
ON THE FIRST STEENROD SQUARE FOR CHOW GROUPS

OLIVIER HAUTION

Abstract. We construct a weak version of the homological first Steenrod
square, a natural transformation from the modulo two Chow group to the Chow
group modulo two and two-torsion. No assumption is made on the character-
istic of the base field. As an application, we generalize a theorem of Nikita
Karpenko on the parity of the first Witt index of quadratic forms to the case
of a base field of characteristic two.

1. Introduction

Good progress has been made lately towards a uniform treatment of the the-
ory of (non-degenerate) quadratic forms, regardless of the fact the base field has
characteristic two or not. This approach is developed in the book [EKM08]. The
main obstruction that remains, in order to accomplish this program, is that the
Steenrod operations modulo two are not available when the base field has char-
acteristic two. Indeed several constructions of the Steenrod operations for Chow
groups modulo a prime number p are known, but none of them works over a field
of characteristic p.

In this article we construct a weak version of the first homological Steenrod
operation on modulo two Chow groups, over a field of arbitrary characteristic.

More precisely, if Ch denotes the modulo two Chow group, and C̃h the Chow
group modulo its torsion subgroup, tensored with Z/2, we construct group homo-
morphisms

SqX
1 : Ch(X) → C̃h(X),

for all separated schemes X of finite type over a field. These morphisms commute
with proper push-forwards, scalars extension and external product. They satisfy
the formula

SqX
1 [X] = c1(TX)

when X is a smooth variety with tangent bundle TX .
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Using the operation constructed here, we prove a statement about the parity
of the first Witt index of a quadratic form over an arbitrary field. When the base
field is of characteristic different from two, this result is a particular case of a more
precise statement known as Hoffmann’s Conjecture, [EKM08, Proposition 79.4].
But since we only construct the first Steenrod square, we only get a partial state-
ment.

This work is part of my Ph.D. thesis at the university of Paris 6 under the
direction of Nikita Karpenko. I am very grateful to him for introducing me to the
subject, raising the question studied here, and guiding me during this work.

2. Notations

A variety is a separated scheme of finite type over a field, which need not be
irreducible, reduced nor quasi-projective. A regular variety is a variety whose
local rings are all regular local rings.

Grothendieck group of coherent sheaves. Let X be a variety. We shall write
K0(X) for the Grothendieck group of coherent OX-sheaves. Such a sheaf F has
a class [F ] ∈ K0(X), and if f : X → Y is a proper morphism of varieties, there is
a push-forward map

f∗ : K0(X) → K0(Y ) , [F ] 7→
∑

i

(−1)i[Rif∗(F)].

If f : X → Y is flat, there is a pull-back f ∗ : K0(Y ) → K0(X) induced by the
tensor product with OX over OY .

Topological filtration. The group K0(X) is endowed with a topological filtra-
tion 0 = K0(X)(−1) ⊂ K0(X)(0) ⊂ · · · ⊂ K0(X)(dim X) = K0(X). For every
integer d, K0(X)(d) is the subgroup of K0(X) generated by classes of coherent
OX-sheaves supported in dimension ≤ d. This filtration is compatible with proper
push-forwards. The associated graded group shall be denoted by gr• K0(X).

External product. Let X and Y be varieties over a common field, and pX : X ×
Y → X, pY : X × Y → Y be the two projections. There is an external product

− ⊠ − : K0(X) ⊗ K0(Y ) → K0(X × Y )

induced by the association

(E ,F) 7→ (pX
∗E) ⊗OX×Y

(pY
∗F).

For any integers m and n, we have

K0(X)(m) ⊠ K0(Y )(n) ⊂ K0(X × Y )(m+n).
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Comparison with Chow groups. There is a morphism of graded abelian groups

ϕX : CH•(X) → gr• K0(X) , [Z] 7→ [OZ ] mod K0(X)(dim Z−1)

which commutes with proper push-forwards (see [Ful98, Example 15.1.5]). Let ×
denote the external product for Chow groups. If X and Y are varieties over a
common field, and x ∈ K0(X), y ∈ K0(Y ), we have

(1) ϕX×Y (x × y) = ϕX(x) ⊠ ϕY (y).

Scalars extension. For a variety X over a field F , and L/F a field extension,
we shall write XL for the variety X ×Spec(F ) Spec(L) over the field L. The flat
morphism XL → X induces pull-backs

x 7→ xL, CH(X) → CH(XL) and K0(X) → K0(XL),

which satisfy, for all x ∈ K0(X)

(2) ϕXL
(xL) = ϕX(x)L.

3. Singular Grothendieck-Riemann-Roch Theorem

For a variety X, we write CH(X)Q for CH(X) ⊗Z Q. An element x ∈ CH(X)
has an image x ⊗ 1 ∈ CH(X)Q.

Theorem 3.1. For all varieties X there is a homomorphism

τX : K0(X) → CH(X)Q

with the following properties.

(a) If f : X → Y is a proper morphism of varieties, we have

f∗ ◦ τX = τY ◦ f∗.

(b) For an integral variety X, we have

τX [OX ] = [X] mod CH<dim X(X)Q.

(c) If u : U → X is an open embedding of quasi-projective varieties, then

τU ◦ u∗ = u∗ ◦ τX .

(d) If X is a variety over a field F , L/F a field extension, then for all x ∈ K0(X)
we have in CH(XL)Q

τX(x)L = τXL(xL).

(e) Let i : X →֒ M be a regular closed embedding, with M a smooth variety. Let
N be the normal bundle of i and TM the tangent bundle of M . Then, writing
Td for the Todd class, we have

τX [OX ] = Td(i∗[TM ] − [N ]).
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Proof. The existence of the map τX satisfying (a) and (b) is proven in [Ful98,
Theorem 18.3]. Applying loc.cit., (4) with f : X → point the structure morphism,
and α = 1 ∈ K0(point), we obtain (e). Putting f = u : U → X, we get (c).

We now prove (d). We first assume that X is quasi-projective over F , and choose
a closed embedding i : X →֒ M into a smooth F -variety M . We can assume that
x = [F ] for some coherent OX -sheaf F , and take a resolution E• → i∗F → 0 by
locally free OM -sheaves. Then by [Ful98, Theorem 18.3, (3)]

τX(x) = chM
X (E•) ∩ Td(TM),

where Td(TM ) is the Todd class of tangent bundle of M , and chM
X (E•)∩− : CH(M)Q →

CH(X)Q the localized Chern character.
We have a closed embedding iL : XL →֒ ML, with ML smooth over L. Let

f : XL → X, g : ML → M be the morphisms induced by the field extension
L/F . Then xL = [f ∗F ], we have an isomorphism g∗ ◦ i∗F ≃ (iL)∗ ◦ f ∗F , and a
resolution g∗E• → (iL)∗ ◦ f ∗F → 0. The tangent bundle TML

of ML is isomorphic
to g∗TM = (TM)L, therefore using [Ful98, Theorem 18.1], we have

τXL(xL) = chML

XL
(g∗E•) ∩ Td(g∗TM) = f ∗

(
chM

X (E•) ∩ Td(TM )
)

= τX(x)L.

Now we drop the assumption that X is quasi-projective over F . Let p : X ′ → X
be a Chow envelope. The map p∗ : K0(X

′) → K0(X) is surjective, let y be an
antecedent of x. Then we have, by compatibility with proper push-forwards

τX(x) = τX ◦ p∗(y) = p∗ ◦ τX′

(y).

The fiber product pL : X ′
L → XL is also a Chow envelope by [Ful98, Lemma 18.3,

(2)], and

τXL(xL) = τXL

(
p∗(y)L

)
= τXL ◦ (pL)∗(yL) = p∗ ◦ τX′

L(yL).

The latter is equal to p∗◦τX′

(y)L by the quasi-projective case, and (d) follows. �

The morphism τX is the homological Chern character. Individual components

τX
k : K0(X) → CHk(X)Q

are defined by composing with the projections CH(X)Q → CHk(X)Q.

4. A 2-integrality property of the homological Chern character

The result obtained in this section, Corollary 4.4, can be thought of as an al-
gebraic analog of [Ada61, Theorem 1] (with r = 1).

Let X be a variety. We denote by CH(X)Z ⊂ CH(X)Q the Chow group of
X modulo its torsion subgroup, and view it as the image of the map CH(X) →
CH(X)Q given by x 7→ x ⊗ 1.
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Lemma 4.1. Let X be a regular, connected and quasi-projective variety of dimen-
sion d. Then

2 · τX
d−1[OX ] ∈ CHd−1(X)Z.

Proof. Since X is quasi-projective, we can find a smooth connected variety M and
a closed embedding j : X →֒ M . As is any closed embedding of regular varieties,
j is a regular closed embedding ([Bou07, Proposition 2, §5, N◦3, p.65]). Letting N
be its normal bundle and TM the tangent bundle of M , we can apply Theorem 3.1,
(e). Using [Ful98, Example 3.2.4] asserting that the first term of the Todd class
is the half of the first Chern class c1, we obtain in CH(X)Q mod CHdimX−2(X)Q

the congruence

τX [OX ] = Td(j∗TM − N) =
(
id +c1(j

∗TM) ⊗ 2−1
)
·
(
id +c1(N) ⊗ 2−1

)−1
[X]

= [X] + c1(j
∗TM − N) ⊗ 2−1.

The statement follows. �

Lemma 4.2. Let X be a normal, connected and quasi-projective variety of di-
mension d. Then

2 · τX
d−1[OX ] ∈ CHd−1(X)Z.

Proof. The set S of points x ∈ X such that OX,x is not a regular local ring is
closed in X ([Bou07, Corollaire 4, §7, N◦9, p.102]). We consider S as a closed
subscheme of X, by endowing it with the reduced scheme structure. Since X is
normal, the subscheme S has codimension at least two in X.

Let u : U → X be the open complement of S in X. The variety U is regular,
connected and quasi-projective, hence Lemma 4.1 applies to U : we find an integral
cycle yU ∈ CHd−1(U) satisfying 2 · τU

d−1[OU ] = yU ⊗ 1. We have the localization
sequence

CH(S) → CH(X)
u∗

−→ CH(U) → 0.

Let y ∈ CHd−1(X) be such that u∗(y) = yU . By Theorem 3.1, (c), we have

u∗(2 · τX
d−1[OX ] − y ⊗ 1) = 2 · τU

d−1[OU ] − yU ⊗ 1 = 0,

hence 2 · τX
d−1[OX ] − y ⊗ 1 belongs to the image of CH(S)Q → CH(X)Q, which is

contained in CH<d−1(X)Q. But 2 · τX
d−1[OX ]− y ⊗ 1 belongs to CHd−1(X)Q, hence

it is zero. �

Proposition 4.3. Let X be an integral variety of dimension d. Then

2 · τX
d−1[OX ] ∈ CHd−1(X)Z.

Proof. First, using Chow’s Lemma [Gro61, II, Théorème 5.6.1], choose a projective
birational morphism e : X ′ → X, with X ′ quasi-projective and integral. Let

n : X̃ → X ′ be the normalization of X ′. It is a finite birational morphism ([Bou06,
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Théorème 2, Chapitre V, §3, N◦2, p.59]), with X̃ normal, connected, and quasi-
projective. Setting p = e ◦ n, we have p∗[O eX ] = [OX ] + i∗(z) for some closed
subvariety i : Z →֒ X, with dim Z < d, and some element z ∈ K0(Z). Then

2 · τX
d−1[OX ] = 2 · p∗ ◦ τ

eX
d−1[O eX ] − 2 · i∗ ◦ τZ

d−1(z).

Since dim Z ≤ d− 1, we have by Theorem 3.1, (b), τZ
d−1(z) ∈ CHd−1(Z)Z, and we

conclude by applying Lemma 4.2 to X̃. �

Corollary 4.4. Let X be a variety, and x ∈ K0(X)(k). Then

2 · τX
k−1(x) ∈ CHk−1(X)Z.

5. The first homological Steenrod square

We define functors from the category of varieties and proper morphisms to
the category of graded abelian groups by setting, for every variety X, Ch(X) =
Z/2 ⊗ CH(X) and

C̃h(X) = CH(X)/(2-torsion + 2 CH(X)) = Z/2 ⊗ CH(X)Z.

There is a natural surjective map

Ch(X) → C̃h(X), x 7→ x̃.

Theorem 5.1. The association

x 7→ 2 · τX
k−1(x)

induces a natural transformation of functors from the category of varieties and
proper morphisms to the category of graded abelian groups

Sq1 : Ch• → C̃h•−1 .

Proof. Let X be a variety. From Corollary 4.4 we get a homomorphism of abelian
groups, for integer k

sk : K0(X)(k) → CHk−1(X)Z → C̃hk−1(X),

Now take x ∈ K0(X)(k−1) ⊂ K0(X)(k). By Theorem 3.1, (b), we have 2 ·

τX
k−1(x) ∈ 2 · CHk−1(X)Z, hence sk(x) = 0 ∈ C̃hk−1(X).
This gives a homomorphism of graded abelian groups

Z/2 ⊗ gr• K0(X) → C̃h•−1(X).

The fact that it commutes with push-forwards along proper morphisms follows
from Theorem 3.1, (a). It only remains to compose with the natural transforma-
tion idZ/2 ⊗ϕ : Ch• → Z/2 ⊗ gr• K0. �

For a variety X, we write SqX
1 : Ch•(X) → C̃h•(X) for the morphism given by

Theorem 5.1.
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Remark 5.2. One can expect the map Sq1 to lift to a morphism

Ch• → Ch•−1 .

However one can not expect that Sq1 descends to a morphism

C̃h• → C̃h•−1,

as suggested by the following example.
Let X be an anisotropic projective 3-dimensional quadric over a field F of char-

acteristic not two, defined by a quadratic form of type 〈〈a, b〉〉 ⊥ c. In this case,
by [Kar90, Theorem 5.3] there is an element l0 ∈ K0(X)(1) such that l0 /∈ K0(X)(0)

and 2l0 ∈ K0(X)(0). Note that ϕX : CH•(X) → gr• K0(X) is an isomorphism :
this is a general fact concerning smooth varieties in codimension 0, 1 and 2 ([Ful98,
Example 15.3.6]); in codimension 3 this follows from the fact that CH0(X) ≃ Z
([EKM08, Corollary 71.4]) and the fact that ϕX has torsion kernel ([Ful98, Ex-
ample 15.3.6]). Let x ∈ Ch1(X) be the antecedent of l0 mod K0(X)(0) under ϕX ,
and y ∈ Ch0(X) the class of a point of degree two. We have ϕX(y) = 2l0, and
using Theorem 3.1, (b)

τX(l0) = 2−1τX(2l0) = y ⊗ 2−1

hence SqX
1 (x) = y, which is non-zero in C̃h0(X). On the other hand x is zero in

C̃h1(X).

Proposition 5.3. Let X and Y be two varieties over the same field, x ∈ CHn(X),
and y ∈ CHm(Y ). We have

SqX×Y
1 (x × y) = x̃ × SqY

1 (y) + SqX
1 (x) × ỹ.

Proof. We know by Theorem 3.1, (b) that τX
k (x) = 0 and τY

l (y) for k > n and
l > m. Then, using [Ful98, Example 18.3.1] and (1), we compute

2 · τX×Y
m+n−1 ◦ ϕX×Y (x × y)

=2 · τX×Y
m+n−1

(
ϕX(x) ⊠ ϕY (y)

)

=τX
m ◦ ϕX(x) × 2 · τY

n−1 ◦ ϕY (y) + 2 · τX
m−1 ◦ ϕX(x) × τY

n ◦ ϕY (y)

=(x ⊗ 1) × 2 · τY
n−1 ◦ ϕY (y) + 2 · τX

m−1 ◦ ϕX(x) × (y ⊗ 1). �

Proposition 5.4. Let X be a smooth variety, with tangent bundle TX . Then

SqX
1 [X] = c̃1(TX).

Proof. This follows from the proof of Lemma 4.1. �

Remark 5.5 (cohomological operation). For a smooth variety X, define

Sq1
X : Ch•(X) → C̃h

•+1
(X), x 7→ SqX

1 (x) + c̃1(TX) · x̃.
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One can prove that Sq1 commutes with pull-backs along arbitrary morphisms of
smooth varieties. The formula Sq1

X(x·y) = x̃·Sq1
X(y)+Sq1

X(x)·ỹ then follows from
Proposition 5.3. Using the fact that the group CH1(X) is generated by regularly
embedded subvarieties when X is smooth, we get the formula Sq1

X(x) = x̃2 for
x ∈ Ch1(X).

In order to prove Theorem 6.2 below, it would suffice to use this cohomological
operation, which can also be constructed directly using a simpler form of the
Riemann-Roch theorem instead of Theorem 3.1. However it is not clear how to
reconstruct the homological operation on singular varieties from the cohomological
one.

We now consider a variety X over a field F , and a field extension F/F such
that variety X = XF has a torsion-free Chow group. Examples of such varieties
include those X such that X is cellular. In particular X could be a projective
homogeneous variety under a semi-simple algebraic group, and F/F an algebraic
closure.

Since Sq1 commutes with field extensions by (2) and Theorem 3.1, (d), we
have a commutative diagram, where vertical arrows are pull-backs along the flat
morphism X → X,

Ch(X)
SqX

1
//

��

C̃h(X)

��

Ch(X)
SqX

1

// C̃h(X).

Note that Ch(X) ≃ C̃h(X), hence the operation SqX
1 is an endomorphism of

Ch(X) which preserves rationality, i.e. induces an endomorphism of the image of
the map Ch(X) → Ch(X).

6. Parity of the first Witt index of a quadratic form

Let X be a smooth projective quadric over a field F , and F/F a splitting field
extension for X, i.e. an extension such that the quadric X = XF contains a
projective space of the maximal possible dimension d (d is the greatest integer
such that 2d ≤ dim X). The variety X and the field extension F/F satisfy the
assumption of the previous section. Indeed a basis for the free abelian group
CH(X) is given by elements hi, li, 0 ≤ i ≤ d, see for example [EKM08]. The cycle
h ∈ CH1(X) is the hyperplane class, and li ∈ CHi(X) is the class of a projective
subspace of dimension i.

A cycle in Ch(X) is said to be rational if it is the restriction of a cycle in Ch(X).
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Lemma 6.1. Let X be a smooth projective quadric, and X the restriction of X
to a splitting field. Then we have in Chi−1(X)

SqX
1 (li) = (i + 1) · li−1.

Proof. Let j : Pi →֒ X be a closed embedding representing the cycle li. Then since

j∗ ◦ SqPi

1 = SqX
1 ◦j∗, and by Proposition 5.4 we have

SqX
1 (li) = j∗ ◦ c1(TPi).

By [EKM08, Example 104.20], this is equal to

j∗ ◦ c1

(
(i + 1) · [O(1)] − [OPi]

)
= j∗

(
(i + 1) · [Pi−1]

)
= (i + 1) · li−1. �

Theorem 6.2. Let ϕ be an anisotropic non-degenerate quadratic form over an
arbitrary field. Let i1 be the first Witt index of ϕ. If dim ϕ− i1 is odd then i1 = 1.

Proof. Let F be the ground field, X be the smooth projective quadric of ϕ, and
F/F a splitting field extension for X. We assume that i1 6= 1. We use the
notion of a cycle contained in another ([EKM08, p.313]). Let π ∈ Ch(X) be
the 1-primordial cycle of X ([EKM08, p.323]). It is the “minimal” ([EKM08,
Definition 73.5]) rational cycle containing h0 × li1−1. Write

π = h0 × li1−1 + li1−1 × h0 + v.

Then v ∈ Ch(X) does not contain h0×li1−1 nor li1−1×h0 by [EKM08, Lemma 73.15].
Also the rational cycle π, hence v, does not contain h1×li1 nor li1×h1 (these points
lie outside of the “shell triangles”, i.e. are forbidden by [EKM08, Lemma 73.12]).

Using Proposition 5.3, we see that the cycle SqX
1 (v) does not contain any of the

cycles h0 × li1−2, h1 × li1−1, li1−2 × h0, li1−1 × h1.

Next we compute SqX
1 (π), which is rational by the considerations of the previous

section. We have, by Proposition 5.3, Lemma 6.1 and Proposition 5.4,

SqX
1 (h0× li1−1) = h0×SqX

1 (li1−1)+ c1(TX)× li1−1 = i1 · (h
0× li1−2)+ c1(TX)× li1−1.

By [EKM08], we know that the modulo two total Chern class of the tangent
bundle TX is (1 + h)dimX+2, hence c1(TX) = (dim X + 2)h1. This gives

SqX
1 (π) = i1 · (h

0 × li1−2 + li1−2 × h0) + (dim ϕ) · (h1 × li1−1 + li1−1 × h1) + SqX
1 (v).

Now by [EKM08, Corollary 73.21] and the property of SqX
1 (v) mentioned above,

we see that dim ϕ and i1 must have the same parity. �
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