉 = ±1 we can change cβ by any reduced
norm in D.

While considering cohomological invariants of G of type F4 sometimes it
is convenient to consider G as a twisting group. Let G be the corresponding
adjoint group. Note that groups of type F4 are simply connected and adjoint
so that for them we have G = G. Let G0 be a K-split adjoint group of the
same type as G and let T 0 ⊂ G0 be a maximal K-split torus. Remind that
c denotes an automorphism of G0 of order 2 such that ctc−1 = t−1 for every
t ∈ T 0. We assume additionally that c ∈ NG0

(T 0) (this is the case for types

D4 and F4 considered below).

4.9. Lemma. Let t ∈ T 0(K) and let aτ = ct. Then ξ = (aτ ) is a cocycle in
Z1(L/K,G0(L)).

Proof. We need to check that aττ(aτ ) = 1. Indeed,

aττ(aτ ) = ct τ(ct) = ctct = t−1t = 1

as required. �

For further reference we note that every cocycle η ∈ Z1(K,G0) acts by
inner conjugation on both G0 and G0 and hence we can twist ηG0,

ηG0 both
groups.

Since G0 is adjoint the character group of T 0 is generated by simple roots
{α1, . . . , αn} of the root system Σ = Σ(G0, T 0) of G0 with respect to T 0.
Choose a decomposition T 0 = Gm×· · ·×Gm such that the canonical embed-
dings πi : Gm → T 0 onto the ith factor, i = 1, . . . , n, are the cocharacters
dual to α1, . . . , αn.

4.10. Proposition. Let G be as above with structure constants cα1
, . . . , cαn

.
Let ξ = (aτ ) where aτ = c

∏

i πi(cαi
). Then the twisted group ξG0 is isomor-

phic to G over K.

Proof. Since the cocharacters π1, . . . , πn are dual to the roots α1, . . . , αn it
is easy to see that the twisted group ξG0 has the same structure constants
as G. It follows that the Lie algebras L(G) and L(ξG0) of G and ξG0
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have the same Galois descent data. This yields L(G) ≃ L(ξG0) and as a
consequence we obtain that their automorphism groups are isomorphic over
K as well. �

4.11. Remark. Assume that R is a domain where 2 is invertible with a
field of fractions K and G0 is a split group scheme over R. Let S = R(

√
d)

be an étale quadratic extension of R where d is a unit in R. Let τ be the
generator of Gal (S/R). Assume that cα1

, . . . , cαn
∈ R×. Then we may view

ξ = (aτ ) where aτ = c
∏

i πi(cαi
) as a cocycle in Z1(S/R,G0(S)) and hence

the twisted group ξG0 is a group scheme over R whose fiber at the generic
point of Spec (R) is isomorphic to GK .

As an application of the above proposition we get

4.12. Lemma. Let G and G′ be groups over K and splitting over L with
structure constants {cα1

, . . . , cαn
} and {cα1

u1, . . . , cαn
un} where u1, . . . , un

are in NL/K(L×). Then G and G′ are isomorphic over K.

Proof. Let ui = NL/K(vi). By Proposition 4.10 it follows that G and G′ are
twisted forms of G0 by means of cocycles ξ = (aτ ) and ξ′ = (a′τ ) with coeffi-
cients in G0 where aτ = c

∏

i πi(cαi
) and a′τ = c

∏

i πi(cαi
ui). Furthermore,

we have

aτ =

(

∏

i

πi((vi)
−1)

)

a′τ

(

∏

i

πi((vi)
−1)−τ

)

implying ξ is equivalent to ξ′. �

The statement of the lemma can be equivalently reformulated as follows.

4.13. Corollary. Let T ⊂ G be a maximal torus with the structure constants
{cα1

, . . . , cαn
} and let u1, . . . , un ∈ NL/K(L×). Then G contains a maximal

torus T ′ whose structure constants are {cα1
u1, . . . , cαn

un}.

5. Strongly inner forms of type D4

For later use we need some classification results on strongly inner forms of
type 1D4; in other words we need an explicit description of the setH1(K,G0)
where G0 is a simple simply connected group over a field K of type D4.

For an arbitrary cocycle ξ′ ∈ Z1(K,G0) the twisted group G = ξ′G0 is
isomorphic to Spin(f) where f is in I3. We may assume that f represents
1. Hence by dimension consideration f is a 3-fold Pfister form over K and
as a consequence we obtain G is splitting over a quadratic extension L/K

of K, say L = K(
√
d). By Proposition 4.10, the image of ξ′ in H1(K,G0)

up to equivalence equals to the image of ξ = (aτ ) ∈ Z1(L/K,NG0
(T0)(L))

where aτ = chα1
(u1) · · · hα4

(u4) for some u1, . . . , u4 ∈ K×. Using an obvious
twisting argument we find that the classes of ξ and ξ′ are equal up to central
cocycles.

The center Z of G0 is isomorphic to µ2 × µ2, hence it contains three
elements of order 2. They give rise to three homomorphisms φi : G0 →
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SO(f0) where i = 1, 2, 3 and f0 is a split 8-dimensional quadratic form. The
images φi(ξ), i = 1, 2, 3, of ξ in Z1(K,SO(f0)) correspond to three quadratic
form f1, f2, f3 and we are going to give an explicit description of fi in terms
of the parameters u1, u2, u3, u4 and d.

One easily checks that the center of G0 is generated by hα1
(−1)hα3

(−1)
and hα1

(−1)hα4
(−1). Let us rewrite the cocycle ξ = (aτ ) in the form

aτ = chα1
(v1)hα2

(v2)z1z2

where v1 = u1u
−1
3 u−1

4 , v2 = u2 and

z1 = hα1
(u3)hα3

(u3), z2 = hα1
(u4)hα4

(u4).

Using relation (3.3) we find that the structure constants of G with respect to
the twisted torus T = ξT0 up to squares are cα2

= v1 and cα1
= cα3

= cα4
=

v2. Also, following [ChS] we find that up to numbering we have f1 = u3f ,
f2 = u4f and f3 = u3u4f where

f = 〈〈 d, v1, v2 〉〉 = 〈〈 d, cα1
, cα2

〉〉 ;

in particular G is split over a field extension E/K if and only if so is fE.
We are now going to show that we don’t change the equivalence class [ξ]

if we multiply the parameters u3, u4 in the expression for ξ by elements in
K× represented by f . Let V, V1, V2, V3 be 8-dimensional vector space over
K equipped with the quadratic forms f, f1, f2, f3.

5.1. Proposition. Let w1, w2 ∈ V be two nonisotropic vectors and let a =
f(w1), b = f(w2). Let ξ′ = (a′τ ) where a′τ = chα1

(v1)hα2
(v2)z

′
1z

′
2 and

z′1 = hα1
(au3)hα3

(au3), z′2 = hα1
(bu4)hα4

(bu4).

Then ξ′ is equivalent to ξ.

Proof. We have the canonical central embeddings ψ1 : µ2 → G0 given by
−1 → hα1

(−1)hα3
(−1) and ψ2 : µ2 → G0 given by −1 → hα1

(−1)hα4
(−1).

Up to numbering we may assume that

ξG0/ψ1(µ2) ≃ SO(f1) and ξG0/ψ2(µ2) ≃ SO(f2).

We also have a canonical bijection H1(K,G0) → H1(K, ξG0) (translation
by ξ) under which ξ′ goes to η = (hα1

(a)hα3
(a)hα1

(b)hα4
(b)).

Note that η is the product of two cocycles η1 = (hα1
(a)hα3

(a)) and
η2 = (hα1

(b)hα4
(b)) first of which being in the image of ψ1 : H1(K,µ2) →

H1(K, ξG0) and the second one being to in the image of ψ2 : H1(K,µ2) →
H1(K, ξG0). If we identify H1(K,µ2) = K×/(K×)2 then it is known that
Kerψ1 (resp. Kerψ2) consists of spinor norms of f1 (resp. f2). Thus the
statement of the Proposition is amount to saying that a, b are spinor norms
for the twisted group G = ξG0 with respect to the quadratic forms f1 and
f2 respectively. It remains to remind that the subgroup in K× consisting of
spinor norms is generated by fi(s1)fi(s2) where s1, s2 ∈ Vi are nonisotropic
vectors; so the result follows. �
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5.2. Remark. Assume that R and S are as in Remark 4.11. Take a co-
cycle ξ = (aτ ) in Z1(S/R,G0(S)) given by aτ = chα1

(u1) · · · hα4
(u4) where

u1, . . . , u4 ∈ R×. Then arguing literally verbatim we find that the twisted
group G = ξG0 is isomorphic to Spin(f) where f is a 3-fold Pfister form
given by f = 〈〈 d, u2, u1u3u4 〉〉 and that for all units a, b ∈ R× represented
by f the cocycle ξ′ from Proposition 5.1 is equivalent to ξ.

5.3. Proposition. Let G be as above and let f = 〈〈 d, cα1
, cα2

〉〉 be the
corresponding 3-fold Pfister form. Assume that f has another presentation
f = 〈〈 d, a, b 〉〉 over K. Then there exists a maximal torus T ′ ⊂ G defined
over K and splitting over L such that structure constants of G with respect
to T ′ (up to squares) are c′α1

= a and c′α2
= b.

Proof. We construct a sequence of elementary transformations with respect
to the roots α1 and α2 such that at the end we arrive to a torus with the
required structure constants. Remind that applying elementary transfor-
mation with respect to α1 (resp. α2) we do not change cα1

(resp. cα2
)

modulo squares and we multiply cα2
(resp. cα1

) by a reduced norm from the
quaternion algebra (d, cα1

) (resp. (d, cα2
)).

By Witt cancelation we may write a in the form a = w1cα1
+ w2cα2

−
w3cα1

cα2
where w1, w2, w3 ∈ NL/K(L×). By Corollary 4.13, passing to an-

other maximal torus and Chevalley basis (if necessary) we may assume with-
out loss of generality that w1 = w2 = 1 and hence we may assume that a is
of the form a = cα1

(1 − w3cα2
) + cα2

where w3 is still in NL/K(L×).
If 1 − w3cα2

= 0 then a = cα2
and we pass to the last paragraph of the

proof. Otherwise applying a proper elementary transformation with respect
to α2 we pass to a new torus with structure constants c′α1

= cα1
(1 −w3cα2

)
and c′α2

= cα2
. Thus abusing notation without loss of generality we may

assume

a = cα1
+ cα2

= cα1
(1 − (−cα1

)−1cα2
).

Applying again a proper elementary transformation with respect to α1 we
can pass to a torus whose second structure constant is (−cα1

)−1cα2
, so that

we may assume a = cα1
(1 − cα2

). Lastly, applying an elementary transfor-
mation with respect to α2 we pass to a torus such that a = cα1

.
We finally observe that from

〈〈 d, cα1
, cα2

〉〉 = 〈〈 d, a, b 〉〉 = 〈〈 d, cα1
, b 〉〉

it follows that b is of the form b = wcα2
where w ∈ Nrd (d, cα1

). So a proper
elementary transformation with respect to α1 completes the proof. �

6. Alternative formulas for f3 and f5 invariants

We are going to apply the previous technique to produce explicit formulas
for the f3 and f5 invariants of a group G of type F4 over a field K of char-
acteristic 6= 2 with trivial g3 invariant. Recall (cf. [S93], [GMS03], [PetRac])
that given such G one can associate the cohomological invariants f3(G) ∈
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H3(K,µ2) and f5(G) ∈ H5(K,µ2) with the following properties (cf. [Sp],
[Ra]):

(a) The group G is split over a field extension E/K if and only if f3(G) is
trivial over E;

(b) The group G is isotropic over a field extension E/K if and only if f5(G)
is trivial over E.

These two invariants f3, f5 are symbols given in terms of the trace qua-
dratic form of the Jordan algebra J corresponding to G and hence we may
associate to them the 3-fold and 5-fold Pfister forms. Abusing notation we
denote these Pfister forms by the same symbols f3(G) and f5(G). It is well
known that they are completely classify groups of type F4 with trivial g3
invariant (see [Sp], [S93]) and we would like to produce explicit formulas of
f3(G) and f5(G) in group terms only in order to generalize them later on to
the case of local rings.

It follows from (a) that our group G is splitting by a quadratic extension.

Indeed, if f3(G) = (d)∪ (a)∪ (b) then passing to L = K(
√
d) we get GL has

trivial f3 invariant and as a consequence G is L-split by property (a).
Let T ⊂ G be a maximal torus defined over K and splitting over L.

Fix a Chevalley basis of the Lie algebra g of G with respect to T and let
cα1

, . . . , cα4
be the corresponding structure constants of G.

6.1. Theorem. One has f3(G) = (d) ∪ (cα1
) ∪ (cα2

).

Proof. Let f = 〈〈 d, cα1
, cα2

〉〉 and let E be the function field of f . Remind
that two n-fold Pfister forms are isomorphic over a ground field if and only if
one of them is hyperbolic over the function field of the second one. Applying
(a) and taking into consideration that f3(G) is a 3-Pfister form we see that
for the proof it suffices to show that G is split over E.

Let G0 be a split group of type F4 over E and let T0 ⊂ G0 be a maximal
E-split torus. By Proposition 4.10 there exist u1, . . . , u4 ∈ E× such that
GE is a twist of G0 by a cocycle ξ = (aτ ) where aτ = ct and t =

∏

hαi
(ui).

We now note that a subgroup H0 in G0 generated by the long roots of
Σ = Σ(G0, T0) is a simple simply connected group of type D4 stable with
respect to conjugation by aτ , so that its twist H is a subgroup in GE of
type D4. A basis of the root system of H is given in the proposition below.
Looking at this basis and the corresponding structure constants of H we
find with the use of results in Section 5 that H ≃ Spin(fE). Hence H is
split over E implying GE is E-split as well. �

The following proposition shows that the structure constants cα3
are cα4

of G are well defined modulo values of f = f3(G) = 〈〈 d, cα1
, cα2

〉〉.
6.2. Proposition. Let a, b ∈ K× be represented by f over K. Then there
exists a maximal torus T ′ ⊂ G defined over K and splitting over L such that
modulo squares G has structure constants cα1

, cα2
, acα3

, bcα4
with respect to

T ′.
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Proof. We may view G as a twisted group ξG0 where ξ = (aτ ), aτ =

c
∏4

i=1 hαi
(ui) and u1, . . . , u4 ∈ K×. Looking at the tables in [Bourb68]

we find that the subroot system in Σ(G0, T0) generated by the long roots
has type D4 with a basis

β1 = −ǫ1 − ǫ2, β2 = α1, β3 = α2, β4 = ǫ3 + ǫ4.

Since ǫ3 + ǫ4 = α2 + 2α3 and ǫ1 + ǫ2 = 2α2 + 3α2 + 4α3 + 2α4, it follows
from relations in Chevalley groups that

(6.3) hǫ3+ǫ4(u) = hα2
(u)hα3

(u)

and

(6.4) hǫ1+ǫ2(u) = hα1
(u2)hα2

(u3)hα3
(u2)hα4

(u)

for all parameters u ∈ L×.
The relations (6.3) and (6.4) shows that aτ can be rewritten in the form

(6.5) aτ = chα1
(v1)hα2

(v2) [hǫ1+ǫ2(v3)hα2
(v3)] [hǫ3+ǫ4(v4)hα2

(v4)]

where v1, v2, v3, v4 ∈ K×. Using (3.3) we easily find that modulo squares in
K× one has cα3

= v2v3 and cα4
= v4 and cα1

, cα2
don’t depend on v3, v4

modulo squares. According to Proposition 5.1 if multiply the parameters
v3, v4 in the expression (6.5) by a, b respectively we obtain a cocycle equiv-
alent to ξ, so the result follows. �

6.6. Theorem. One has f5(G) = (d) ∪ (cα1
) ∪ (cα2

) ∪ (cα3
) ∪ (cα4

).

Proof. Arguing as in Theorem 6.1 and using (b) we may assume that the
quadratic form g = 〈〈 d, cα1

, cα2
, cα3

, cα4
〉〉 is split and we have to prove that

G is isotropic.
Since g is split we may write cα4

in the form

(6.7) cα4
= a−1(1 − bcα3

)

where a, b are represented by f = 〈〈 d, cα1
, cα2

〉〉. Our aim is to pass to
a new torus T ′ ⊂ G defined over K and splitting over L such that a new
structure constant c′α4

related to T ′ is equal to 1 modulo squares. The last
would imply that the corresponding subgroup Gα4

of G is isomorphic to SL2

by Lemma 3.5 (ii) and this would show that G is isotropic as required.
By Proposition 6.2 there exists a maximal torus T ′ in G such that two

last structure constants related to T ′ are c′α3
= bcα3

and c′α4
= acα4

. Then
by (6.7) we have c′α4

= 1−c′α3
. Applying a proper elementary transformation

with respect to α3 we pass to the third torus T ′′ for which c′′α4
= 1 modulo

squares and we are done. �

7. Classification of groups of type F4 with trivial g3 invariant

The theorem below is due to T. Springer [Sp]. In this section we produce
an alternative proof which can be easily adjusted to the case of local rings.
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7.1. Theorem. Let G0 be a split group of type F4 over a field K. A mapping

H1
ét(K,G0){g3=0} → H3(K,µ2) ×H5(K,µ2)

given by G→ (f3(G), f5(G)) is injective.

We need the following preliminary result.

7.2. Proposition. Let G be a group of type F4 defined over K and splitting
over L with structure constants cα1

, . . . , cα4
with respect to a torus T . Let

a ∈ K× be represented by g = 〈〈 d, cα1
, cα2

, cα3
〉〉 over K. Then there is a

maximal torus T ′ ⊂ G such that the corresponding structure constants are
cα1

, cα2
, cα3

, acα4
modulo squares.

Proof. Write a in the form a = a1(1 − a2cα3
) where a1, a2 are represented

by f = 〈〈 d, cα1
, cα2

〉〉. By Proposition 6.2 the structure constants cα3
and

cα4
are well defined modulo values of f . Hence we may pass to another

maximal torus in G such that the first and the second structure constants
are the same but the third structure constant is a2cα3

and the last one is
a1cα4

. Thus without loss of generality we may assume that a2 = 1 and a is
of the form a = 1 − cα3

. Since 1 − cα3
is a reduced norm in the quaternion

algebra (d, cα3
) a proper elementary transformation with respect to α3 lead

us to a torus whose first three structure constants are the same modulo
squares and the last one is (1 − cα3

)cα4
. �

Proof of Theorem 7.1. Let G,G′ be two groups of type F4 over K such that
f3(G) = f3(G

′) and f5(G) = f5(G
′). Choose a quadratic extension L/K

splitting f3(G). It splits both G and G′. Our strategy is to show that G,G′

contain maximal tori defined over K and splitting over L with the same
structure constants.

Choose arbitrary maximal tori T ⊂ G, T ′ ⊂ G′ defined over K and split-
ting over L. Let cα1

, . . . , cα4
and c′α1

, . . . , c′α4
be the corresponding struc-

ture constants. As we know, G,G′ contain subgroups H,H ′ of type D4

over K generated by the long roots. By Theorem 6.1 we have f3(G) =
(d) ∪ (cα1

) ∪ (cα2
) and f3(G

′) = (d) ∪ (c′α1
) ∪ (c′α2

), hence

〈〈 d, cα1
, cα2

〉〉 = 〈〈 d, c′α1
, c′α2

〉〉.
Then according to Proposition 5.3 applied to H ′ and f = 〈〈 d, cα1

, cα2
〉〉 we

may assume without loss of generality that cα1
= c′α1

and cα2
= c′α2

.
We next show that up to choice of maximal tori in G and G′ we also may

assume that cα3
= c′α3

. Since f5(G) = f5(G
′) we get

(7.3) 〈〈 d, cα1
, cα2

, cα3
, cα4

〉〉 = 〈〈 d, cα1
, cα2

, c′α3
, c′α4

〉〉.
By Witt cancelation we can write c′α3

in the form c′α3
= a1cα3

+ a2cα4
−

a3cα3
cα4

where a1, a2, a3 are values of f . By Proposition 6.2 we may assume
without loss of generality that a1 = a2 = 1. Arguing as in Proposition 5.3
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we may pass to another maximal torus in G′ such that the corresponding
structure constants are

c′α1
= cα1

, c′α2
= cα2

, c′α3
= cα3

.

Finally, from (7.3) it follows that c′α4
= acα4

for some a ∈ K× represented
by g = 〈〈 d, cα1

, cα2
, cα3

〉〉. Application of Proposition 7.2 completes the
proof. �

8. Group schemes splitting by étale quadratic extensions

We now pass to a simple simply connected group scheme G of an arbitrary
type of rank n defined over a local ring R where 2 is invertible and splitting
by an étale quadratic extension S = R(

√
u) ≃ R[t]/(t2 − u) of R where

u ∈ R×. We assume that R is a domain with a quotient field K and with
a residue field k and we assume u is not square in K×. We also denote
L = S ⊗R K and l = S ⊗R k. Abusing notation we denote the nontrivial
automorphisms of S/R, L/K and l/k by the same letter τ .

Let g be the Lie algebra of G. As usual we set

gS = g ⊗R S, gK = g ⊗R K, gL = g ⊗R L

and
g = gk = g ⊗R k, gS = gl = gS ⊗S l.

Let bS be a Borel subalgebra in gS. We say that it is in a generic position
if bS ∩ τ(bS) is a Cartan subalgebra in gl. This amounts to saying that
bS ∩ τ(bS) has dimension n over l.

We will systematically use below the fact that in a split simple Lie algebra
defined over a field the intersection of two Borel subalgebras contains a split
Cartan subalgebra; in particular this intersection has dimension at least n.

8.1. Lemma. The Lie algebra gS contains Borel subalgebras in generic po-
sition.

Proof. Let B and B be the varieties of Borel subalgebras in the split Lie
algebras gS and gl respectively. Passing to residues we have a canonical
mapping B → B whose image is dense (because gS is split). Let U ⊂ B be
an open subset in Zariski topology consisting of Borel subalgebras bl such
that bl∩τ(bl) has dimension n. Since B(S) is dense in B there exists a Borel
subalgebra bS in gS over S whose image in B is contained in U . �

8.2. Lemma. Let bS ⊂ gS be a Borel subalgebra in generic position. Then
a submodule tS = bS ∩ τ(bS) of bS has rank n.

Proof. The subalgebra tS is given as an intersection of two free submodules
in gS of codimensions m, where m is the number of positive roots in gS,
each of them being a direct summand in gS. So tS consists of all solutions
of a linear system of m equations in m+n variables. The space of solutions
of this system modulo M where M ⊂ R is a maximal ideal coincides with
the intersection bS ∩ τ(bS) and hence it has dimension n. This implies that
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the linear system has a minor of size m×m whose determinant is a unit in
S and we are done. �

Our next aim is to show that the Galois descent data for the generic fiber
GK of G described in previous sections can be pushed down at the level of
R. As usual we will assume that the Weyl group of G contains −1.

8.3. Proposition. Let bS ⊂ gS be a Borel subalgebra in generic position and
let tS = bS ∩ τ(bS). Then tS is a split Cartan subalgebra of gS contained in
bS.

Proof. Let uS be the ideal in bS consisting of nilpotent elements. It is
complimented in bS by a split Cartan algebra and hence bS/uS is isomorphic
to a split Cartan subalgebra in bS. We need to show that a canonical
projection p : bS → bS/uS restricted at tS is an isomorphism.

Let bL = bS ⊗S L be a generic fiber of bS. We already know that tL =
bL ∩ τ(bL) has dimension n over L, so it is a split Cartan algebra in gL.
Since tS imbeds into tL, it is a commutative Lie subalgebra contained in
bS and consisting of diagonalizable semisimple elements. So injectivity of p
follows.

As for surjectivity, it suffices to prove it modulo maximal ideal M ⊂ R. In
the course of proving of Lemma 8.2 we saw that tS is the space of solutions of
the linear system of m equations in m+n variables whose matrix modulo M
has rank m. It follows tS modulo M has dimension n and we are done. �

Let now tS be as in Proposition 8.3 and let t = t
〈 τ〉
S be the invariant

subspace. By descent we have t ⊗R S = tS , hence t is an R-defined Cartan
subalgebra splitting over S. LetBS be a Borel subgroup inGS corresponding
to bS. The connected component of the automorphism group of a pair
(bS, tS) gives rise to a maximal torus TS in BS. It is R-defined and S-split
because so is t. Let us choose a Chevalley basis

{Hα1
, . . . Hαn

, Xα, α ∈ Σ}
in gS corresponding to (TS , BS). Since W contains −1, we know that τ
acts on the root system Σ = Σ(GS , TS) as −1. Now repeating verbatim the
arguments in [Ch] we easily find that for every root α ∈ Σ there exists a
constants cα ∈ R such that τ(Xα) = cαX−α and hence the action of τ on
G(S) is determined completely by the family {cα, α ∈ Σ}. We call these
constants by structure constants of G with respect to T .

As in [Ch] one checks that the structure constants satisfy the relations
given in Lemmas 3.4, 3.5. Also, as in Example 4.5 we may obviously define
the notion of an elementary transformation with respect to a root α ∈ Σ
(because root subgroups Uα are defined over S).

8.4. Remark. We note that the structure constants { cα | α ∈ Σ } are
units in R. Indeed, by our construction we have surjections bS → bS and
bS ∩ τ(bS) → bS ∩ τ(bS). Hence the residues of cα are structure constants
of G = G⊗R k in the corresponding basis.
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9. Proof of Theorem 1.2

Let R be a ring satisfying all hypothesis in Theorem 1.2. As usual we
denote its quotient field by K. Let G0 be a split group of type F4 over R and
let [ξ] ∈ H1(R,G0){g3=0}. We first claim that the twisted group G = ξG0

is split by an étale quadratic extension of R. The proof is based on the
following.

9.1. Lemma. There exist u, v,w ∈ R× such that f3(GK) = (u) ∪ (v) ∪ (w).

Proof. Let f3(GK) = (a)∪(b)∪(c) where a, b, c ∈ K×. By [ChP] the functor
of 3-fold Pfister forms satisfies purity, hence it suffices to show that f3(G)
is unramified at prime ideals of R of height 1.

Let p ⊂ R be a prime ideal of height 1 and let v = vp be the corresponding
discrete valuation on K with the residue field k(v) = R/p. We need to show
that the image of f3(GK) under the boundary map ∂v : H3(K,Z/2) →
H2(k(v),Z/2) is trivial.

The image ∂v(f3(G)) coincides with that of under the composition

H3(K,Z/2) −→ H3(Kv ,Z/2)
∂v−→ H2(k(v),Z/2)

where by abusing notation the last boundary mapping is still denoted by
∂v. Further, one knows that f3(GKv

) = RG0
([ξKv

]) where

RG0
: H1(Kv , G0) → H3(Kv ,Z/2)

is the 2-component of the Rost invariant for G0. Let Ov be the ring of
integers of Kv. The properties of the Rost invariant imply ∂v([λ]) = 0 for
every class [λ] ∈ H1(Ov, G0). Since the class of ξKv

is in the image of
H1(R,G0) → H1(Ov, G0) → H1(Kv, G0) we are done. �

9.2. Proposition. G is split by an étale quadratic extension of R.

Proof. By Lemma 9.1 we have f3(GK) = (u)∪ (v)∪ (w) where u, v,w ∈ R×.
Take S = R(

√
u) and we claim GS is split. One of the following two cases

occurs.
If u ∈ (K×)2 then we have f3(GK) = 0. It follows RG0

([ξK ]) = f3(GK) =
0. Since the kernel of the Rost invariant for split groups of type F4 de-
fined over K is trivial by [Gar] (see also [Ch]), we have [ξK ] = 0. Since
by [CTO], [R94], [R95] Grothendieck–Serre conjecture holds for G0 we con-
clude ξ = 0, i.e. G is already split over R.

Assume now that u 6∈ (K×)2. Let L be a quotient field of S. Arguing
along the same lines we first get RG0

([ξL]) = 0 and then GS is split. �

The following lemma is an R-analogue of Corollary 4.13.

9.3. Lemma. Let T ⊂ G be a maximal torus with the structure constants
{cα1

, . . . , cα4
} and let u1, . . . , u4 ∈ NS/R(S×). Then G contains a maximal

torus T ′ whose structure constants are {cα1
u1, . . . , cαn

u4}.
Proof. Apply the same argument as in Lemma 4.12 with the use of Re-
mark 4.11. �
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Proof of Theorem 1.2. Let [ξ], [ξ′] ∈ H1(R,G0){g3=0} be two classes and let
G,G′ be the corresponding twisted group schemes over R. Assume that the
generic fibers GK , G

′
K of G and G′ are isomorphic over K. If GK is K-split,

there is nothing to prove, because Grothendieck-Serre conjecture is already
proven for G0, and so we may assume that GK , G

′
K are not split over K (and

hence G,G′ are not split over R) which amounts to saying that f3(GK) 6= 0
and f3(G

′
K) 6= 0.

By Proposition 9.2 there exists an étale quadratic extension S = R(
√
d),

where d ∈ R×, splitting G. Of course, it is split G′ as well. It now suffices
to show that G,G′ contain maximal tori T, T ′ defined over R and splitting
over S and such that the corresponding structure constants for G1 and G2

are the same.
Let T, T ′ be arbitrary R-defined and S-splitting maximal tori in G,G′.

Let cα1
, . . . , cα4

and c′α1
, . . . , c′α4

be structure constants of G,G′ with respect
to T and T ′. By Theorem 6.1 we have f3(GK) = (d) ∪ (cα1

) ∪ (cα2
) and

f3(G
′
K) = (d) ∪ (c′α1

) ∪ (c′α2
). Since f3(GK) = f3(G

′
K) we get

〈〈 d, cα1
, cα2

〉〉K
K≃ 〈〈 d, c′α1

, c′α2
〉〉K

and hence

〈〈 d, cα1
, cα2

〉〉 R≃ 〈〈 d, c′α1
, c′α2

〉〉.

We first claim that up to choice of T and T ′ we may assume that cα1
= c′α1

and cα2
= c′α2

. The proof of the claim is completely similar to that of
Proposition 5.3. Namely, by Witt cancelation and by Lemma 2.1 we may
write c′α1

in the form c′α1
= w1cα1

+ w2cα2
− w3cα1

cα2
where w1, w2, w3 ∈

NS/R(S×) and w1cα1
− w3cα1

cα2
is a unit in R. By Lemma 9.3, passing

to another maximal torus in G (if necessary) we may assume that w1 =
w2 = 1 and then c′α1

= cα1
(1 − w3cα2

) + cα2
where w3 is still in NS/R(S×)

and 1 − w3cα2
is a unit in R. The rest of the proof is the same as in

Proposition 5.3.
We next claim that up to choice of T and T ′ we may additionally assume

that cα3
= c′α3

. To prove it we are just copying the related part of the
proof of Theorem 7.1. Arguing as in Proposition 4.10 we conclude that
up to equivalence ξ and ξ′ are of the form ξ = (aτ ) and ξ′ = (a′τ ) where
aτ = c

∏n
i=1 hαi

(ui) and a′τ = c
∏n

i=1 hαi
(u′i), so that, by Remark 5.2, G and

G′ contain simple simply connected subgroups H and H ′ generated by long
roots such that H ≃ H ′ ≃ Spin (f) where f = 〈〈 d, cα1

, cα2
〉〉. Furthermore

arguing as in Proposition 6.2 with the use of the second part of Remark 5.2
we see that the structure constants cα3

, cα4
, c′α3

, c′α4
are well defined modulo

units in R represented by f .
Since f5(GK) = f5(G

′
K) we get

〈〈 d, cα1
, cα2

, cα3
, cα4

〉〉 K≃ 〈〈 d, cα1
, cα2

, c′α3
, c′α4

〉〉
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and hence

(9.4) 〈〈 d, cα1
, cα2

, cα3
, cα4

〉〉 R≃ 〈〈 d, cα1
, cα2

, c′α3
, c′α4

〉〉.
By Witt cancelation we can write c′α3

in the form c′α3
= a1cα3

+ a2cα4
−

a3cα3
cα4

where a1, a2, a3 are units in R represented by f and a1cα3
−a3cα3

cα4

is also a unit in R. Since cα3
, cα4

are defined modulo values of f passing to
another maximal torus in G we may assume without loss of generality that
a1 = a2 = 1. The rest of the proof is the same as in Proposition 5.3.

Finally we claim that we may assume that cα4
= c′α4

. Indeed, from (9.4)
and Witt cancelation we conclude that c′α4

is of the form c′α4
= acα4

where
a is a unit in R represented by 〈〈 d, cα1

, cα2
, cα3

〉〉. Copying the proof of
Proposition 7.2 we easily complete the proof of the claim. Thus Theorem 1.2
is proven. �
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[S58] J.-P. Serre, Espaces fibrés algébriques, in Anneaux de Chow et applications,
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