ON THE DESCENDING CENTRAL SEQUENCE OF
ABSOLUTE GALOIS GROUPS

IDO EFRAT AND JAN MINAC

ABSTRACT. Let p be an odd prime number and F' a field contain-
ing a primitive pth root of unity. We prove a new restriction on
the group-theoretic structure of the absolute Galois group G of

F. Namely, the third subgroup G%B) in the descending p-central
sequence of G is the intersection of all open normal subgroups
N such that Gg/N is 1, Z/p?, or the extra-special group M,s of
order p3 and exponent p?.

1. INTRODUCTION

Let ¢ = p? be a prime power and let G be a profinite group. The
descending ¢-central sequence of G is defined inductively by

GY =qg, GUY = @ENeY q], i=1,2,... .

Thus GV is the closed subgroup of G generated by all powers h? and
all commutators [h, g] = h~'¢g~*hg, where h € G and g € G.

Now suppose that ¢ = p. Let F be a field containing a primitive pth
root of unity (,, and let G = G be its absolute Galois group. Let My
be the unique nonabelian group of order p* and exponent p? (see §8).

Main Theorem. For p # 2 and for G = Gp as above, G® is the
intersection of all open normal subgroups N of G such that G/N is
isomorphic to one of 1, Z/p*, and M,s.

Determining the profinite groups which are realizable as absolute
Galois groups of fields is a major open problem in Galois theory. Our
Main Theorem appears to be simple yet powerful restriction on the pos-
sible structure of such groups, and on their quotients G/ Gg’). These
quotients an extremely important invariant of fields, carrying a sub-
stantial information about their arithmetical structure. For example,
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when p = 2 it encodes the orderings and the Witt ring of quadratic
forms of F' ([MSp90], [MSp96]) as well as some non-trivial valuations
[MMSO04]. Further, it encodes the entire mod 2 Galois cohomology ring
of Gy [AKM99, Th. 3.14]. In a forthcoming joint work with S. Chebolu

we show that G/ Gg’) can be in fact thought of as a group-theoretic
analog of Galois cohomology of F' for any p, and use these results to
provide new examples of profinite groups which are not realizable as
absolute Galois groups of fields.

The analog of our Main Theorem for p = 2 was discovered by Ville-
gas in a different formalism [Vil88]. The second author and Spira re-
formulated and reproved it in [MSp96, Cor. 2.18] using the descending

2-central sequence of Gp. Namely, then G©®) = Gg) is the intersection
of all open normal subgroups N of G such that G/N is isomorphic to
1,7Z/2, Z/4, or to the dihedral group Dy = Mjg of order 8.

A main difference between the case p > 2 and the case p = 2 is the
existence in the former case of elements in H?((Z/p)",Z/p) which are
not expressible as sums of cup products of elements in H*((Z/p)", Z/p).
To handle this new kind of elements we study the Bockstein homomor-
phism B¢: HY(G,Z/p) — H*(G,Z/p) and its relation to Galois theory.

Our approach is purely cohomological. Thus we prove the Main
Theorem more generally for profinite groups G' which satisfy two simple
conditions on their lower cohomology. These conditions are known to
hold for G = G, with F' as above, where they are consequences of the
following two Galois-theoretic facts (see §3 for details and terminology):

(i) the Galois symbol KM (F)/p — H?(G,Z/p) is injective (it is
actually bijective by the Merkurjev-Suslin theorem, which is a
special case of the Rost—Voevodsky’s theorem); and

(ii) fBg is the cup product by the Kummer element (¢,) € H (G, Z/p).

More generally, when ¢ = p? is an arbitrary prime power and F is
a field containing a primitive gth root of unity, we characterize G’?)
as the intersection of all open normal subgroups N of G such that
Gr/N belongs to a certain cohomologically defined class of finite groups
(Theorem 5.2). This is based on the natural generalizations of (i) and
(ii) above, as well as the following additional property of Gp:

(iii) the map HY(Gr,Z/q) — H'(Gr,Z/p"), 1 <i < d, is surjective.

Our analysis applies also to p = 2. Thus we give a new cohomolog-
ical proof of the above-mentioned result of [Vil88] and [MSp96], and
generalize it to profinite groups G satisfying the appropriate conditions
on their lower cohomology. We also show that the group Z/2 can be
omitted from the list unless F is a Euclidean field (Corollary 11.4).
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The paper is organized as follows: In §2 we collect various cohomolog-
ical preliminaries, especially facts related to the Bockstein homomor-
phism (g and its connections with roots of unity and cup products. In
63 we introduce the key notion of a profinite group of Galois relation
type. It axiomatizes the cohomological properties of absolute Galois
groups that we need for our proofs ((i)—(iii) above). In §4 we define an
abelian group Q(G) and a homomorphism Ag: Q(G) — H*(G,Z/q).
These extend the cup product U: HY(G,Z/q)®? — H*(G,Z/q), but
take into account also the Galois-theoretic role of Gg. Our axioms on
G imply that Ker(A¢) is generated by elements of simple type (Defini-
tion 4.2 and Proposition 4.3). These simple type elements are in turn
related to cohomologically defined open subgroups N of G of index
dividing ¢3, which we call “distinguished subgroups”. In §5 we trans-
late the above result about Ker(Ag) to the language of distinguished
subgroups, and prove the crucial Theorem 5.2: for G of Galois relation
type, G® is the intersection of all distinguished subgroups of G.

In §§6-10 we build a “dictionary” between the images under Ag of
simple type elements of 2(G) and some special group extensions. The
solutions of the resulting embedding problems correspond to distin-
guished subgroups of G. This is then used in §11 to prove the Main
Theorem and the analogous results for p = 2 in the general setting of
profinite groups of Galois relation type.

In §12 we study G/G® for G of Galois relation type. As a corollary
we recover some known “automatic realization” results in Galois theory.
Our approach seems to provide a good explanation why these curious
automatic realization results are true. Finally, in §13 we give examples
showing that all the finite groups in our lists are indeed necessary.

We thank P. Deligne, L. Moret-Baily, A. Shalev, and T. Weigel for
their interest in this work and their comments related to talks given at
the Israel Mathematical Union 2008 conference and the 2008 conference
on Profinite Groups in ESI, Vienna. We also thank Y. Tschinkel for
his kind encouragement.

2. COHOMOLOGICAL PRELIMINARIES

Let p be a prime number, let ¢ = p? be a power of p, and let G
be a profinite group. We write H*(G) for the profinite cohomology
group H'(G,Z/q), where G acts trivially on Z/q. Thus H'(G) =
Hom(G,Z/q) consists of all continuous group homomorphisms G —
Z./q. We consider H*(G) = ;- H'(G) as a graded anti-commutative
ring with respect to the cup product U.
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A) Normal Subgroups. Let N be a normal closed subgroup of G.
Then G acts canonically on H*(N). Denote the group of all G-invariant
elements of H'(N) by H(N)“. Fori = 1 this action is given by ¢ > 9,
where p9(n) = p(g~'ng) for g € G and n € N. Thus H'(N)Y consists
of all homomorphisms ¢: N — Z/q which are trivial on N[N, G].

The next lemma provides a fundamental connection between the
descending g-central sequence of G and cohomology.

Lemma 2.1. For a normal closed subgroup N of G one has
MiKer(y) | ¢ € H'(N)S} = NN, G,

Proof. Consider the natural projection 7: N — N = N/N4[N, G]. The
abelian torsion group N has Pontryagin dual H'(N). By the Pon-
tryagin duality [NSW00, Th. 1.1.8], () ¢z (y) Ker(¢) = {0}, whence
N ™ 7 Y(Ker(¢)) = NIN,G]. Further, if € HY(N) and ¢ =
inf 5 (), then Ker(¢) = 7! (Ker(¢)). Finally, by the previous remarks,
infy: HY(N) — HY(N)Y is an isomorphism. The assertion follows. [

Corollary 2.2. There is a natural non-degenerate pairing
N/NY[N,G] x HY(N)¢ — Z/q.
Corollary 2.3. G /G s dual to HY(GD)Y fori > 1.

B) Spectral sequences. Let N be a closed normal subgroup of G.
Recall that the Hochschild—Serre spectral sequence

EY = H(G/N,H’(N)) = H™(Q)

induces the H-term exact sequence
(2.1)

0 — HYG/N) M gY(@) 2= g(v)e =22,

TN (/N e 52 (@),
Here trgg n is the differential dy' of the spectral sequence [NSWO00,
§2.1]. If N’ is another closed normal subgroup of G and N’ < N, then
the projection G/N’ — G/N and the restriction map resy : H/(N) —
H’(N’) induce a spectral sequence morphism from H(G/N, H(N)) =
H™(G) to H(G/N', HI(N")) = H""(G) [NSW00, pp. 78-79]. In
particular, there is a commutative diagram

trgg /N
_—

(2.2) HY(N)¢ H?*(G/N)

res s l linfg/N/

tr N/
HY (NG —22"12(G ).
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C) Connecting homomorphisms. Let n,m be positive integers.
The exact sequences
0 — Z/n — Z/mn — Z/m — 0
0 — 12/2 — L7/7 & L17)7 — 0
of trivial G-modules give rise to connecting homomorphisms
Bamn: H(G,Z/m) — H*(G,Z/n)
Bemn: H' (G, Z[Z) — H*(G, [ Z]Z),
respectively. When m = n = ¢ is our fixed p-power, we abbreviate

ﬁG’ - ﬁG,q,q

and call it the Bockstein homomorphism of G. Note that it is
functorial in G. We now relate (3¢, to some other connecting homo-
morphisms and cup products.

Lemma 2.4. Suppose q = 2. For € HY(G) one has Bg(¢) = 1 Up.

Proof. This is straightforward when G = Z/2. In the general case, it
follows by inflating from G/ Ker(¢) to G. O

Next let e: H'(G,Q/Z) — H*(G,Z) be the connecting map arising
from the short exact sequence of trivial G-modules

0-Z—=Q—-Q/Z—0.
Since Q is cohomologically trivial, € is in fact an isomorphism. Let
Jm: =L|Z = Z/m, m,:Z — ZL/n
be the natural maps. A routine computation gives:
Lemma 2.5. (gm0 j;, =, 0¢€ on HY(G, ~7/7).

Now let I be a field. Set (Q/Z)" = D, epar #(Q/Z)1, Where for
[ prime (Q/Z); is the [-primary component of Q/Z. Assume that
char F' fn,m. For an integer r consider the r-th Tate twists (+Z/Z)(r),
(Z/n)(r), and (Q/Z)'(r) [NSWO00, Def. 7.3.6]. Let v,: (2Z/Z)(r) =
(Z/n)(r) be the isomorphism of multiplication by n. Thus u, =
(Z/n)(1) is the Gp-module of nth roots of unity, and ¢, = 7, when
r = 0. The exact sequence

(2.3) 0 — (3Z/Z)(r) = (Q/Z)'(r) = (Q/Z)'(r) — 0
gives rise to a connecting homomorphism

0" H'(Gp, (Q/Z)'(r)) — H™(GF, (Z/Z)(r)).
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Lemma 2.6. There is an equality of maps
§""Uid = idus™*: H(Gp, (Q/Z) (r)) x H (GF, (Q/Z)'(s))
— H (G, (RZ)Z)(r + 5)).

Proof. Tensorizing (2.3) with (Q/Z)'(s) gives the same sequence but
with (r + s)-twists, which is also exact. Therefore the composed map

H'(Grp, (Q/Z)(r)) x H(Gr,(Q/Z)(s)) = H™Y(Gr, (Q/Z)(r + 5))
% Hi+j+1(GF, (%Z/Z)(T—l— S))

breaks as 6" U id [GS06, Prop. 3.4.8]. Similarly, it breaks also as
id Ud’*, and the equality follows. O

For F' and n as above, consider the Kummer homomorphism
kn: F* = H(Gp, F},) — H'(Gp, ).

Lemma 2.7.  (a) 84, .., is the restriction of ' to H'(Gp, SZ/Z).
(b) ¢ 0 0% =Ky, 00, on HY(Gp, (=Z/Z)(1)).

Proof. For every r there is a commutative diagram with exact rows
0—= (Z/2)(r)— (55Z/Z)(r) — (5;Z/Z)(r) —=0
0 —= (Z/Z)(r)— (Q/Z)'(r) —— (Q/Z)'(r) — 0.

It gives rise to a commutative square of connecting homomorphisms

(2.4) Hi(Gr, (52/)Z)(r)) —> H*Y (G, (1Z/)Z)(r))

l |

. 51’,7« i
H'(Gp,(Q/Z) (r)) —— H" (G, (FZ/Z)(r)).
For i = 1 and r = 0 we have 6 = ., ., and the left vertical map
in (2.4) is an embedding. This proves (a).
Next take in (2.4) ¢ = 0 and » = 1 and consider the resulting con-

necting map J. From the commutative diagram with exact rows

0 —= (GZ/Z)(1)— (57Z/Z)(1) = (5;Z/Z)(1) —= 0

Z\LLn Zlen lle

1 finC . ;T
1 fn© F . F L,

sep sep
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we get that ¢* 0o = K, o},. Combined with (2.4), this gives (b). O
Corollary 2.8. Let d = ged(m,n).

(a) There is an equality of maps
ta®(Bep mn Vi) = 17, U (Kn 0 17,
HY(Gr, £2,/7) x HO(Gr, (22/2)(1)) — H*(Gr pa).
(b) There is an equality of maps
Bapmn Uid = id Uk, : HY(Gp,Z/m) x H*(Gp, jtm) — H*(Gp, pia)-
Proof. As (£Z/7) ® (+Z/Z) = 37/7Z, Lemma 2.6 gives
o (0M0Uid) = o IdU®t) = o U (1 0 6%1)

on HY(Gp, ~Z/7) x H*(Gp, (+Z/Z)(1)). By Lemma 2.7, this restricts
to (a). (b) follows from (a). O

See [Led05, p. 91], [GS06, Lemma 7.5.10], and [Koc02, Th. 8.13] for
related results.

D) Cohomology of finite abelian p-groups. For a profinite group
G, let H:_ (G) be the decomposable part of H(G), i.e., its subgroup
generated by cup products of elements of H'(G). In this subsection we
show that when G = (Z/q)", the group H?(G) is generated by H!_.(G)
and the image of (5. In fact, for every finite abelian p-group G of
exponent divisible by ¢ = p?, the structure of H*(G) as a graded ring
was computed by Chapman (for p # 2) and by Townsley-Kulich (for
p = 2), in terms of generators and relations ([Cha82|, [TK88]). Since
the identification of the Bockstein elements as generators is somewhat
implicit in [Cha82] and [TKS88], we outline an alternative proof of the
required result. It is based on the following decomposition of H?(G)
to its symmetric and skew-symmetric parts, as studied by Tignol and
Amitsur ([TA85], [Tig86]); see also Massy [Mas87].

Let G be a finite abelian group and A be a finite trivial G-module.
Call a map a: G x G — A skew-symmetric if it is Z-bilinear and
a(o,0) =0 for all 0 € G. Then a(o,7) = —a(r,0) for o,7 € G. The
set Skew (G, A) of all such maps forms an abelian group under addition.

For a 2-cocycle f € Z?(G, A) define a; € Skew (G, A) by as(o,7) =
f(o,7) — f(7,0). We call f symmetric if ay = 0. Since the action
of G on A is trivial, 2-coboundries are symmetric. Let H?*(G, A)sym
be the subgroup of H?(G, A) consisting of all cohomology classes of
symmetric 2-cocyles. The map f — a; induces a homomorphism ¥
with a split exact sequence [TA85, Prop. 1.3]

(2.5) 0 — HXG, A)gm — HX(G, A) L Skew(G, A) — 0.
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For e as above, € Uid gives by [Tig86, Prop. 1.5] an isomorphism
(2.6) HY(G,Q/Z) @7 A = H*(G, A)sym,

Now let A =7Z/q.
Proposition 2.9. For G = (Z/q)" one has V(H?

dec

(@) = Skew(G,Z/q).

Proof. Write G = (01) X+ - - X {0,,) with g; of order ¢q. Take x1,...,xn €
H'(G) such that x;(o;) = 1 for all 4, and x;(ox) = 0 for i # k. For
distinct 7, j the cohomology class x; U; is represented by the 2-cocyle
(0,7) — xi(0)x;(T). Hence
(WO Uxi)ow, 00) = xilow)x;(on) — xi(or)x;(ok)

is 1if (4,5) = (k, 1), is —1if (4,7) = (I, k), and is 0 otherwise.

Now given a € Skew(G,Z/q), take p =3, _;a(0i,05) - xi U x;. For
k <l we get (V(p))(ok,01) = a(og, 7). But maps in Skew(G,Z/q) are
determined by their values on (oy, 0;), k < [. Hence ¥(p) = a. O

Proposition 2.10. Let G be a finite abelian p-group. Then Bg maps
HY(G) isomorphically onto H*(G)sym-
Proof. As (Z/q) ®z(Z/q) = Z/q, the isomorphism (2.6) coincides with
(mpoe)Uid: HY(G,Q/Z) ® H*(G) — HZ,.,(G),
where 7,: Z — Z/q is the natural map. Moreover, H*(G) = Z/q, so
HY(G, %Z/Z) ® H(G) = HY(G,Q/7) @ H°(G).
By Lemma 2.5, (2.6) is therefore also given by
(B0 32) Uid: HY(G,12/2) @ HY(G) — H2,(G),

and the latter isomorphism may be identified with (. O

Corollary 2.11. Let G = (Z/q)".
(a) H*(G) is generated by H3,.(G) and by the image of Bg.
(b) When q =2 one has H*(G) = H3.(G).

Proof. (a) follows from Proposition 2.9, Proposition 2.10, and the exact
sequence (2.5). (b) follows from (a) and Lemma 2.4. O

3. GROUPS OF GALOIS RELATION TYPE

Let G be again a profinite group. The cup product U: HY(G) x
H'(G) — H?*(G) uniquely extends to a homomorphism

(3.1) U: HY(G) ®z H'(G) — H*(Q), a~ Ua.
Definition 3.1. We say that G has Galois relation type if:
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(i) the kernel of the homomorphism (3.1) is generated by elements
of the form ¢ ® ¢, where ¥, ¢’ € HY(G);
(ii) there exists & € H'(G) such that for every ) € H'(G) one has
YU+ Ba(®) = 0; and
(iii) the natural map H'(G) = HY(G,Z/q) — HY(G,Z/p") is sur-
jective for 1 < i < d (where g = p?).

As a main example, consider a field F' of characteristic # p and
containing a (fixed) primitive gth root of unity (,. Let G be the
absolute Galois group of F. Let KM (F) be the ith Milnor K-group of
F, and consider the Galois symbol KM (F)/q — H'(Gr,Z/q). It is an
isomorphism for : = 1,2, by the Kummer theory and the Merkurjev—
Suslin theorem ([MeSu82], [GS06, Th. 8.6.5]), respectively. Moreover,
it induces a commutative square

(3.2) (F(F)7) @z (F*/(F*)T) —= H'(Gr) @z H'(GF)

| |

K3 (F)/q - H*(Gp).

Here the left vertical map is given by

Z(az‘(FX)q ® bi(F7)7) — Z{% bi} + qKy' (F)

i=1 i=1
and is surjective. Its kernel is the Steinberg group, generated by all
a(F*)1 @ b(F*)? with 1 € a(F*)? 4+ b(F*)? [Efr06, §24.1]. We obtain:

Proposition 3.2. G = G has Galois relation type.

Proof. By definition, the Steinberg group is generated by elements
a(F*)? @ b(F*)? which are mapped to 0 in K2 (F)/q. Now use the
surjectivity (resp., injectivity) of the upper (resp., lower) horizontal
map in (3.2) to deduce (i).

By Corollary 2.8(b), for » € H*(GF) one has Bg,, (¥)UC, = YUk, ({,),
where on the left hand side we consider (, as an element of H*(GF, ).
Identifying 11, with Z/q via ¢ — i, we get S, (1) = 1 U Kg({,) in
H*(Gp,Z/q) = H*(GF, j1,). Thus (ii) holds by taking & = —rk,({,).

Finally, let 1 < ¢ < d. By Kummer’s theory, the natural epimor-
phism F*/(F*)? — F* /(F*)?" yields an epimorphism HY(Gp,Z/q) —
HY(GFp,Z/p"), proving (iii). O

Remark 3.3. Using also the surjectivity of the Galois symbol in di-
mension 2, one can strengthen Proposition 3.2 to Galois groups G =
Gal(E/F), where E/F is a Galois extension, F' contains a primitive
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qth root of unity, and E has no proper p-extensions. Indeed, then
HY(GEg) = 0. In (3.2) all maps are surjective. Applying it for E,
we obtain that H?(Gg) = 0 as well. It therefore follows from the
Hochschild-Serre spectral sequence that infg, : H(G) — H'(GF) is an
isomorphism for i = 1,2 [NSWO00, Prop. 2.1.3]. Since the cup product
and the Bockstein homomorphisms commute with inflation, conditions
(i)—(iii) for GF now transform into the analogous conditions for G.

4. COHOMOLOGY ELEMENTS OF SIMPLE TYPE

For a profinite group G we define an abelian group Q(G) by

_ [HY(G) @, HY(G), it g=2,
UG = {(Hl(a) 2z HY(G)) ® HY(G), if q#2.

Define a homomorphism Ag: Q(G) — H*(G) as follows:
Ag(a) = Ua, if ¢ =2,
Ag<041, 042) = Uay + ﬁG(O{Q), if q 7£ 2.

The map G +— Q(G) is functorial. Given an epimorphism G; — Go
of profinite groups, the inflation map infg, : H'(G2) — H'(G;) induces
a homomorphism infg, : Q(G2) — Q(G;) with a commutative square:

infg,

(4.1) Q(G2) — Q(GY)

Lemma 4.1. Assume that G has Galois relation type and let G =
G/G®. Then Ag is surjective.

Proof. For 1 <i < d, the natural map H'(G) — H'(G,Z/p') is just the
natural map Hom(G,Z/q) — Hom(G,Z/p'), so by Definition 3.1(iii),
it is surjective. Since additionally G is abelian of exponent dividing g,
it is therefore an inverse limit of finite groups é’j of the form (Z/q)™.
By Corollary 2.11, each H 2(Gj) is generated by the images of U and
ﬁéj (and of U only, if ¢ = 2). Hence each AG~], is surjective. Conclude

that Az = hglAéj is surjective. O

Definition 4.2. We say that a € Q(G) has simple type if either:
(i) ¢ =2 and a = ¢ @ ¢’ for some ¥,y € H(G); or
(i) ¢ # 2 and a = (v ® ', ) for some ¥, ¢’ € HY(G).
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We call M = Ker(y))NKer(1)') is a kernel of « (it may depend on 1), ¢).
Observe that M is a normal open subgroup of G and that (¢, ¢) induce
an embedding of G/M in (Z/q)?. Hence G® < M. Note that inflation
homomorphisms map simple type elements to simple type elements.

Proposition 4.3. Assume that G has Galois relation type. Then the
group Ker(Ag) is generated by elements of simple type.

Proof. For ¢ = 2, this is just Definition 3.1(i).

So suppose that ¢ # 2 and let o € Ker(Ag). There exists ¢y € H'(G)
with a — (0,%0) € (HY(G) ® HY(G)) @ {0}. Take ¢ € H'(G) as in
Definition 3.1(ii). Thus ¢ U§ + Ba(o) = 0, ie., Ag(vhy ® &, 1) = 0.
Let o = a — (Yo ® &, ¢). Then o € (HY(G) @ HYG)) ® {0} and
Ag(a’) = Ag(a) = 0. By Definition 3.1(i), there exist ¥y, € HY(G),
i=1,...,n, with o/ =3 " (¢ ®¢},0) and ¥; U, = 0 for all i. For
each i we have Ag(¢; ® &,1;) = 0. Then

n n

(42) o=@ & do) + Y (1@ (W +8),0) = D (1 @& 1),

i=1
Here all summands are simple type elements in Ker(Ag). O

Lemma 4.4. Let a € Ker(Ag) have simple type and kernel M. Then
there exist ¢ € HY(M)® and a € Q(G/M) of simple type and with
trivial kernel, such that infg(a) = a and Ag/u (@) = trgg ().

Proof. Take 1,9 as in Definition 4.2 with M = Ker(y)) N Ker(v).
There exist 1, € H'(G /M) such that infg (1)) = 1 and infg(¢)) = ¥/
We define & € Q(G/M) to be p @', if ¢ = 2, and (Y @', 1), if ¢ # 2.
Thus @ has simple type and trivial kernel, and infg(@) = . By (4.1)
and (2.1), there is a commutative diagram with an exact row

infg

QG/M) ——Q(G)
Ag/mr lAG
(MG L 2 ™M m2(@),
It yields ¢ € H*(M)% as required. O

Definition 4.5. Call a subgroup N of G distinguished if there is an
open subgroup M of G and elements ¢ € H'(M)% and a € Q(G/M),
with @ of simple type and with trivial kernel, such that

Aem (@) = trggm(p), N = Ker(p).
In this case we say that M, ¢, & are data for N.
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Remark 4.6. Since & € Q(G/M) has trivial kernel, G/M embeds in
(Z/q)*. Hence (G : N) = (G : M)(M : N)|¢g*> and G® < M. Also, the
exponent of G/N divides ¢*.

Example 4.7. For every ¢ € H'(G), the subgroup M = Ker(¢)) of G
is distinguished. Indeed, take ¢ € H'(G /M) with infg (1)) = v and set
a=0¢€QG/M). Trivially, a = ® 0 if ¢ = 2, and & = (0 ® 1, 0) if
q # 2. Thus & has simple type and trivial kernel. For ¢ =0 € H*(M)%
we have trgg y(p) = Ag/m (@) = 0 and M = Ker(y).

5. G®) AS AN INTERSECTION

Let G be again a profinite group, and let Ay be the intersection of
all distinguished subgroups of G.

Proposition 5.1. G® < As <GP,

Proof. Let N be a distinguished subgroup of G. Thus there exists an
open normal subgroup M of G and ¢ € H*(M)® such that Ker(¢) = N
and G < M. Hence Lemma 2.1 gives

G® = (GD)G® G] < MM, G] < Ker(p) = N.

Consequently, G® < Ag.
By Lemma 2.1 again, (¢ 1 (q) Ker(¢) = G®. Since each Ker(v)) is
distinguished (Example 4.7), we get that Ag < G®. O

Theorem 5.2. If G has Galois relation type, then G©®) = Ag.

Proof. By Proposition 5.1, G©®) < Ag.
For the converse inclusion, let G = G/G®). It follows from Lemma
2.1 (with N = @) that the map resge : H(G) — HY(G®P) is trivial.

Hence, by (2.1), infg: H'(G) — H'(G) is an isomorphism. Conse-
quently, infs: Q(G) — Q(G) is also an isomorphism.
Now let ¢ € HY(G?)Y. By Lemma 4.1, Ag is surjective, so there

exists & € Q(G) with trgs(¢) = Az(a@). By (4.1) and (2.1),
Ag(infe(@)) = infe(As(@)) = infa(trga(e)) = 0.

By Proposition 4.3 we may therefore write infg (&) = Y ., a;, where
ai, ..., a, € Ker(Ag) have simple type.
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For each 0 < i < n let M; be a kernel for a;. Recall that G® < M
so (4.1) again gives a commutative diagram

inf@ ~ infg

(5.1) (G/M;) S Q(G) %> 9(C)

Ag/u; l \L Ag ‘/ A

infg

H2A(G/M,) e 52(G) 2% H(@).

Lemma 4.4 gives rise to a; € Q(G/M;) of simple type and with trivial
kernel and to ¢; € H'(M;)¢ such that infg(a;) = a; and Ay, (06) =
trgg ar (0i).  In particular, Ker(yp;) is distinguished. For each i let
&; = infs(&;). It also has simple type, and one has a; = infg(&;). By
(5.1), infe(Agz(as)) = 0. Moreover,
infe(@) = > iy s = 2oy infa(d).

But infe: Q(G) — Q(G) is an isomorphism, so & = S| a;.

Next (2.1) and (2.2) give a commutative diagram with an exact row:

trga

HY(M;)¢ —= H(G/M,)

res . (2) l linfc—;

trga

0 — H (G®)Y —— H*(G).

Using this and (5.1) we compute:

n

trga(p) = Ag(a) = Z Ag(@) = Ag(infg(a) = S0, infa(Agar,(as)

i=1
= (infg o trgg ) (1) = i, (trgg oresqe ) (¢1).
i=1

Since trges is injective, o = Y resge) (¢;), so by Proposition 5.1,

Ker(p) > n Ker(resge (¢i) = G N ﬂ Ker(p;) > GP N Ag = Ag.

i=1 i=1
Since p € HY(G®)% was arbitrary, we deduce from Lemma 2.1 that
GO = (PGP Gl= ) Ker(p) > Ac. O
PeH (G@)E

Corollary 5.3. Let G be a profinite group of Galois relation type. Then
G®) is an intersection of normal open subgroups N of G with G/N of
order dividing ¢® and exponent dividing ¢>.
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6. EXTENSIONS

Let G be a finite group and A a finite trivial G-module. We consider
central extensions
w: 0-4A4LBLa—- 1
For a group isomorphism 6: G’ — G define an extension

o-

Wl O—>ALB£>C”—>1.

When there is a commutative diagram of central extensions
B——~@
(.
B

with A an isomorphism, w and w’ are called equivalent. Let Ext(G, A)
be the set of all equivalence classes [w] of extensions w as above.

The Baer sum [CE56, Ch. XIV, §1] of central extensions

1

w 0 A d
B

1

w' 0

)

wii 0= AL B %G L1, i=12
is the central extension

0 — A (f1,1)=(1,f2) B 9= A& 9

where for the fibred product By Xz By we set
B = (B xg By)/{(fi(a), f2(a)™") | a € A}.

This induces an abelian group structure on Ext(G, A), which is func-
torial in G (contravariantly) and in A (covariantly).

There is a canonical isomorphism Ext(G, A) = H%(G, A) which is
functorial in both G and A [NSW00, Th. 1.2.5]. Specifically, the co-
homology class of an inhomogeneous normalized 2-cocycle a: G2 — A
corresponds to the class of [w], where B = A x G as sets, and the group
law is given for a,b € A and 0,7 € G by

(6.1) (a,0) % (b,7) =(a+ b+ alo,T),0T).

Conversely, given w as above, choose a set-theoretic section s: G — B
of g with s(1) = 1. The map a: G x G — A, given by a(5y,53) =
s(51)s(d2)s(5102) 7!, is an inhomogenous normalized 2-cocyle whose
cohomology class corresponds to [w].

Remark 6.1 ([GS06, Remark 3.3.11], [Led05, p. 33]). Let G — G
be an epimorphism and let A be a G-module, whence a G-module in
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the natural way. Then infg: H?(G,A) — H*(G, A) corresponds to the
map infs: Ext(G, A) — Ext(G, A) sending the class of
o: 0—-ALBL G
to the class of
o (1) - b)s A
infs(@): 0—-A—5BxsG—G—1
In particular we have:

Lemma 6.2. Suppose that G = G x G’ and let & be as above. Then
infs(@) is equivalent to

0— A b, Bx G 2 GxG — 1.
Proof. Use the commutative triangle

_ (b,(6,6"))— (b5 -
B xg GUEION)

w@ww@%\/Kgé

G

where the horizontal map is an isomorphism. O

7. EMBEDDING PROBLEMS

Let G be a profinite group. The following proposition is due to
Hoechsmann [Hoe68, 2.1]:

Proposition 7.1. Let M be an open normal subgroup of G. Consider
the embedding problem

(7.1) G
S
w: 0 A B G/M —1
where A is a finite G /M-module, and let « € H*(G /M, A) be the coho-

mology class corresponding to (w]. Then the restriction map ® — ¢ =
®|ys is a bijection between

(a) the continuous homomorphisms ®: G — B making (7.1) com-
mutative; and
(b) elements o of H' (M, A) with trgg (@) = o

In particular, there exists ® as in (a) if and only if infg(a) = 0.

Here the last sentence follows from the bijection using (2.1).
Now suppose that A = Z/q with the trivial G-action, where ¢ = p?.
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Proposition 7.2. Let M be an open normal subgroup of G and let & €
Q(G/M) have simple type and trivial kernel. The following conditions
on an open subgroup N of M are equivalent:

(a) N is a distinguished subgroup of G with data M, &;

(b) N is normal in G and there is a commutative diagram

G/N

e
W : 0—>Z/q—>B—>G/M—>17

where w is an extension corresponding to A (@), the vertical
map 1s the natural projection, and h is a monomorphism.

Proof. (a)=>(b): By assumption, there exists ¢ € H'(M)% such that
Agym(@) = trgg () € H*(G/M) and N = Ker(p). In particular, N
is normal in GG. Choose a central extension w as above corresponding to
Aq/nm(@). Proposition 7.1 yields a continuous homomorphism ®: G —
B such that (7.1) commutes and ¢ = ®|;;. Then N = Ker(p) =
M NKer(®). Consequently, ® induces a homomorphism h: G/N — B
whose restriction to M /N is injective. It follows that h is also injective.

(b)=(a): Lift A to a homomorphism ®: G — B with kernel N.
Then (7.1) commutes. Then ¢ = ®|y, € H'(M)“. By Proposition 7.1,
Agu(@) = trggn(¢) and N = M NKer(®) = Ker(p), giving (a). O

8. SPECIAL EXTENSIONS

Proposition 7.2 allows an explicit determination of the distinguished
subgroups N of a profinite group G by means of the quotients G/N.
We now carry this computation for ¢ = p prime, based on an analy-
sis of several central extensions of small p-groups. We first recall the
structure of the nonabelian groups of order p*>. When p = 2 these are:

e the dihedral group of order 8§,
Dy=(r,s|rt=5"=(rs)* =1);
e the quaternionic group
Qs=(r,s|rt=1,[r,s] =1 =3%.
For p odd, there are two isomorphism types of groups of order p*:

e the Heisenberg group of order p? and exponent p,

Hy = (rs,t|rP=s" =t =1, [rt]=[s,t] =1, [r,s] =1);
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e the extra-special group of order p* and exponent p?,

My = (r,s | PP =P =1, [r,s] =rP).

8.1. Remarks. (a) When p =2, Mg = D,. However, we will keep in
this case the traditional notation Dy, and write M,s only when p # 2.

(b) Let G be one of the groups Dy, Qs, when p = 2, or Hys, My,
when p # 2. Then the unique normal subgroup of G of order p is its
center, which coincides with the Frattini subgroup G® [MN77, §3.1].
Therefore G® = (GG G] = 1.

(¢) In My (for p # 2) one has r/st = sir(%)J for all 4,7 > 0. In
particular, [s,7?] = 1. Further, by induction, (sr7)F = skip(1+(k=1)ip/2)ks
for k > 0. Tt follows that (s'r7)? = 1 if and only if p|j.

We define epimorphisms from these groups onto (Z/p)? as follows:

0: D, — (Z)2), r— (1,1), s— (0,1);

A Hy — (Z)p)?, r+— (1,0), s— (0,1), t — (0,0);

N: My — (Z/p)?, 7+ (1,0), s— (0,1).
Remark 8.2. For later use we note that no proper subgroup of D,
(resp., M,s) is mapped surjectively by 6 (resp., \').

The following central extensions will be needed in the sequel:

Wo : OHZ/piZ/pHOHO;

w0 = zjp T @z Yoz o

wo : O—>Z/p@>Z/p2 ﬂZ/pHO;

wi: 0 — 7/2 = Dy Loz - o,

wit 0 = Z/p Z5 Hg A (Z/p)? - 0 (p # 2);

Ws : 0 — Z/p niiiN M3 X, (Z/p)* — 0 (p #2);
w0 = Z/p P @ptye @p) Y @2 - o

Thus [wo], [w1] are the trivial classes of Ext(0,Z/p), Ext(Z/p,Z/p),
respectively, and [wq] is the inflation of [wy]. Likewise

(81) iIlf(Z/p)2<[w2]) = [w6]
relative to the projection pr;: (Z/p)* — Z/p on the first coordinate.
Lemma 8.3. For p # 2, the Baer sum of [wy] and |wg] is [ws).
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Proof. Let

B={(fF5i| ==F=1, [Fi{=[51=1, [f3=1.
There is a commutative square
B d H,ys

/| £

2 (EJ)'_’(;J) 2
(z/p*)e® (Z/p) — (Z/p)* ,

where j maps 7, 5,1 to 1, s,t, respectively, and f maps 7,3, to (I,0),
(0,1), (0,0), respectively. Moreover, this square is cartesian, i.e.,

(, /): B — Hys X(z/p2 (Z/p*) ® (Z/p))
is an isomorphism. The Baer sum is therefore the equivalence class of

0~ Zfp =5 B=B/{-F i Z/y) * (Z/p) - 0.
Hence B is obtained from B by adding the relation { = 7. Using
Remark 8.1(c) we deduce that

B(rs|m =s"=1, [s,7”] =1, [r,s] =rP) = M3,

and the Baer sum is [ws]. O

9. EXTENSIONS AND SIMPLE TYPE ELEMENTS

We assume again that ¢ = p is prime. Let G be a finite group.
In this section we compute the extensions corresponding to Ag(@) for
a € Q(G) of simple type and trivial kernel. Some of these facts are
quite well-known in a Galois setting, as is systematically described in

Ledet’s book [Led05] (see also [Fro85, 7.7], [MNT77]), but we derive

them in a more abstract group-theoretic setting.

A) Cup products. Let v,7' € H*(G). We compute the extensions
corresponding to ¢ U’ € H?(G) in various situations. We use the
notation w? as in the beginning of §6. For the uniformity of the pre-
sentation we use this notation also when G = Z /2.

Proposition 9.1. Suppose that Ker(y) N Ker(¢') = 1.
(a) [szJ =) =0, then YU 1_/_1’ corresponds to wy.
(b) If 1 #0,4" =0 (resp., v =0, 9" #0), then 1)U’ corresponds
tow? (resp., W’ ). i
(¢) If p=2 and 1/_1_:_1/_1’ £ 0, then 1 U corresponds to wg’. o
(d) If p # 2 and ,¢" # 0 are Fy-linearly dependent, then ¢ U’

corresponds to w}”.
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(e) If p = 2 and lﬁ,g/_{ are F,-linearly independent, then ¢ U 1)’
corresponds to cgéwiw/). -

(f) If p # 2 and 9" are Fy-linearly independent, then 1 U 3
corresponds to wff’wl).

Proof. Consider the central extension

w: 0—>Z/pi>Bi>G—>1

corresponding to YU Qﬁi . An inhomogeneous normalized 2-cocyle G x
G — Z/p representing 1)Uy’ is given by (o, 7) + ¢ (0)-¢'(7). Therefore
B = (Z/p) x G, with the group law
(9.1) (a,0) * (b,7) = (a+b+ ()Y (7),07)
for a,b € Z/p and 0,7 € G (see (6.1)). The trivial element of B is
(0,1), and one has f(a) = (a,1) and g(a,0) = o for a € Z/p and
o € (G. By induction,

(a,0)" = (ia + “p(0)d/ (0),07), i=0,1,2,... .
We examine the various possibilities.

(a) Immediate.

(b) Here 1 (resp., ¢') is an isomorphism G — Z/p and B is just
the direct product (Z/p) x G. The assertion follows.

(c) The assumptions imply that ¢ = ¢': G — Z/2 is an isomor-
phism. Let oy be the generator of G. Then (0,00)> = (1,1) and
(0,00)* = (0,1) in B. Hence B = Z/4 and w is equivalent to wy.

(d) Here v: G — Z/p is an isomorphism. Since p # 2 and U
is alternate, ¢ U4’ = 0. Hence w, and therefore also w¥ split, so
B = (Z/p)?. Moreover, pick b € B such that (¢ o g)(b) = 1. Then the
map B — (Z/p)?, f(1) — (1,0), b — (0,1), is an isomorphism making
the following diagram commutative:

w: 0 7] p" ! B=(Z/p) x G

G 1
i (3,0 0,3)—]

Thus w is equivalent to w} .

(), (f) Here (¥,¢'): G — (Z/p)? is an isomorphism. Take 01,05 €
G with )

(o1) =1, P(oz) =0, ¥'(01) =0, ¢(02) = 1.
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When p = 2, we set 7 = (1,0103), § = (0,032) and compute in B:
7 =(1,1), 7 =(0,1), = (0,1), 75 = (0,01), (75)* = (0,1).
We get an isomorphism B = Dy, 7 — r, § — s, and a diagram

g

w: 0 Z]2¢ B=(Z/2)x G G 1
| e
ws : 1 Z/2( i D4 o (Z/2)2 —(

which is commutative with exact rows. Hence w is equivalent to wéi’i/).
For p odd, B has exponent p. Set 7 = (0,01), § = (0,09), t = (1,1).

Then

ft=1tr = (1,01), &t =15=(1,00), 75=151 = (1,0,09).

This gives an isomorphism B = Hyps, 7 +— r, § — s, t — t, and a

Py
commutative diagram

w: 0 7] p" ! B=(Z/p) x G G 1
O e
it 0 Bfp s Hyp s (Z/p) — 0.
Therefore w is equivalent in this case to wii’@zl). U

B) Bockstein elements.

Proposition 9.2. If 0 # ¢ € H(G) and G = Z/p, then Ba(v) corre-

sponds to wY .

Proof. As a connecting homomorphism in a cohomology exact sequence,
Ba: HYG) — H?*(G) is defined as follows [NSWO00, Ch. I, §3]: let
pr: Z/p* — Z/p be the natural projection. Given a nonzero 1) €
HY(G), we consider it as an inhomogeneous 1-cocycle, and lift it to a

map ¢: G — Z/p* with ¢ = protp. Then the map
X: GxG—=1Z[p,  x(on,02) = P(01) + 1(02) — 1h(010%)

is a normalized 2-cocycle with cohomology class G5 (v)).
On the other hand,_lﬁ: G — Z/pis an isomorphism, so 1 is a section
of the epimorphism ! o pr: Z/p*> — G. By the remarks in §6, the

cohomology class Gz (¢) of x therefore corresponds to the extension

- lopr =

wy 0—>Z/p—>Z/p2i7—>G—>1. O
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Corollary 9.3. Suppose that p # 2 and let 1,7 € HYQG) be -
linearly dependent, 1 # 0. Then Ag(1h @ 1)) corresponds to wy .

Proof. Since U is alternate, 1) U’ = 0. Hence Ag(v @', v¢) = Ba ().
Now use Proposition 9.2. O

When 1,7’ are F,-linearly independent the computation is more
involved. It is sufficient for us to consider only the case p # 2.

Proposition 9.4. Suppose that p # 2. Let P, € Hl(C:J) be IFp-
linearly independent with Ker(1) N Ker(¢') = 1. Then Ag(y) @ ', 1))

corresponds to wéw’w,) .

Proof. We may decompose G = G x G’, where G, G’ = Z/p and there

exists 1) € Hl(G) with inf (1)) = . By Proposition 9.2, 85(1)) cor-

responds to wy. Hence B (1)) = mfG(ﬁG(lp)) corresponds to infa(wy).
By Lemma 6.2, this extension is

—(pi,1) (1~ topr,id)

0 — Z/p (Z)p*) x G’ Gx G — 1,
where pr: Z/p* — Z/p is again the natural projection. But the latter
extension is equivalent to

@fp?) x Z/p) DD G=Gx G -

0 — Z,/p 1—(pi,0)
which is wé@,@’). o
Now by Proposition 9.1(f), 1) U1’ corresponds to wiw’w/). It therefore

follows from Lemma 8.3 that ) U’ + 35(1)) corresponds to wé&’lm. O

C) Summary. Putting together the results of the previous two sub-
sections we obtain:

Proposition 9.5. Let a € Q(G) have simple type and trivial kernel,
Then Ag(a@) € H*(G) corresponds to one of the following extensions:
(i) whenp=2: wy, w%, w¥, w:gww )
(ii) when p #2:  wy, w%, wg, wéww ),

where 1, 1) are taken as above.

Proof. When p = 2 we have a = = ¢ ® ¢/, with 1/1 Y € HY(G) and
Ker(¢)) N Ker(y') = 1. Furthermore, Ag(a) = ¥ Uv'. Now apply
Proposition 9.1.

When p # 2 we write @ = (¢ ®1)', ) where again ¢, 1)’ € HI(G) and
Ker (1)) N Ker(¢)') = 1. Here Ag(a ) YUY + Ba(i). If ¢ = 0, then
this corresponds to either wy or W1 , by Proposition 9.1(a)(b). If ) # 0
and 1,9’ are F,-linearly dependent, then Ag(a) = B5(1)) corresponds
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to w;Z , by Proposition 9.2. Finally, if ¢, ¢ are [F)-linearly independent,
then by Proposition 9.4, Az(&) corresponds to wéw’w/). O
One has the following converse result:

Proposition 9.6. When p = 2 let i € {0,1,2,3} and when p # 2 let
i €{0,1,2,5}. Let (Z/p)* be the right group inw; (sos =0,1,1,2,2 for
i =0,1,2,3,5, respectively). Let : G = (Z/p)* be an isomorphism.

There exists a € Q(G) of simple type and with trivial kernel such that
Ag(a) € H*(G) corresponds to w?.

Proof. We may assume that G = (Z/p)* and 6 = id. Let pr;: (Z/p)* —
Z/p be the projection on the jth coordinate, j = 1, 2.
When p = 2 we take & = ¢ ® v/, where

(?Z,’lj)/) = (070)7 (idZ/270)7 (idZ/27idZ/2)7 (prlapr2)a

to obtain using Proposition 9.1(a)(b)(c)(e) wo, wi, wa, ws, respectively.
When p £ 2 we take & = ($@, ), where (3, ¢/) = (0,0), (0,idz),
to obtain using Proposition 9.1(a)(b) the extensions wy, wi, respec-

tively. Also, take @ = (¢ @ ¢/, 1), where ¢ = ¢ = idz, to obtain

using Corollary 9.3 the extension w,. Finally, & = (¥ ® ¢', 1)), where
1 = pry, ¥’ = pry, gives using Proposition 9.4 the extension ws. U

10. LIFTING OF HOMOMORPHISMS

We now apply the computations of the previous section to solve some
specific embedding problems.

Lemma 10.1. Let G be a profinite group and v: G — Z/p an epimor-
phism. Then Bg(v¥) = 0 if and only if ¢ factors via the natural map

Z[p* — L[p.
Proof. Let G = G/Ker(¢) = Z/p and let 7: G — G be the natural
map. There exists 1) € H'(G) with ¢ = ¢ o 7 and infg (1)) = . Then

infe(Ba(¥)) = Ba(y). By Proposition 9.2, Ba(1)) corresponds to wy .
It follows from the last sentence of Proposition 7.1 that fg(v) = 0 if

and only if the following embedding problem is solvable

>
Z/p® Z/p 0.

Note that if the homomorphism ® exists, then it must be surjective. []

In the next proposition let r, s be the generators of M,s as in §8.
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Proposition 10.2. Let p # 2 and let G be a profinite group of Galois
relation type. Every epimorphism v: G — Z/p breaks via one of the
epimorphisms:

(i) the natural map Z/p* — Z/p;

(ii) the map \": Mys — Z/p, defined by r — 1, s+ 0.
Proof. If Bg(v) = 0, then by Lemma 10.1, ¢ breaks via the map (i).

Next assume that S5 (1)) # 0. Since G has Galois relation type, there

exists £ € H'(G) with ¥ U & + Bg(¢) = 0. In particular, ¢ U & # 0.
Since p # 2 and the cup product is alternate, 1) and { are IF,-linearly
independent. Now let G = G/(Ker(y)) N Ker(£)) = (Z/p)?, and let
7: G — G be the canonical map. Take ¢, & € HY(G) with ¢ = ¢ o,
¢ =¢om, infg(¥)) =9, and infg(€) = €. Then

info(Ag(v ® & 1)) = Aa(yp @ €, 4) = 0.

By Proposition 9.4, Az (¢ ® &, ) corresponds to wéi’g). It follows again
from Proposition 7.1 that the embedding problem

G

l(w@
)\/
Mps — (Z/p)2 —0

(]

is solvable. By Remark 8.2, no proper subgroup of M,s is mapped sur-
jectively by N. Therefore ® is surjective. As before, let pr;: (Z/p)* —
Z/p be the projection on the first coordinate. We deduce that ¢ breaks
via the epimorphism pr; o)\, which is just \”. O

Next let r, s be the generators of D, as in §8. We write G(p) for the
maximal pro-p quotient of the profinite group GG. One has the following
analog of Proposition 10.2 for p = 2.

Proposition 10.3. Let p = 2 and let G be a profinite group of Galois
relation type and such that G(2) % Z/2. FEvery epimorphism v¢: G —
7,)2 factors via one of the epimorphisms:
(i) the natural map Z/4 — Z/2;
(ii) the map 0': Dy — Z/2 , defined by r — 1, s+ 0;
(iil) the map 0" : Dy — 7./2, defined by r — 0, s — 1.

Proof. Let £ be as in Definition 3.1(ii). By the assumptions, G(2) #
1,Z/2. Hence, if G(2) is pro-cyclic, then v factors via the map (i). We
may therefore assume that G(2) is not pro-cyclic.

If Be(¢)) = 0, then by Lemma 10.1, ¢ factors via the map (i).

Next we assume that v, £ + 1) are Fy-linearly independent. Let G =
G/(ker(y) N Ker(€)) and let m: G — G/G be the natural map. There
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exist 9, € HY(G) with ¢ = Y om, & = {om, infg(y)) = ¢ and
infe(§) = €. Note that Ker(y)) NKer(§ +v) = Ker(¢) Nker(§) = 1. By
Proposition 9.1(e), ¢ U (£ + 1)) corresponds to the extension wéw’5+w)

By the choice of ¢ and Lemma 2.4,

infa( U (§+¢)) = U+ U =26a() =0.
Proposition 7.1 therefore implies that the embedding problem
G
l(w&w)
Dy —% (2/2)? —0

P

is solvable. Since no proper subgroup of D, is mapped by 6 surjectively
onto (Z/2)? (Remark 8.2), @ is surjective. We deduce that 1) factors
via the epimorphism pr, o), which is just ¢'.

Finally assume that Gg(¢) # 0 and 9, £ + ¢ are Fy-linearly depen-

dent. As Gg(¢) =1 UE, necessarily € # 0. But ¢ # 0, so ¢ =¢&.
Now G(2) is not pro-cyclic, so there exists ¢/ € H'(G) such that

¥, are Fo-linearly independent. Then ¢/, & + 1)’ are also Fo-linearly
independent. By the argument above, the embedding problem

G
i(w/,éﬂb/)
Dy —% (2/2)? —0

P

is solvable. Composing with the map o: (Z/2)* — Z/2, (i,7) — i + J,
we obtain that ¢ = ¢ factors via o o @, which is just 6" O

11. THE MAIN RESULTS

Let G be a again a profinite group and ¢ = p a prime number.

Theorem 11.1. The following conditions on a normal open subgroup
N of G are equivalent:

(a) N is distinguished;
(b) (i) When p =2, G/N is isomorphic to one of the groups

]'7 Z/27 (Z/2)27 Z/47 D4a
(ii)) When p # 2, G/N is isomorphic to one of the groups
17 Z/p7 (Z/p)27 Z/p27 MPS'
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Proof. (a)=>(b): Let N be distinguished and M, &, ¢ data for N.
Thus N = Ker(p). Set G = G/M and consider a central extension

W : 0 — Z/p - B - G — 1

corresponding to Ag(@). By Proposition 7.2, G/N embeds in B.
If p = 2, then by Proposition 9.5, w is equivalent to an extension of

one of the forms wo, w?, wy, wg’@/). Then G/N embeds in one of the
groups Z/2, (Z./2)?, Z/4, Dy, and is therefore as in (i).
If p # 2, then by Proposition 9.5, w is equivalent to an extension of

one of the forms wy, w%, wy wéi’i/). Then G/N embeds in one of the

groups Z/p, (Z/p)?, Z/p*, M,s, and is therefore as in (ii).

(b)=(a): By Example 4.7, G itself is distinguished. We may there-
fore assume that G/N is nontrivial. Hence it is isomorphic to the
middle group B of w; where ¢ € {0,1,2,3},if p =2, and i € {0, 1,2,5},
if p # 2. Therefore there is an open normal subgroup M of G such
that N < M and the following diagram commutes:

w: 0 Z[p G/N —G/M —1
Wi 0 Z[p f‘% (Z}p)s —0,

where 6 is an isomorphism. Then w,w? are equivalent. By Proposition

9.6, w! corresponds to Ag (@) € H*(G/M) for some & € Q(G/M) of
simple type and with trivial kernel, and therefore so does w. Conclude
from Proposition 7.2 that N is distinguished. O

We deduce the following stronger form of the Main Theorem:

Corollary 11.2. Suppose that p # 2 and let G be a profinite group of
Galois relation type. Then G®) is the intersection of all normal open
subgroups N of G with G /N isomorphic to one of 1, Z/p*, M.

Proof. By Theorems 5.2 and 11.1, G® is the intersection of all normal
open subgroups N of G with G/N isomorphic to one of 1, Z/p, Z/p?,
M,s. By Proposition 10.2, Z/p can be omitted from this list. O

For p = 2 Theorem 5.2 and Theorem 11.1 give:

Corollary 11.3. Let p = 2 and let G be of Galois relation type. Then
G®) is the intersection of all normal open subgroups N of G such that
G/N s isomorphic to one of the groups 1, Z/2, Z/4, Dy.

By Proposition 3.2, this extends [MSp96, Cor. 2.18], which proves it
for G = G, F a field. Combined with Proposition 10.3 it gives:
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Corollary 11.4. Let p = 2 and let G be a profinite group of Galois
relation type such that G(2) % Z/2. Then G® is the intersection of all
normal open subgroups N of G such that G/N is isomorphic to one of
the groups 1, Z/4, Dy.

11.5. Remarks. (a) The converse of Corollary 11.4 also holds: if
G(2) 2 7Z/2, then G® is not an intersection as above.

(b) Let F be a field of characteristic # 2 and let G = Gr. Then
G(2) @ Z/2 if and only if F is a Euclidean field, i.e., the set (F*)? of
all nonzero squares in F' is an ordering on F' ([Bec74], [Efr06, §19.2]).
Therefore, by (a), the Euclidean fields are those fields for which the
group Z/2 cannot be omitted from the list in Corollary 11.3.

12. THE STRUCTURE OF G/G®)

When p = 2 and G = Gp for a field F, the quotient G/G® is
the W-group of F, studied in [MSp90], [MSp96], and [MMS04]. It
encodes much of the “real” arithmetic structure of F'. We now give
some restrictions on the group structure of G//G®) also for p odd.

Proposition 12.1. Let G be a profinite group of Galois relation type
with G/G®) nonabelian.

(a) If p # 2, then Mys is a quotient of G/G®.
(b) If p = 2, then Dy is a quotient of G/G®).

Proof. By our assumption, G® cannot be an intersection of open nor-
mal subgroups N of G with G/N abelian. When p # 2 (resp., p = 2)
Corollary 11.2 (resp., Corollary 11.3) yields an open normal subgroup
N of G with G/N = My (resp., G/N = D,). The natural epimor-
phism h: G — G = G//N maps G® to G®), which is trivial by Remark
8.1(b). Hence h induces an epimorphism h: G/G® — G. O

We recover the following known “automatic realizations”:

Corollary 12.2. Suppose that F' is a field of characteristic # p and
containing a root of unity of order p.
(a) ([Bra89]) If p # 2 and H,ps is realizable as a Galois group over
F, then Mys is also realizable as a Galois group over F.
(b) ([MS91, Prop. 2.1]) If p = 2 and Qs is realizable as a Galois
group over F', then Dy 1s also realizable over F'.

Proof. When p # 2 (resp., p = 2), take G = H,s (resp., G = Qg). Thus
G is a quotient of G = G, and as G® = 1 (by Remark 8.1(b)), also of
G/G®). Hence G/G® is nonabelian. Now apply Proposition 12.1. [
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The next fact was earlier proved in [BLMS07, Th. A.3] when G = G
for a field F' containing a primitive pth root of unity.

Proposition 12.3. Let p # 2 and let G be a profinite group of Galois
relation type. Every element of G/G®) of order p belongs to G® /G®).

Proof. Tt suffices to show that the elements of order p in G/G® are
in the kernel of every epimorphism v¢: G/G®) — Z/p. Now 4 lifts to
a unique epimorphism ¢: G — Z/p. By Proposition 10.2, ¢ breaks
via an epimorphism 7: G — Z/p, where either G = Z/p? and 7 is
the natural projection, or G = My and m = 2 (where A\’ maps the
generators 1, s of M to 1,0, respectively). In both cases, G® =1, by
Remark 8.1(b) again. Therefore there is a commutative triangle

G/G®

-

G —Z/p.

In both cases 7 is trivial on elements of G of order p (for G = M, this
follows from Remark 8.1(c)). The claim follows. O

Remark 12.4. Proposition 12.3 is no longer true when p = 2. For
instance, G = Z/2(= Gg) has Galois relation type, yet G/G®) = 7 /2
and G®/G® = 1. More generally, take G = Gy for a field F of
characteristic # 2. Then G/G®) contains an involution which is not in
G®@ /GO if and only if F is formally real [MSp90, Th. 2.7].

Example 12.5. Suppose that p # 2 and that G has Galois relation
type. By Proposition 12.3, G/G®) cannot be isomorphic to (Z/p)’,
with I # 0, to Hys, nor to M,s (see Remark 8.1(c)).

Remark 12.6. By the celebrated Artin—Schreier theorem, an absolute
Galois group of a field is either 1, Z /2, or is infinite. Our results provide
a new cohomological proof of this fact in characteristic 0, as follows.

Assume that F' is a field of characteristic 0 with G = G finite. If
G = Z/p with p # 2, then F' contains a primitive pth root of unity. By
Proposition 3.2, G has Galois relation type, contrary to what we have
seen in Example 12.5. This shows that G is a finite 2-group.

Next suppose that G contains an element of order 4. We may then as-
sume that G 2 Z/4. Let K be its unique subgroup of order 2 and write
HY(K) = {0,9}. The map resg: H'(G) — H'(K) is trivial. Hence
the Kummer element ro(—1) € H'(K) (which comes from H'(G)) is
zero. By Corollary 2.8(b), Bk (1) = ¥ U ky(—1) = 0. On the other
hand, there are no epimorphisms K — Z/4, contrary to Lemma 10.1.
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Hence, G consists of involutions. By Proposition 10.3, G = 1,7Z/2.

13. EXAMPLES

We first give examples showing that non of the groups listed in Corol-
laries 11.3 and 11.2 can be omitted from these lists.

Example 13.1. Taking G = G¢ = 1 we see that the trivial group
cannot be removed from the above lists.

Example 13.2. For p =2 and G = G = Z/2 one has G® = 1. This
shows that Z/2 cannot be removed from the list in Corollary 11.3.

Example 13.3. Let F' be a finite field and let G = Gp = Z. Then
G/G® = 7,/p?. Therefore Z/p? cannot be removed from the lists.

Example 13.4. Take p = 2 and F' = R((t)). Then G = Gp =
(T,€| € = (1€)? = 1) [Efr06, §22.1]. There is an epimorphism G +— Dy,
T+ 1, € — s (with notation as in §8). Hence G/G®) is non-abelian.
Now let Ny be the intersection of all closed normal subgroups N of G
such that G/N is isomorphic to one of 1, Z/2,and Z/4. Then G/Ny is
abelian (in fact, it is isomorphic to (Z/2)?). Consequently, Ny # G®).
Therefore D, cannot be removed from the list in Corollary 11.3.

Example 13.5. Let p # 2. Dirichlet’s theorem on primes in arithmeti-
cal progressions yields n > 0 with { = p(pn + 1) + 1 prime. Let (,2 be
in the algebraic closure of ;. Then F; contains the pth roots of unity,
but does not contain a p*th root of unity (,2. Therefore the maximal
pro-p Galois group G, (p) has a generator & such that o((,2) = ;j P
Lift & to some 0 € G = Gg,(p). Also let 7 be a generator of the inertia
group of G. Then G is generated by 7 and o, subject to the defining
relation o701 = 7177 [Efr06, Example 22.1.6].

Now let Ny be the intersection of all closed normal subgroups N of G
with G/N isomorphic to 1 or Z/p?. Then G /N, is abelian. Since there
is an epimorphism G — M3, 7+ 7, 0 — s (notation as in §8), G/G®)
is non-abelian, so Ny # G® (in fact, G/Ny = (Z/p*) x (Z/p) while
G/G®) = (Z/p*) x (Z)p*) = (F) x (5), with action 676! = F1*P).
Thus M,s cannot be removed from the list in Corollary 11.2.

Our final two examples show that in Corollaries 11.3 and 11.2 one
cannot omit the assumption that G' has Galois relation type.

Example 13.6. Let p = 2 and let G = )s. Then G has no normal
subgroups N with G/N = Z/4 or G/N = Dy, and has three distinct
normal subgroups N with G/N = 7Z/2, all containing the center Z(G).
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Thus the intersection of all normal subgroups N of GG as in Corollary
11.3is Z(G)(=2 Z/2). On the other hand, G® = 1 (Remark 8.1(b)).

Example 13.7. Let p # 2 and let G = Z/p or G = H,s. Then G
has no quotients isomorphic to Z/p? or M,s. Thus the intersection in
Corollary 11.2 is G itself. But by Remark 8.1(b), G® = 1.

In this respect, the Main Theorem is a genuine structural result
about absolute Galois groups.

Remark 13.8. In view of Corollaries 11.3 and 11.2, the previous two

examples show that Qs (when p = 2) and Z/p, H,s (when p # 2) do

not have Galois relation type. This can be seen directly as follows.
For G = Qs and p = 2, one has a graded ring isomorphism

H*(Qs) = Folz,y, 2]/ (2* + zy + 32, 2%y + 2y?),

where x,y, 2z have degrees 1, 1,4, respectively (see [Ade97, p. 811, Ex-
ample|, [AM04, Ch. IV, Lemma 2.10]). In this ring, no product of
nonzero elements of degree 1 vanishes, yet 2% + 2y + y?> = 0. Hence
condition (i) of Definition 3.1 is not satisfied for G = Qs.

For G = Z/p and p # 2 one has H*(G) = F,[z,y]/(2?), where z,y
have degrees 1, 2, respectively, and (with the obvious abuse of notation)
Ba(r) =y [Eve9l, §3.2]. Here U: H'(G) x H'(G) — H?*(QG) is the zero
map, but fg(x) # 0. Hence (ii) of Definition 3.1 is not satisfied.

For G = H,s and p # 2, the structure of H*(G) is considerably more
complicated, and was computed by Leary [Lea92, Th. 6 and Th. 7].
Here as well, U: HY(G) x HY(G) — H?(G) is the zero map, but (g is
nontrivial. Therefore condition (ii) of Definition 3.1 is not satisfied.
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