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Abstract. The essential dimension is a numerical invariant of an alge-
braic group G which may be thought of as a measure of complexity of
G-torsors over fields. A recent theorem of N. Karpenko and A. Merkur-
jev gives a simple formula for the essential dimension of a finite p-group.
We obtain similar formulas for the essential p-dimension of a broader
class of groups, which includes all algebraic tori.
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1. Introduction

Throughout this paper p will denote a prime integer, k a base field of
characteristic 6= p and G a (not necessarily smooth) algebraic group defined
over k. Unless otherwise specified, all fields are assumed to contain k and
all morphisms between them are assumed to be k-homomorphisms.

We begin by recalling the notion of essential dimension of a functor
from [BF]. Let Fieldsk be the category of field extensions K/k, Sets be the
category of sets, and F : Fieldsk → Sets be a covariant functor. As usual,
given a field extension k ⊂ K0 ⊂ K, we will denote the image of α ∈ F (K)
under the natural map F (K) → F (L) by αL.

An object α ∈ F (K) is said to descend to an intermediate field k ⊆ K0 ⊆
K if α is in the image of the induced map F (K0) → F (K). The essential
dimension edk(α) is defined as the minimum of the transcendence degrees
trdegk(K) taken over all fields k ⊆ K0 ⊆ K such that α descends to K0.
The essential dimension edk(F ) of the functor F is defined as the maximal
value of edk(α), where the maximum is taken over all fields K/k and all
α ∈ F (K).

Of particular interest to us will be the Galois cohomology functor FG :=
H1(∗, G), which associates to every K/k the set of isomorphism classes of
G-torsors over Spec(K). The essential dimension of this functor is usually
called the essential dimension of G and is denoted by the symbol edk(G).
Informally speaking, this number may be thought of a measure of complexity
of G-torsors over fields. For example, if k is an algebraically closed field of
characteristic 0 then groups G of essential dimension 0 are precisely the
so-called special groups, i.e., algebraic groups G/k with the property that
every G-torsor over Spec(K) is split, for every field K/k. These groups were
classified by A. Grothendieck [Gro].

For many groups the essential dimension is hard to compute, even over
the field C of complex numbers. The following related notion is often more
accessible. Let F : Fieldsk → Sets be a covariant functor and p be a prime
integer, as above. The essential p-dimension of α ∈ F (K), denoted edk(α; p),
is defined as the minimal value of edk(αK ′), where K ′ ranges over all finite
field extensions of K whose degree is prime to p. The essential p-dimension
of F , edk(F ; p) of F is once again, defined as the maximal value of edk(α; p),
where the maximum is taken over all fields K/k and all α ∈ F (K), and once
again we will write edk(G; p) in place of edk(FG; p), where FG := H1(∗, G)
is the Galois cohomology functor.

Note that edk(α), edk(F ), edk(G), edk(α; p), etc., depend on k. We will
write ed instead of edk if the reference to k is clear from the context. For
background material on essential dimension we refer the reader to [BR, Re,
RY, BF, Me1].

We also remark that in the case of the Galois cohomology functor FG, the
maximal value of edk(α) and edk(α; p) in the above definitions is attained
in the case where α is a versal G-torsor in the sense of [GMS, Section I.5].
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Since every generically free linear representation ρ : G → GL(V ) gives rise
to a versal G-torsor (see [GMS, Example I.5.4]), we obtain the inequality

(1) edk(G; p) ≤ edk(G) ≤ dim(V ) − dim(G) ;

see [Re, Therem 3.4] or [BF, Lemma 4.11]. (Recall that ρ is called generically
free if there exists a G-invariant dense open subset U ⊂ V such that the
scheme-theoretic stabilizer of every point of U is trivial.)

N. Karpenko and A. Merkurjev [KM] recently showed that the inequal-
ity (1) is in fact sharp for finite constant p-groups.

Theorem 1.1. Let G be a constant p-group and k be a field containing a
primitive pth root of unity. Then

edk(G; p) = edk(G) = min dim(V ) ,

where the minimum is taken over all faithful k-representations G →֒ GL(V ).

The goal of this paper is to prove similar formulas for a broader class of
groups G. To state our first result, let

(2) 1 → C → G → Q → 1

be an exact sequence of algebraic groups over k such that C is central in
G and isomorphic to µr

p for some r ≥ 0. Given a character χ : C → µp, we
will, following [KM], denote by Repχ the set of irreducible representations
φ : G → GL(V ), defined over k, such that φ(c) = χ(c) IdV for every c ∈ C.

Theorem 1.2. Assume that k is a field of characteristic 6= p containing a
primitive pth root of unity. Suppose a sequence of k-groups of the form (2)
satisfies the following condition:

gcd{dim(φ) |φ ∈ Repχ} = min{dim(φ) |φ ∈ Repχ}

for every character χ : C → µp. (Here, as usual, gcd stands for the greatest
common divisor.) Then

edk(G; p) ≥ mindim(ρ) − dimG ,

where the minimum is taken over all finite-dimensional k-representations ρ
of G such that ρ|C is faithful.

Of particular interest to us will be extensions of finite p-groups by alge-
braic tori, i.e., k-groups G which fit into an exact sequence of the form

(3) 1 → T → G → F → 1 ,

where F is a finite p-group and T is a torus over k. Note that in this paper we
will view finite groups F as algebraic groups over k, and will not assume they
are constant, which is to say, the absolute Galois group of k may act non-
trivially on the separable points of G. For the sake of computing edk(G; p) we
may assume that k is a p-closed field (as in Definition 3.1); see Lemma 3.3.
In this situation we will show that

(i) there is a natural choice of a split central subgroup C ⊂ G in the
sequence (2) such that
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(ii) the conditions of Theorem 1.2 are always satisfied.

(iii) Moreover, if G is isomorphic to the direct product of a torus and a
finite twisted p-group, then a variant of (1) yields an upper bound, matching
the lower bound of Theorem 1.2.

This brings us to the main result of this paper. We will say that a repre-
sentation ρ : G → GL(V ) of an algebraic group G is p-faithful if its kernel is
finite and of order prime to p.

Theorem 1.3. Let G be an extension of a (twisted) finite p-group F by an
algebraic torus T defined over a field k (of characteristic not p). In other
words, we have an exact sequence

1 → T → G → F → 1 .

Denote a p-closure of k by k(p) (see Definition 3.1). Then

(a) edk(G; p) ≥ min dim(ρ)−dim G, where the minimum is taken over all

p-faithful linear representations ρ of Gk(p) over k(p).

Now assume that G is the direct product of T and F . Then

(b) equality holds in (a), and

(c) over k(p) the absolute essential dimension of G and the essential p-
dimension coincide:

edk(p)(Gk(p)) = edk(p)(Gk(p) ; p) = edk(G; p).

If G is a p-group, a representation ρ is p-faithful if and only if it is faithful.
However, for an algebraic torus, “p-faithful” cannot be replaced by “faith-
ful”; see Remark 10.3.

Theorem 1.3 appears to be new even in the case where G is a twisted
cyclic p-group, where it extends earlier work of Rost [Ro], Bayarmagnai [Ba]
and Florence [Fl]; see Corollary 9.3 and Remark 9.4.

If G a direct product of a torus and an abelian p-group, the value of
edk(G; p) given by Theorem 1.3 can be rewritten in terms of the charac-
ter module X(G); see Corollary 9.2. In particular, we obtain the following
formula for the essential dimension of a torus.

Theorem 1.4. Let T be an algebraic torus defined over a p-closed field k =
k(p) of characteristic 6= p. Suppose Γ = Gal(ksep/k) acts on the character

lattice X(T ) via a finite quotient Γ. Then

edk(T ) = edk(T ; p) = min rank(L) ,

where the minimum is taken over all exact sequences of Z(p)Γ-lattices of the
form

(0) → L → P → X(T )(p) → (0) ,

where P is permutation and X(T )(p) stands for X(T ) ⊗Z Z(p).
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In many cases Theorem 1.4 renders the value of edk(T ) computable by
known representation-theoretic methods, e.g., from [CR]. We will give sev-
eral examples of such computations in Sections 11 and 12. Another applica-
tion was recently given by Merkurjev (unpublished), who used Theorem 1.4,
in combination with techniques from [Me2], to show that

edk(PGLpr ; p) ≥ (r − 1)pr + 1

for any r ≥ 1. (For r = 2 the above inequality is the main result of [Me2].)
This represents dramatic improvement over the best previously known lower
bounds on edk(PGLpr). The question of computing edk(PGLpr) is a long-
standing open problem; for an overview, see [MR1, MR2].

It is natural to try to extend the formula of Theorem 1.3(b) to all k-groups
G, whose connected component G0 is a torus. For example, the normalizer
of a maximal torus in any reductive k-group is of this form. For the purpose
of computing edk(G; p) we may assume that k is p-closed and G/G0 is a
p-group; in other words, G is as in Theorem 1.3(a). Then

(4) min dim µ − dim(G) ≤ ed(G; p) ≤ min dim ρ − dimG ,

where the two minima are taken over all p-faithful representations µ, and
p-generically free representations ρ, respectively. Here we say that a repre-
sentation ρ of G is p-generically free if the ker(ρ) is finite of order prime to p,
and ρ descends to a generically free representation of G/ ker(ρ). The upper
bound in (4) follows from (1), in combination with Theorem 6.1; the lower
bound is Theorem 1.3(a). If G is a direct product of a torus and a p-group,
then every p-generically free representation is p-faithful (see Lemma 7.1).
In this case the lower and upper bounds of (4) coincide, yielding the exact
value of edk(G; p) of Theorem 1.3(b). However, if we only assume G is a
p-group extended by a torus, then faithful G-representations no longer need
to be generically free. We do not know how to bridge the gap between the
upper and the lower bound in (4) in this generality; however, in all of the
specific examples we have considered, the upper bound turned out to be
sharp. We thus put forward the following conjecture.

Conjecture 1.5. Let G be an extension of a p-group by a torus, defined
over a field k of characteristic 6= p. Then

ed(G; p) = mindim ρ − dim G,

where the minimum is taken over all p-generically free representations ρ of
Gk(p) over k(p).

The rest of the paper is structured as follows. Theorem 1.2 is proved in
Section 2. Section 3 is devoted to preliminary material on the p-closure of
a field. Theorem 1.3(a) is proved in Sections 4 and 5. In Section 6 we will
show that if G → Q is a p-isogeny then edk(G; p) = edk(Q; p). This result
playes a key role in the proof of Theorem 1.3(b) in Section 7. At the end
of Section 7 we prove a formula for the essential p-dimension of any finite
group G by passing to a Sylow p-subgroup defined over k; see Corollory 7.2.
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In Section 8 we prove the following Additivity Theorem 8.1: If G1 and G2

are direct products of tori and p-groups, then

edk(G1 × G2; p) = edk(G1; p) + edk(G2; p) .

In Section 9 we restate and amplify Theorem 1.3(b) (with G abelian) in
terms of Gal(ksep/k)-modules; in particular, Theorem 1.4 stated above is a
special case of Corollary 9.2 which is proved there. In Section 10 we prove
Theorem 1.3(c) by using Theorem 1.3(b), additivity, and the lattice per-
spective from Section 9. The last two sections are intended to illustrate
our results by computing essential dimensions of specific algebraic tori. In
Section 11 we classify algebraic tori T of essential p-dimension 0 and 1; see
Theorems 11.1 and 11.5. In Section 12 we compute the essential p-dimension
of all tori T over a p-closed field k, which are split by a cyclic extension l/k
of degree dividing p2.

2. Proof of Theorem 1.2

Denote by C∗ := Hom(C,µp) the character group of C. Let E → SpecK
be a versal Q-torsor [GMS, Example 5.4], where K/k is some field extension,
and let β : C∗ → Brp(K) denote the homomorphism that sends χ ∈ C∗ to
the image of E ∈ H1(K,Q) in Brp(K) under the map

H1(K,Q) → H2(K,C)
χ∗

→ H2(K,µp) = Brp(K)

given by composing the connecting map with χ∗. Then there exists a basis
χ1, . . . , χr of C∗ such that

(5) edk(G; p) ≥
r∑

i=1

indβ(χi) − dim G,

see [Me1, Theorem 4.8, Example 3.7]. Moreover, by [KM, Theorem 4.4, Re-
mark 4.5]

ind β(χi) = gcd dim(ρ) ,

where the greatest common divisor is taken over all (finite-dimensional)
representations ρ of G such that ρ|C is scalar multiplication by χi. By our
assumption, gcd can be replaced by min. Hence, for each i ∈ {1, . . . , r} we
can choose a representation ρi of G with

indβ(χi) = dim(ρi)

such that (ρi)|C is scalar multiplication by χi.
Set ρ := ρ1 ⊕ · · · ⊕ ρr. The inequality (5) can be written as

(6) edk(G; p) ≥ dim(ρ) − dim G.

Since χ1, . . . , χr forms a basis of C∗ the restriction of ρ to C is faithful. This
proves the theorem. �
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3. The p-closure of a field

Let K be a field extension of k and Kalg an algebraic closure. We will

construct a field K(p)/K in Kalg with all finite subextensions of K(p)/K of

degree prime to p and all finite subextensions of Kalg/K
(p) of degree a power

of p.
Fix a separable closure Ksep ⊂ Kalg of K and denote Γ = Gal(Ksep/K).

Recall that Γ is profinite and has Sylow-p subgroups which enjoy similar
properties as in the finite case, see for example [RZ] or [Wi]. Let Φ be a
Sylow-p subgroup of Γ and KΦ

sep its fixed field.

Definition 3.1. We call the field

K(p) = {a ∈ Kalg|a is purely inseparable over KΦ
sep}

a p-closure of K. A field K will be called p-closed if K=K(p).

Note that K(p) is unique in Kalg only up to the choice of a Sylow-p
subgroup Φ in Γ. The notion of being p-closed does not depend on this
choice.

Proposition 3.2.

(a) K(p) is a direct limit of finite extensions Ki/K of degree prime to p.

(b) Every finite extension of K(p) is separable of degree a power of p; in

particular, K(p) is perfect.
(c) The cohomological dimension of Ψ = Gal(Kalg/K

(p)) is cdq(Ψ) = 0
for any prime q 6= p.

Proof. (a) First note that Ksep is the limit of the directed set {KN
sep} over

all normal subgroups N ⊂ Γ of finite index. Let

L = {KNΦ
sep |N normal with finite index in Γ}.

This is a directed set, and since Φ is Sylow, the index of NΦ in Γ is prime to
p. Therefore L consists of finite separable extensions of K of degree prime
to p. Moreover, KΦ

sep is the direct limit of fields L in L.

If char k = 0, K(p) = KΦ
sep and we are done. Otherwise suppose char k =

q 6= p. Let

E = {E ⊂ Kalg|E/L finite and purely inseparable for some L ∈ L}.

E consists of finite extensions of K of degree prime to p, because a purely
inseparable extension has degree a power of q. One can check that E forms
a directed set.

Finally note that if a is purely inseparable over KΦ
sep with minimal poly-

nomial xqn

− l (so that l ∈ KΦ
sep), then l is already in some L ∈ L since KΦ

sep

is the limit of L. Thus a ∈ E = L(a) which is in E and we conclude that

K(p) is the direct limit of E .
(b) K(p) is the purely inseparable closure of KΦ

sep in Kalg and Kalg/K
(p) is

separable, see [Win, 2.2.20]. Moreover, Gal(Kalg/K
(p)) ≃ Gal(Ksep/KΦ

sep) =
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Φ is a pro-p group and so every finite extension of K(p) is separable of degree
a power of p.

(c) See [Se2, Cor. 2, I. 3]. �

We call a covariant functor F : Fields /k → Sets limit-preserving if for
any directed system of fields {Ki}, F(lim

→
Ki) = lim

→
F(Ki). For example if

G is an algebraic group, the Galois cohomology functor H1(∗, G) is limit-
preserving; see [Ma, 2.1].

Lemma 3.3. Let F be limit-preserving and α ∈ F(K) an object. Denote

the image of α in F(K(p)) by αK(p).

(a) edk(α; p) = edk(αK(p) ; p) = edk(αK(p)).
(b) edk(F ; p) = edk(p)(F ; p).

Proof. (a) The inequalities ed(α; p) ≥ ed(αK(p) ; p) = ed(αK(p)) are clear

from the definition and Proposition 3.2(b) since K(p) has no finite extensions
of degree prime to p. It remains to prove ed(α; p) ≤ ed(αK(p)). If L/K is
finite of degree prime to p,

(7) ed(α; p) = ed(αL; p),

cf. [Me1, Proposition 1.5] and its proof. For the p-closure K(p) this is similar
and uses (7) repeatedly:

Suppose there is a subfield K0 ⊂ K(p) and αK(p) comes from an element

β ∈ F(K0), so that βK(p) = αK(p) . Write K(p) = limL, where L is a direct
system of finite prime to p extensions of K. Then K0 = limL0 with L0 =
{L∩K0|L ∈ L} and by assumption on F , F(K0) = lim

L′∈L0

F(L′). Thus there

is a field L′ = L ∩ K0 (L ∈ L) and γ ∈ F(L′) such that γK0 = β. Since αL

and γL become equal over K(p), after possibly passing to a finite extension,
we may assume they are equal over L which is finite of degree prime to p
over K. Combining these constructions with (7) we see that

ed(α; p) = ed(αL; p) = ed(γL; p) ≤ ed(γL) ≤ ed(αK(p)).

(b) This follows immediately from (a), taking α of maximal essential p-
dimension. �

Proposition 3.4. Let F ,G : Fields /k → Sets be limit-preserving functors
and F → G a natural transformation. If the map

F(K) → G(K)

is bijective (resp. surjective) for any p-closed field extension K/k then

ed(F ; p) = ed(G; p) (resp. ed(F ; p) ≥ ed(G; p)).

Proof. Assume the maps are surjective. By Proposition 3.2(a), the natural
transformation is p-surjective, in the terminology of [Me1], so we can apply
[Me1, Prop. 1.5] to conclude ed(F ; p) ≥ ed(G; p).
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Now assume the maps are bijective. Let α be in F(K) for some K/k and β
its image in G(K). We claim that ed(α; p) = ed(β; p). First, by Lemma 3.3 we
can assume that K is p-closed and it is enough to prove that ed(α) = ed(β).

Assume that β comes from β0 ∈ G(K0) for some field K0 ⊂ K. Any finite
prime to p extension of K0 is isomorphic to a subfield of K (cf. [Me1, Lemma
6.1]) and so also any p-closure of K0 (which has the same transcendence
degree over k). We may therefore assume that K0 is p-closed. By assumption
F(K0) → G(K0) and F(K) → G(K) are bijective. The unique element
α0 ∈ F(K0) which maps to β0 must therefore map to α under the natural
restriction map. This shows that ed(α) ≤ ed(β). The other inequality always
holds and the claim follows.

Taking α maximal with respect to its essential dimension, we obtain
ed(F ; p) = ed(α; p) = ed(β; p) ≤ ed(G; p). �

4. The group C(G)

As we indicated in the Introduction, our proof of Theorem 1.3(a) will
rely on Theorem 1.2. To apply Theorem 1.2, we need to construct a split
central subgroup C of G. In this section, we will explain how to construct
this subgroup (we will call it C(G)) and discuss some of its properties.

Recall that an algebraic group G over a field k is said to be of multiplicative
type if Gksep is diagonalizable over the separable closure ksep of k; cf., e.g., [Vo,
Section 3.4]. Here, as usual, Gk′ := G×Spec k Spec(k′) for any field extension
k′/k. Connected groups of multiplicative type are precisely the algebraic
tori.

We will use the following common conventions in working with an alge-
braic group A of multiplicative type over k.

• We will denote the character group of A by X(A).

• Given a field extension l/k, A is split over l if and only if the absolute
Galois group Gal(lsep/l) acts trivially on X(A).

• We will write A[p] for the p-torsion subgroup {a ∈ A | ap = 1} of A.
Clearly A[p] is defined over k.

Let T be an algebraic torus. It is well known how to construct a maximal
split subtorus of T , see for example [Bo, 8.15] or [Wa, 7.4]. The following
definition is a variant of this.

Definition 4.1. Let A be an algebraic group of multiplicative type over k.
Let ∆(A) be the Γ-invariant subgroup of X(A) generated by elements of the
form x − γ(x), as x ranges over X(A) and γ ranges over Γ. Define

Splitk(A) = Diag(X(A)/∆(A)) .

Here Diag denotes the anti-equivalence between continuous ZΓ-modules
and algebraic groups of multiplicative type, cf. [Wa, 7.3].
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Definition 4.2. Let G be an extension of a finite p-group by a torus, defined
over a field k, as in (3). Then

C(G) := Splitk(Z(G)[p]) ,

where Z(G) denotes the centre of G.

Lemma 4.3. Let A be an algebraic group of multiplicative type over k.

(a) Splitk(A) is split over k,
(b) Splitk(A) = A if and only if A is split over k,
(c) If B is a k-subgroup of A then Splitk(B) ⊂ Splitk(A).
(d) For A = A1 × A2, Splitk(A1 × A2) = Splitk(A1) × Splitk(A2),
(e) If A[p] 6= {1} and A is split over a Galois extension l/k, such that

Γ = Gal(l/k) is a p-group, then Splitk(A) 6= {1}.

Proof. Parts (a), (b), (c) and (d) easily follow from the definition.
Proof of (e): By part (c), it suffices to show that Splitk(A[p]) 6= {1}.

Hence, we may assume that A = A[p] or equivalently, that X(A) is a finite-
dimensional Fp-vector space on which the p-group Γ acts. Any such action is
upper-triangular, relative to some Fp-basis e1, . . . , en of X(A); see, e.g., [Se1,
Proposition 26, p.64]. That is,

γ(ei) = ei+ (Fp-linear combination of ei+1, . . . , en)

for every i = 1, . . . , n and every γ ∈ Γ. Our goal is to show that ∆(A) 6=
X(A). Indeed, every element of the form x − γ(x) is contained in the Γ-
invariant submodule Span(e2, . . . , en). Hence, these elements cannot gener-
ate all of X(A). �

Proposition 4.4. Suppose G is an extension of a p-group by a torus, defined
over a p-closed field k. Suppose N is a normal subgroup of G defined over
k. Then the following conditions are equivalent:

(i) N is finite of order prime to p,

(ii) N ∩ C(G) = {1},

(iii) N ∩ Z(G)[p] = {1},

In particular, taking N = G, we see that C(G) 6= {1} if G 6= {1}.

Proof. (i) =⇒ (ii) is obvious, since C(G) is a p-group.
(ii) =⇒ (iii). Assume the contrary: A := N∩Z(G)[p] 6= {1}. By Lemma 4.3

{1} 6= C(A) ⊂ N ∩ C(Z(G)[p]) = N ∩ C(G) ,

contradicting (ii).
Our proof of the implication (iii) =⇒ (i), will rely on the following

Claim: Let M be a non-trivial normal finite p-subgroup of G such that
the commutator (G0,M) = {1}. Then M ∩ Z(G)[p] 6= {1}.

To prove the claim, note that M(ksep) is non-trivial and the conjuga-
tion action of G(ksep) on M(ksep) factors through an action of the p-group
(G/G0)(ksep). Thus each orbit has pn elements for some n ≥ 0; consequently,



ESSENTIAL p-DIMENSION OF ALGEBRAIC TORI 11

the number of fixed points is divisible by p. The intersection (M∩Z(G))(ksep)
is precisely the fixed point set for this action; hence, M ∩ Z(G)[p] 6= {1}.
This proves the claim.

We now continue with the proof of the implication (iii) =⇒ (i). For nota-
tional convenience, set T := G0. Assume that N ⊳G and N ∩Z(G)[p] = {1}.
Applying the claim to the normal subgroup M := (N ∩ T )[p] of G, we see
that (N ∩ T )[p] = {1}, i.e., N ∩ T is a finite group of order prime to p. The
exact sequence

(8) 1 → N ∩ T → N → N → 1 ,

where N is the image of N in G/T , shows that N is finite. Now observe that
for every r ≥ 1, the commutator (N,T [pr]) is a p-subgroup of N ∩ T . Thus
(N,T [pr]) = {1} for every r ≥ 1. We claim that this implies (N,T ) = {1} by
Zariski density. If N is smooth, this is straightforward; see [Bo, Proposition
2.4, p. 59]. If N is not smooth, note that the map c : N × T → G sending
(n, t) to the commutator ntn−1t−1 descends to c : N×T → G (indeed, N∩T
clearly commutes with T ). Since |N | is a power of p and char(k) 6= p, N is
smooth over k, and we can pass to the separable closure ksep and apply the
usual Zariski density argument to show that the image of c is trivial.

We thus conclude that N ∩ T is central in N . Since gcd(|N ∩ T |,N) = 1,
by [Sch2, Corollary 5.4] the extension (8) splits, i.e., N ≃ (N ∩ T ) × N .
This turns N into a subgroup of G satisfying the conditions of the claim.
Therefore N is trivial and N = N ∩ T is a finite group of order prime to p,
as claimed. �

For future reference, we record the following obvious consequence of the
equivalence of conditions (i) and (ii) in Proposition 4.4.

Corollary 4.5. Let k = k(p) be a p-closed field and G be an extension
of a p-group by a torus, defined over k, as in (3). A finite-dimensional
representation ρ of G defined over k is p-faithful if and only ρ|C(G) is faithful.

�

5. Proof of Theorem 1.3(a)

The key step in our proof will be the following proposition.

Proposition 5.1. Let k be a p-closed field, and G be an extension of a
p-group by a torus, as in (3). Then the dimension of every irreducible rep-
resentation of G over k is a power of p.

Assuming Proposition 5.1 we can easily complete the proof of Theo-
rem 1.3(a). Indeed, by Proposition 3.4 we may assume that k = k(p) is
p-closed. In particular, since we are assuming that char(k) 6= p, this implies
that k contains a primitive pth root of unity. (Indeed, if ζ is a p-th root of
unity in ksep then d = [k(ζ) : k] is prime to p; hence, d = 1.) Proposition 5.1
tells us that Theorem 1.2 can be applied to the exact sequence

(9) 1 → C(G) → G → Q → 1 .
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This yields

(10) ed(G; p) ≥ min dim(ρ) − dim(G) ,

where the minimum is taken over all representations ρ : G → GL(V ) such
that ρ|C(G) is faithful. Corollary 4.4 now tells us that ρ|C(G) is faithful if and
only if ρ is p-faithful, and Theorem 1.3(a) follows. �

The rest of this section will be devoted to the proof of Proposition 5.1.
We begin by settling it in the case where G is a finite p-group.

Lemma 5.2. Proposition 5.1 holds if G is a finite p-group.

Proof. Choose a finite Galois field extension l/k such that (i) G is constant
over l and (ii) every irreducible linear representation of G over l is absolutely
irreducible. Since k is assumed to be p-closed, [l : k] is a power of p.

Let A := k[G]∗ be the dual Hopf algebra of the coordinate algebra of G. By
[Ja, Section 8.6] a G-module structure on a k-vector space V is equivalent
to an A-module structure on V . Now assume that V is an irreducible A-
module and let W ⊆ V ⊗k l be an irreducible A ⊗k l-submodule. Then by
[Ka, Theorem 5.22] there exists a divisor e of [l : k] such that

V ⊗ l ≃ e

(
r⊕

i=1

σiW

)
,

where σi ∈ Gal(l/k) and {σiW | 1 ≤ i ≤ r} are the pairwise non-isomorphic
Galois conjugates of W . By our assumption on k, e and r are powers of p and
by our choice of l, diml W = diml(

σ1W ) = . . . = diml(
σrW ) is also a power

of p, since it divides the order of Gl. Hence, so is dimk(V ) = diml V ⊗ l =
e(diml

σ1W + · · · + diml
σrW ). �

Our proof of Proposition 5.1 in full generality will based on leveraging
Lemma 5.2 as follows.

Lemma 5.3. Let G be an algebraic group defined over a field k and

F1 ⊆ F2 ⊆ · · · ⊂ G

be an ascending sequence of finite k-subgroups whose union ∪n≥1Fn is Zariski
dense in G. If ρ : G → GL(V ) is an irreducible representation of G defined
over k then ρ|Fi

is irreducible for sufficiently large integers i.

Proof. For each d = 1, ...,dim(V )−1 consider the G-action on the Grassman-

nian Gr(d, V ) of d-dimensional subspaces of V . Let X(d) = Gr(d, V )G and

X
(d)
i = Gr(d, V )Fi be the subvariety of d-dimensional G- (resp. Fi-)invariant

subspaces of V . Then X
(d)
1 ⊇ X

(d)
2 ⊇ . . . and since the union of the groups

Fi is dense in G,

X(d) = ∩i≥0X
(d)
i .

By the Noetherian property of Gr(d, V ), we have X(d) = X
(d)
md

for some
md ≥ 0.
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Since V does not have any G-invariant d-dimensional k-subspaces, we

know that X(d)(k) = ∅. Thus, X
(d)
md

(k) = ∅, i.e., V does not have any Fmd
-

invariant d-dimensional k-subspaces. Setting m := max{m1, . . . ,mdim(V )−1},
we see that ρ|Fm

is irreducible. �

We now proceed with the proof of Proposition 5.1. By Lemmas 5.2 and 5.3,
it suffices to construct a sequence of finite p-subgroups

F1 ⊆ F2 ⊆ · · · ⊂ G

defined over k whose union ∪n≥1Fn is Zariski dense in G.
In fact, it suffices to construct one p-subgroup F ′ ⊂ G, defined over k

such that F ′ surjects onto F . Indeed, once F ′ is constructed, we can define
Fi ⊂ G as the subgroup generated by F ′ and T [pi], for every i ≥ 0. Since
∪n≥1Fn contains both F ′ and T [pi], for every i ≥ 0 it is Zariski dense in G,
as desired.

The following lemma, which establishes the existence of F ′, is thus the
final step in our proof of Proposition 5.1 (and hence, of Theorem 1.3(a)).

Lemma 5.4. Let 1 → T → G
π
−→ F → 1 be an extension of a p-group F by

a torus T over k. Then G has a finite p-subgroup F ′ with π(F ′) = F .

In the case where F is split and k is algebraically closed this is proved
in [CGR, p. 564]; cf. also the proof of [BS, Lemme 5.11].

Proof. Denote by Ẽx
1
(F, T ) the group of equivalence classes of extensions of

F by T . We claim that Ẽx
1
(F, T ) is torsion. Let Ex1(F, T ) ⊂ Ẽx

1
(F, T ) be

the classes of extensions which have a scheme-theoretic section (i.e. G(K) →
F (K) is surjective for all K/k). There is a natural isomorphism Ex1(F, T ) ≃
H2(F, T ), where the latter one denotes Hochschild cohomology, see [DG, III.
6.2, Proposition]. By [Sch3] the usual restriction-corestriction arguments can
be applied in Hochschild cohomology and in particular, m · H2(F, T ) = 0

where m is the order of F . Now recall that M 7→ Ẽx
i
(F,M) and M 7→

Exi(F,M) are both derived functors of the crossed homomorphisms M 7→
Ex0(F,M), where in the first case M is in the category of F -module sheaves
and in the second, F -module functors, cf. [DG, III. 6.2]. Since F is finite and
T an affine scheme, by [Sch1, Satz 1.2 & Satz 3.3] there is an exact sequence
of F -module schemes 1 → T → M1 → M2 → 1 and an exact sequence

Ex0(F,M1) → Ex0(F,M2) → Ẽx
1
(F, T ) → H2(F,M1) ≃ Ex1(F,M1). The

F -module sequence also induces a long exact sequence on Ex(F, ∗) and we



14 R. LÖTSCHER, M. MACDONALD, A. MEYER, AND Z. REICHSTEIN

have a diagram

Ẽx
1
(F, T )

&&MMMMMMMMMMM

Ex0(F,M1) // Ex0(F,M2)

88qqqqqqqqqqq

''NNNNNNNNNNN
Ex1(F,M1)

Ex1(F, T )

77ppppppppppp?�

OO

An element in Ẽx
1
(F, T ) can thus be killed first in Ex1(F,M1) so it comes

from Ex0(F,M2). Then kill its image in Ex1(F, T ) ≃ H2(F, T ), so it comes

from Ex0(F,M1), hence is 0 in Ẽx
1
(F, T ). In particular we see that mul-

tiplying twice by the order m of F , m2 · Ẽx
1
(F, T ) = 0. This proves the

claim.

Now let us consider the exact sequence 1 → N → T
×m2

−−−→ T → 1, where
N is the kernel of multiplication by m2. Clearly N is finite and we have an
induced exact sequence

Ẽx
1
(F,N) → Ẽx

1
(F, T )

×m2

−−−→ Ẽx
1
(F, T )

which shows that the given extension G comes from an extension F ′ of F
by N . Then G is the pushout of F ′ by N → T and we can identify F ′ with
a subgroup of G. �

6. p-isogenies

An isogeny of algebraic groups is a surjective morphism G → Q with
finite kernel. If the kernel is of order prime to p we say that the isogeny is
a p-isogeny. In this section we will prove Theorem 6.1 which says that p-
isogenous groups have the same essential p-dimension. This result will play
a key role in the proof of Theorem 1.3(b) in Section 7.

Theorem 6.1. Suppose G → Q is a p-isogeny of algebraic groups over k.
Then

(a) For any p-closed field K containing k the natural map H1(K,G) →
H1(K,Q) is bijective.

(b) edk(G; p) = edk(Q; p).

Example 6.2. Let Esc
6 , Esc

7 be simply connected simple groups of type
E6, E7 respectively. In [GR, 9.4, 9.6] it is shown that if k is an algebraically
closed field of characteristic 6= 2 and 3 respectively, then

edk(E
sc
6 ; 2) = 3 and edk(E

sc
7 ; 3) = 3.

For the adjoint groups Ead
6 = Esc

6 /µ3, Ead
7 = Esc

7 /µ2 we therefore have

edk(E
ad
6 ; 2) = 3 and edk(E

ad
7 ; 3) = 3.
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We will need two lemmas.

Lemma 6.3. Let N be a finite algebraic group over k (char k 6= p). The
following are equivalent:

(a) p does not divide the order of N .
(b) p does not divide the order of N(kalg).

If N is also assumed to be abelian, denote by N [p] the p-torsion subgroup of
N . The following are equivalent to the above conditions.

(a′) N [p](kalg) = {1}.

(b′) N [p](k(p)) = {1}.

Proof. (a) ⇐⇒ (b): Let N◦ be the connected component of N and N et =
N/N◦ the étale quotient. Recall that the order of a finite algebraic group N
over k is defined as |N | = dimk k[N ] and |N | = |N◦||N et|, see for example
[Ta]. If char k = 0, N◦ is trivial, if char k = q 6= p is positive, |N◦| is a
power of q. Hence N is of order prime to p if and only if the étale algebraic
group N et is. Since N◦ is connected and finite, N◦(kalg) = {1} and so
N(kalg) is of order prime to p if and only if the group N et(kalg) is. Then
|N et| = dimk k[N et] = |N et(kalg)|, cf. [Bou, V.29 Corollary].

(b) ⇐⇒ (a′) ⇒ (b′) are clear.
(a′) ⇐ (b′): Suppose N [p](kalg) is nontrivial. The Galois group Γ =

Gal(kalg/k
(p)) is a pro-p group and acts on the p-group N [p](kalg). The im-

age of Γ in Aut(N [p](kalg)) is again a (finite) p-group and the size of every
Γ-orbit in N [p](kalg) is a power of p. Since Γ fixes the identity in N [p](kalg),
this is only possible if it also fixes at least p − 1 more elements. It follows
that N [p](k(p)) contains at least p elements, a contradiction. �

Remark 6.4. Part (b′) could be replaced by the slightly stronger statement

that N [p](k(p) ∩ ksep) = {1}, but we won’t need this in the sequel.

Lemma 6.5. Let Γ be a profinite group, G an (abstract) finite Γ-group and
|Γ|, |G| coprime. Then H1(Γ, G) = {1}.

The case where Γ is finite and G abelian is classical. In the generality we
stated, this lemma is also known [Se2, I.5, ex. 2].

Proof of Theorem 6.1. (a) Let N be the kernel of G → Q and K = K(p)

be a p-closed field over k. Since Ksep = Kalg (see Proposition 3.2(b)), the
sequence of Ksep-points 1 → N(Ksep) → G(Ksep) → Q(Ksep) → 1 is ex-
act. By Lemma 6.3, the order of N(Ksep) is not divisible by p and there-
fore coprime to the order of Ψ = Gal(Ksep/K). Thus H1(K,N) = {1}
(Lemma 6.5). Similarly, if cN is the group N twisted by a cocycle c : Ψ → G,

cN(Ksep) = N(Ksep) is of order prime to p and H1(K, cN) = {1}. It follows
that H1(K,G) → H1(K,Q) is injective, cf. [Se2, I.5.5].

Surjectivity is a consequence of [Se2, I. Proposition 46] and the fact that
the q-cohomological dimension of Ψ is 0 for any divisor q of |N(Ksep)|
(Proposition 3.2).
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This concludes the proof of part (a). Part (b) immediately follows from
(a) and Proposition 3.4. �

7. Proof of Theorem 1.3(b)

Let k be a closed field and G = T × F , where T is a torus and F is a
finite p-group, defined over k. Our goal is to show that

(11) edk(G; p) ≤ dim(ρ) − dim G ,

where ρ is a p-faithful representation of G defined over k.

Lemma 7.1. If a representation ρ : G → GL(V ) is p-faithful, then G/ ker(ρ) →
GL(V ) is generically free. In other words, ρ is p-generically free.

Proof. Since ker(ρ) has order prime to p, its image under the projection map
G = T × F → F is trivial. Hence ker(ρ) ⊂ T and T/N is again a torus. So
without loss of generality, we may assume ρ is faithful.

Let V1 ( V be a closed subset of V such that T acts freely on V \ V1.
Let n = pr be the order of F and V2 be the (finite) union of the fixed point
sets of 1 6= g ∈ T [n]×F . Here as usual, T [n] denotes the n-torsion subgroup
of T . Since ρ is faithful none of these fixed point sets are all of V , hence
U := V \ (V1 ∪ V2) is a dense open subset of V .

We claim that StabG(v) = {1} for every v ∈ U . Indeed, assume 1 6= g =
(t, f) ∈ StabG(v). Since v 6∈ V2, tn 6= 1. Then 1 6= gn = (tn, 1) lies in both T
and StabG(v). Since v 6∈ V1, this is a contradiction. �

Now suppose ρ is any p-faithful representation of G. Then (1) yields

edk(G/N ; p) ≤ dim(ρ) − dim(G/ ker(ρ)) = dim(ρ) − dim(G) .

By Theorem 6.1

edk(G; p) = ed(G/N ; p) ≤ dim(ρ) − dim(G) ,

as desired. This completes the proof of (11) and thus of Theorem 1.3(b). �

Corollary 7.2. Let G be a finite algebraic group over a p-closed field k =
k(p). Then G has a Sylow-p subgroup Gp defined over k and

edk(G; p) = edk(Gp; p) = edk(Gp) = min dim(ρ)

where the minimum is taken over all faithful representations of Gp over k.

Proof. By assumption, Γ = Gal(ksep/k) is a pro-p group. It acts on the
set of Sylow-p subgroups of G(ksep). Since the number of such subgroups is
prime to p, Γ fixes at least one of them and by Galois descent one obtains
a subgroup Gp of G. By Lemma 6.3, Gp is a Sylow-p subgroup of G. The
first equality edk(G; p) = edk(Gp; p) is shown in [MR1, 4.1] (the reference
is for smooth groups but can be generalized to the non-smooth case as
well). The minimal Gp-representation ρ from Theorem 1.3(b) is faithful and
thus edk(Gp) ≤ dim(ρ), see for example [BF, Prop. 4.11]. The Corollary
follows. �
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Remark 7.3. Two Sylow-p subgroups of G defined over k = k(p) do not need
to be isomorphic over k.

8. An additivity theorem

The purpose of this section is to prove the following:

Theorem 8.1. Let G1 and G2 be direct products of tori and p-groups over
a field k. Then edk(G1 × G2; p) = edk(G1; p) + edk(G2; p).

Let G be an algebraic group defined over k and C be a k-subgroup of G.
Denote the minimal dimension of a representation ρ of G (defined over k)
such that ρ|C is faithful by f(G,C).

Lemma 8.2. For i = 1, 2 let Gi be an algebraic group defined over k and
Ci be a central k-subgroup of Gi. Assume that Ci is isomorphic to µri

p over
k for some r1, r2 ≥ 0. Then

f(G1 × G1;C1 × C2) = f(G1;C1) + f(G2;C2) .

Our argument is a variant of the proof of [KM, Theorem 5.1], where G is
assumed to be a (constant) finite p-group and C is the socle of G.

Proof. For i = 1, 2 let πi : G1 × G2 → Gi be the natural projection and
ǫi : Gi → G1 × G2 be the natural inclusion.

If ρi is a di-dimensional k-representation of Gi whose restriction to Ci is
faithful, then clearly ρ1 ◦π1 ⊕ ρ2 ◦π2 is a d1 + d2-dimensional representation
of G1 × G2 whose restriction to C1 × C2 is faithful. This shows that

f(G1 × G1;C1 × C2) ≤ f(G1;C1) + f(G2;C2) .

To prove the opposite inequality, let ρ : G1×G2 → GL(V ) be a k-representation
such that ρ|C1×C2

is faithful, and of minimal dimension

d = f(G1 × G1;C1 × C2)

with this property. Let ρ1, ρ2, . . . , ρn denote the irreducible decomposition
factors in a decomposition series of ρ. Since C1 × C2 is central in G1 × G2,
each ρi restricts to a multiplicative character of C1×C2 which we will denote
by χi. Moreover since C1 × C2 ≃ µr1+r2

p is linearly reductive ρ|C1×C2
is a

direct sum χ⊕d1
1 ⊕ · · · ⊕ χ⊕dn

n where di = dim Vi. It is easy to see that the
following conditions are equivalent:

(i) ρ|C1×C2
is faithful,

(ii) χ1, . . . , χn generate (C1 × C2)
∗ as an abelian group.

In particular we may assume that ρ = ρ1 ⊕ · · · ⊕ ρn. Since Ci is isomorphic
to µri

p , we will think of (C1 × C2)
∗ as a Fp-vector space of dimension r1

+ r2. Since (i) ⇔ (ii) above, we know that χ1, . . . , χn span (C1 × C2)
∗. In

fact, they form a basis of (C1 × C2)
∗, i.e., n = r1 + r2. Indeed, if they were

not linearly independent we would be able to drop some of the terms in
the irreducible decomposition ρ1 ⊕ · · · ⊕ ρn, so that the restriction of the
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resulting representation to C1 ×C2 would still be faithful, contradicting the
minimality of dim(ρ).

We claim that it is always possible to replace each ρj by ρ′j , where ρ′j is
either ρj ◦ ǫ1 ◦ π1 or ρj ◦ ǫ2 ◦ π2 such that the restriction of the resulting
representation ρ′ = ρ′1⊕· · ·⊕ρ′n to C1×C2 remains faithful. Since dim(ρi) =
dim(ρ′i), we see that dim(ρ′) = dim(ρ). Moreover, ρ′ will then be of the form
α1 ◦ π1 ⊕ α2 ◦ π2, where αi is a representation of Gi whose restriction to Ci

is faithful. Thus, if we can prove the above claim, we will have

f(G1 × G1;C1 × C2) = dim(ρ) = dim(ρ′) = dim(α1) + dim(α2)

≥ f(G1, C1) + f(G2, C2) ,

as desired.
To prove the claim, we will define ρ′j recursively for j = 1, . . . , n. Suppose

ρ′1, . . . , ρ
′
j−1 have already be defined, so that the restriction of

ρ′1 ⊕ · · · ⊕ ρ′j−1 ⊕ ρj · · · ⊕ ρn

to C1 × C2 is faithful. For notational simplicity, we will assume that ρ1 =
ρ′1, . . . , ρj−1 = ρ′j−1. Note that

χj = (χj ◦ ǫ1 ◦ π1) + (χj ◦ ǫ2 ◦ π2) .

Since χ1, . . . , χn form a basis (C1×C2)
∗ as an Fp-vector space, we see that (a)

χj◦ǫ1◦π1 or (b) χj◦ǫ2◦π2 does not lie in SpanFp
(χ1, . . . , χj−1, χj+1, . . . , χn).

Set

ρ′j :=

{
ρj ◦ ǫ1 ◦ π1 in case (a), and

ρj ◦ ǫ2 ◦ π2, otherwise.

Using the equivalence of (i) and (ii) above, we see that the restriction of

ρ1 ⊕ · · · ⊕ ρj−1 ⊕ ρ′j ⊕ ρj+1, · · · ⊕ ρn

to C is faithful. This completes the proof of the claim and thus of Lemma 8.2.
�

Proof of Theorem 8.1. We can pass to a p-closure k(p) by Lemma 3.3. Let
C(G) be as in Definition 4.2. By Theorem 1.3(b)

ed(G; p) = f(G,C(G)) − dimG ;

cf. Corollary 4.5. Furthermore, we have C(G1 × G2) = C(G1) × C(G2);
cf. Lemma 4.3(d). Applying Lemma 8.2 finishes the proof. �

9. Modules and lattices

In this section we rewrite the value of edk(G; p) in terms of the character
module X(G) for an abelian group G which is an extension of a p-group and a
torus. Moreover we show that tori with locally isomorphic character lattices
have the same essential dimension. We need the following preliminaries.

Let R be a commutative ring (we use R = Z and R = Z(p) mostly) and A
an R-algebra. An A-module is called an A-lattice if it is finitely generated
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and projective as an R-module. For A = ZΓ (Γ a group) this is as usual
a free abelian group of finite rank with an action of Γ. Particular cases of
RΓ-lattices are permutation lattices L = R[Λ] where Λ is a Γ-set.

For Γ = Gal(ksep/k) the absolute Galois group of k we tacitly assume

that our RΓ-lattices are continuous, i.e. Γ acts through a finite quotient Γ.
Under the anti-equivalence Diag a ZΓ-lattice corresponds to an algebraic
k-torus. A torus S is called quasi split if it corresponds to a permutation
lattice. Equivalently S ≃ RE/k(Gm) where E/k is étale and RE/k denotes
Weil restriction.

Recall that Z(p) denotes the localization of the ring Z at the prime ideal
(p). For a Z-module M we also write M(p) := Z(p) ⊗ M .

When Γ = Gal(ksep/k) we will often pass from ZΓ-lattices to Z(p)Γ-
lattices. This corresponds to identifying p-isogeneous tori:

Lemma 9.1. Let Γ = Gal(ksep/k) and let M,L be ZΓ-lattices. Then the
following statements are equivalent:

(a) L(p) ≃ M(p).
(b) There exists an injective map φ : L → M of ZΓ-modules with coker-

nel Q finite of order prime to p.
(c) There exists a p-isogeny Diag(M) → Diag(L).

Proof. The equivalence (b) ⇔ (c) is clear from the anti-equivalence of Diag.
The implication (b) ⇒ (a) follows from Q(p) = 0 and that tensoring with

Z(p) is exact.
For the implication (a) ⇒ (b) we use that L and M can be considered as

subsets of L(p) (resp. M(p)). The image of L under a map α : L(p) → M(p) of

Z(p)Γ-modules lands in 1
mM for some m ∈ N (prime to p) and the index of

α(L) in 1
mM is finite and prime to p if α is surjective. Since 1

mM ≃ M as
ZΓ-modules the claim follows. �

Corollary 9.2. Let G be an abelian group which is an extension of a p-
group by a torus over k and Γ := Gal(ksep/k) be the absolute Galois group

of k = k(p). Let Γ act through a finite quotient Γ on X(G). Then

edk(G; p) = min rkL − dim G ,

where the minimum is taken over all permutation ZΓ-lattices L which admit
a map of ZΓ-modules to X(G) with cokernel finite of order prime to p.

If G is a torus, then the minimum can also be taken over all Z(p)Γ-lattices

L which admit a surjective map of Z(p)Γ-modules to X(G)(p).

Proof. Let us prove the first claim. In view of Theorem 1.3(a) it suffices to
show that the least dimension of a p-faithful representation of Gk(p) over

k(p) is equal to the least rank of a permutation ZΓ-module L which admits
a map to X(G) with cokernel finite of order prime to p.

Assume we have such a map L → X(G). Using the anti-equivalence Diag
we obtain a p-isogeny G → Diag(L). We can embed the quasi-split torus
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Diag(L) in GLn where n = rkL [Vo, Section 6.1]. This yields a p-faithful
representation of G of dimension rkL.

Conversely let ρ : G → GL(V ) be a p-faithful representation of G. Since
Gsep is diagonalizable, there exist characters χ1, . . . , χn ∈ X(G) such that G
acts on Vsep via diagonal matrices with entries χ1(g), . . . , χn(g) (for g ∈ G)

with respect to a suitable basis of Vsep. Moreover Γ permutes the set Λ :=

{χ1, . . . , χn}. Define a map φ : Z[Λ] → X(G) of ZΓ-modules by sending the
basis element χi ∈ Λ of L := Z[Λ] to itself. Then the p-faithfulness of ρ
implies that the cokernel of φ is finite and of order prime to p. Moreover
rkL = |Λ| ≤ n = dim V .

Now consider the case where G is a torus. Assume we have a surjective
map α : L → X(G)(p) of Z(p)Γ-modules where L = Z(p)[Λ] is permutation,

Λ a Γ-set. Then α(Λ) ⊆ 1
mX(G) for some m ∈ N prime to p (note that

1
mX(G) can be considered as a subset of X(G)(p) since X(G) is torsion

free). By construction the induced map Z[Λ] → 1
mX(G) ≃ X(G) becomes

surjective after localization at p, hence its cokernel is finite of order prime
to p. �

Corollary 9.3. Let A be a finite (twisted) cyclic p-group over k. Let l/k be
a minimal Galois splitting field of A, and Γ := Gal(l/k). Then

ed(A; p) = |Γ|.

Proof. Since [l : k] is a power of p, l(p)/k(p) is a Galois extension of the same

degree and the same Galois group as l/k. So we can assume k = k(p).
By Corollary 9.2 ed(A; p) is equal to the least cardinality of a Γ-set Λ

such that there exists a map φ : Z[Λ] → X(A) of ZΓ-modules with cokernel
finite of order prime to p. The group X(A) is a (cyclic) p-group, hence φ
must be surjective. Moreover Γ acts faithfully on X(A). Surjectivity of φ
implies that some element λ ∈ Λ maps to a generator a of X(A). Hence
|Λ| ≥ |Γλ| ≥ |Γa| = |Γ|. Conversely we have a surjective homomorphism
Z[Γa] → X(A) that sends a to itself. Hence the claim follows.

�

Remark 9.4. In the case of twisted cyclic groups of order 4 Corollary 9.3 is
due to Rost [Ro] (see also [BF, Theorem 7.6]), and in the case of cyclic groups
of order 8 to Bayarmagnai [Ba]. The case of constant groups of arbitrary
prime power order is due to Florence [Fl]; it is now a special case of the
Karpenko-Merkurjev Theorem 1.1.

10. Proof of Theorem 1.3(c)

We will prove Theorem 1.3(c) by using the lattice point of view from
Section 9 and the additivity theorem from Section 8.

Let Γ be a finite group. Two ZΓ-lattices M,N are said to be in the same
genus if M(p) ≃ N(p) for all primes p, cf. [CR, 31A]. It is sufficient to check

this condition for divisors p of the order of Γ. By a theorem of A.V. Rǒıter
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[CR, Theorem 31.28] M and N are in the same genus if and only if there
exists a ZΓ-lattice L in the genus of the free ZΓ-lattice of rank one such
that M ⊕ ZΓ ≃ N ⊕ L. This has the following consequence for essential
dimension:

Proposition 10.1. Let T, T ′ be k-tori. If the lattices X(T ),X(T ′) belong
to the same genus then

edk(T ) = edk(T ) and edk(T ; ℓ) = edk(T ; ℓ) for all primes ℓ.

Proof. Let Gal(ksep/k) act through a finite quotient Γ on X(T ) and X(T ′).

By assumption there exists a ZΓ-lattice L in the genus of ZΓ such that
X(T ) ⊕ ZΓ ≃ X(T ′) ⊕ L. The torus S = Diag(ZΓ) has a generically free
representation of dimension dimS, hence edk(S) = 0. Since L is a direct
summand of ZΓ ⊕ ZΓ the torus S′ := Diag(L) has edk(S

′) ≤ edk(S × S) ≤
0 as well, where the first inequality follows from [BF, Remarks 1.16 (b)].
Therefore

edk(T ) ≤ edk(T × S) = edk(T
′ × S′) ≤ edk(T

′) + edk(S
′) = edk(T

′)

and similarly edk(T
′) ≤ edk(T ). Hence edk(T ) = edk(T

′).
A similar argument shows that edk(T ; ℓ) = edk(T

′; ℓ) for any prime ℓ.
This concludes the proof. �

Corollary 10.2. Let k = k(p) be a p-closed field and T a k-torus. Then

edk(T ) = edk(T ; p) = mindim(ρ) − dimT,

where the minimum is taken over all p-faithful representations of T .

Proof. The second equality follows from Theorem 1.3(a) and the inequality
edk(T ; p) ≤ edk(T ) is clear. Hence it suffices to show edk(T ) ≤ edk(T ; p).
Let ρ : T → GL(V ) be a p-faithful representation of minimal dimension so
that edk(T ; p) = dim ρ − dim T . The representation ρ can be considered as
a faithful representation of the torus T ′ = T/N where N := ker ρ is finite
of order prime to p. By construction the character lattices X(T ) and X(T ′)
are isomorphic after localization at p. Since Gal(ksep/k) is a (profinite) p-
group it follows that X(T ) and X(T ′) belong to the same genus. Hence by
Proposition 10.1 we have edk(T

′) = edk(T ). Moreover edk(T
′) ≤ dim ρ −

dimT ′, since ρ is a generically free representation of T ′. This finishes the
proof. �

Proof of Theorem 1.3(b). The equality edk(p)(Gk(p) ; p) = edk(G; p) follows
from Lemma 3.3. Now we are assuming G = T×F for a torus T and a p-group
F over k, which is p-closed. Notice that a minimal p-faithful representation
of F from Theorem 1.3(a) is also faithful, and therefore edk(F ; p) = edk(F ).
Combining this with Corollary 10.2 and the additivity Theorem 8.1, we see

ed(T×F ) ≤ ed(T )+ed(F ) = ed(T ; p)+ed(F ; p) = ed(T×F ; p) ≤ ed(T×F ).

This completes the proof. �
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Remark 10.3. The following example shows that “p-faithful” cannot be re-
placed by “faithful” in the statement of Theorem 1.3(a) (and Corollary 10.2),
even in the case where G is a torus.

Let p be a prime number such that the ideal class group of Q(ζp) is non-
trivial (this applies to all but finitely many primes, e.g. to p = 23). This
means that the subring R = Z[ζp] ⊆ Q(ζp) of algebraic integers has non-
principal ideals. Let k be a field which admits a Galois extension l of degree p
and let Γ := Gal(ksep/k), Γ := Gal(l/k) ≃ Γ/Γl ≃ Cp where Γl = Gal(ksep/l)
and Cp denotes the cyclic group of order p.

We endow the ring R with a ZΓ-module structure through the quotient
map Γ → Γ by letting a generator of Γ act on R via multiplication by ζp.
The k-torus Q := Diag(R) is isomorphic to the Weil restriction Rl/k(Gm)
and has a p-dimensional faithful representation. We will construct a k-torus
G with a p-isogeny G → Q, such that G does not have a p-dimensional
faithful representation.

Let I be a non-principal ideal of R. We may consider I as a ZΓ-module
and set G := Diag(I). We first show that I and R become isomorphic as
ZΓ-modules after localization at p. For this purpose let I∗ = {x ∈ Q(ζp) |
xI ⊆ R} denote the inverse fractional ideal. We have I ⊕ I∗ ≃ R ⊕ R by
[CR, Theorem 34.31]. The Krull-Schmidt Theorem [CR, Theorem 36.1] for
Z(p)Cp-lattices implies I(p) ≃ R(p), hence the claim. Therefore by Lemma
9.1 there exists a p-isogeny G → Q, which shows in particular that G has a
p-faithful representation of dimension p.

Assume that G has a p-dimensional faithful representation. Similarly as
in the proof of Corollary 9.2 this would imply the existence of a surjective
map of ZΓ-lattices ZΓ → I. However such a map cannot exist since I is
non-principal, hence non-cyclic as a ZΓ-module.

11. Tori of essential dimension ≤ 1

Theorem 11.1. Let T be a torus over k, k(p) a p-closure and Γ = Gal(kalg/k
(p)).

The following are equivalent:

(a) edk(T ; p) = 0.
(b) edk(p)(T ; p) = 0.
(c) edk(p)(T ) = 0
(d) H1(K,T ) = {1} for any p-closed field K containing k.
(e) X(T )(p) is a Z(p)Γ-permutation module.
(f) X(T ) is an invertible ZΓ-lattice (i.e a direct summand of a permu-

tation lattice).

(g) There is a torus S over k(p) and an isomorphism

Tk(p) × S ≃ RE/k(p)(Gm),

for some étale algebra E over k(p).

Remark 11.2. A prime p for which any of these statements fails is called a
torsion prime of T .
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Proof. (a) ⇔ (b) is Lemma 3.3.
(a) ⇔ (d) follows from [Me1, Proposition 4.4].
(c) ⇒ (b) is clear.
(b) ⇒ (e): This follows from Corollary 9.2. Indeed, edk(T ; p) = 0 implies

the existence of a Z(p)Γ-permutation lattice L together with a surjective
homomorphism α : L → X(T )(p) and rkL = rkX(T )(p). It follows that α is
injective and X(T )(p) ≃ L.

(e) ⇒ (f): Let L be a ZΓ-permutation lattice such that L(p) ≃ X(T )(p).
Then by [CR, Corollary 31.7] there is a ZΓ-lattice L′ such that L ⊕ L ≃
X(T ) ⊕ L′.

(g) ⇒ (c): The torus R = RE/k(p)(Gm) has a faithful representation of

dimension dim R (over k(p)) and hence edk(p)(R) = 0. Since Tk(p) is a direct
factor of R we must have edk(p)(T ) ≤ 0 by [BF, Remarks 1.16 b)].

(f) ⇔ (g): A permutation lattice P can be written as

P =

m⊕

i+1

Z[Γ/ΓLi
],

for some (separable) extensions Li/k
(p) and ΓLi

= Gal(kalg/Li). Set E =
L1×· · ·×Lm. The torus corresponding to P is exactly RE/k(p)(Gm), cf. [Vo,

3. Example 19]. �

Example 11.3. Let T be a torus over k of rank < p−1. Then edk(T ; p) = 0.
This follows from the fact that there is no non-trivial integral representation
of dimension < p − 1 of any p-group, see for example [AP, Satz]. Thus any
finite quotient of Γ = Gal(kalg/k

(p)) acts trivially on X(T ) and so does Γ.

Remark 11.4. The equivalence of parts (d) and (f) in Theorem 11.1 can also
be deduced from [CTS, Proposition 7.4].

Theorem 11.5. Let p be an odd prime, T an algebraic torus over k, and
Γ = Gal(kalg/k

(p)).

(a) ed(T ; p) ≤ 1 iff there exists a Γ-set Λ and an m ∈ Z[Λ] fixed by Γ
such that X(T )(p)

∼= Z(p)[Λ]/〈m〉 as Z(p)Γ-lattices.
(b) ed(T ; p) = 1 iff m =

∑
aλλ from part (a) is not 0 and for any λ ∈ Λ

fixed by Γ, aλ = 0 mod p.
(c) If ed(T ; p) = 1 then Tk(p)

∼= T ′ × S where edk(p)(S; p) = 0 and
X(T ′)(p) is an indecomposable Z(p)Γ-lattice, and edk(p)(T ′; p) = 1.

Proof. (a) If ed(T ; p) = 1, then by Corollary 9.2 there is a map of ZΓ-
lattices from Z[Λ] to X(T ) which becomes surjective after localization at
p and whose kernel is generated by one element. Since the kernel is stable
under Γ, any element of Γ sends a generator m to either itself or its negative.
Since p is odd, m must be fixed by Γ.

The ed(T ; p) = 0 case and the converse follows from Theorem 1.4 or
Corollary 9.2.
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(b) Assume we are in the situation of (a), and say λ0 ∈ Λ is fixed by Γ
and aλ0 is not 0 mod p. Then X(T )(p)

∼= Z(p)[Λ − {λ0}], so by Theorem
11.1 we have ed(T ; p) = 0.

Conversely, assume ed(T ; p) = 0. Then by Theorem 11.1, we have an
exact sequence 0 → 〈m〉 → Z(p)[Λ] → Z(p)[Λ

′] → 0 for some Γ-set Λ′ with
one fewer element than Λ. We have

Ext1Γ(Z(p)[Λ
′], Z(p)) = (0)

by [CTS, Key Lemma 2.1(i)] together with the Change of Rings Theorem
[CR, 8.16]; therefore this sequence splits. In other words, there exists a Z(p)Γ-
module homomorphism f : Z(p)[Λ] → Z(p)[Λ] such that the image of f is 〈m〉
and f(m) = m. Then we can define cλ ∈ Z(p) by f(λ) = cλm. Note that
f(γ(λ)) = f(λ) and thus

(12) cγ(λ) = cλ

for every λ ∈ Λ and γ ∈ Γ. If m =
∑

λ∈Λ aλλ, as in the statement of the
theorem, then f(m) = m translates into

∑

λ∈Λ

cλaλ = 1 .

Since every Γ-orbit in Λ has a power of p elements, reducing modulo p, we
obtain ∑

λ∈ΛΓ

cλaλ = 1 (mod p) .

This shows that aλ 6= 0 modulo p, for some λ ∈ ΛΓ, as claimed.
(c) Decompose X(T )(p) uniquely into a direct sum of indecomposable

Z(p)Γ-lattices by the Krull-Schmidt theorem [CR, Theorem 36.1]. Since ed(T ; p) =
1, and the essential p-dimension of tori is additive (Thm. 8.1), all but one
of these summands are permutation Z(p)Γ-lattices. Now by [CR, 31.12], we
can lift this decomposition to X(T ) ∼= X(T ′) ⊕ X(S), where ed(T ′; p) = 1
and ed(S; p) = 0. �

Example 11.6. Let E be an étale algebra over k. It can be written as
E = L1 × · · · × Lm with some separable field extensions Li/k. The kernel

of the norm RE/k(Gm) → Gm is denoted by R
(1)
E/k(Gm). It is a torus with

lattice
m⊕

i=1

Z[Γ/ΓLi
] / 〈1, · · · , 1〉,

where Γ = Gal(ksep/k) and ΓLi
= Gal(ksep/Li). Let Λ be the disjoint union

of the cosets Γ/ΓLi
Passing to a p-closure k(p) of k, Γk(p) fixes a λ in Λ iff

[Li : k] is prime to p for some i. We thus have

edk(R
(1)
E/k(Gm); p) =

{
1, [Li : k] is divisible by p for all i = 1, ...,m
0, [Li : k] is prime to p for some i.
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12. Tori split by cyclic extensions of degree dividing p2

In this section we assume k = k(p) is p-closed. Over k = k(p) every torus
is split by a Galois extension of p-power order. We wish to compute the
essential dimension of all tori split by a Galois extension with a (small)
fixed Galois group G. The following theorem tells us for which G this is
feasible:

Theorem 12.1 (A. Jones [Jo]). For a p-group G there are only finitely
many genera of indecomposable ZG-lattices if and only if G is cyclic of
order dividing p2.

Remark 12.2. For G = C2 × C2 a classification of the (infinitely many)
different genera of ZG-lattices has been worked out by [NA]. In contrast for
G = Cp3 or G = Cp × Cp and p odd (in the latter case) no classification is
known.

Hence in this section we consider tori T whose minimal splitting field is
cyclic of degree dividing p2. Its character lattice X(T ) is then a ZG-lattice

where G = 〈g|gp2
= 1〉 denotes the cylic group of order p2. Heller and Reiner

[HR], (see also [CR, 34.32]) classified all indecomposable ZG-lattices. Our
goal consists in computing the essential dimension of T . By Corollary 10.2
we have edk(T ) = edk(T ; p), hence by the additivity Theorem 8.1 it will
be enough to find the essential p-dimension of the tori corresponding to
indecomposable ZG-lattices. Recall that two lattices are in the same genus
if their p-localization (or equivalently p-adic completion) are isomorphic. By
Proposition 10.1 tori with character lattices in the same genus have the same
essential p-dimension, which reduces the task to calculating the essential p-
dimension of tori corresponding to the 4p + 1 cases in the list [CR, 34.32].

Denote by H = 〈h|hp = 1〉 the group of order p. We can consider ZH as
a G-lattice with the action g · hi = hi+1. Let

δG = 1 + g + . . . + gp2−1 δH = 1 + h + . . . + hp−1

be the “diagonals” in ZG and ZH and

ǫ = 1 + gp + . . . + gp2−p.
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The following ZG-lattices represent all genera of indecomposable ZG-
lattices (by 〈∗〉 we mean the ZG-sublattice generated by ∗):

M1 = Z

M2 = ZH
M3 = ZH/〈δH〉
M4 = ZG
M5 = ZG/〈δG〉
M6 = ZG ⊕ Z/〈δG − p〉
M7 = ZG/〈ǫ〉
M8 = ZG/〈ǫ − gǫ〉
M9,r = ZG ⊕ ZH/〈ǫ − (1 − h)r〉 1 ≤ r ≤ p − 1
M10,r = ZG ⊕ ZH/〈ǫ(1 − g) − (1 − h)r+1〉 1 ≤ r ≤ p − 2
M11,r = ZG ⊕ ZH/〈ǫ − (1 − h)r, δH 〉 1 ≤ r ≤ p − 2
M12,r = ZG ⊕ ZH/〈ǫ(1 − g) − (1 − h)r+1, δH〉 1 ≤ r ≤ p − 2

In the sequel we will refer to the above list as (L).
In (L) we describe ZG-lattices as quotients of permutation lattices of

minimal possible rank, whereas [CR, 34.32] describes these lattices as cer-
tain extensions 1 → L → M → N → 1 of Z[ζp2]-lattices by ZH-lattices.
Therefore these two lists look differently. Nevertheless they represent the
same ZG-lattices. We show in the example of the lattice M10,r how one can
translate from one list to the other.

Let Zx be a ZG-module of rank 1 with trivial G-action. We have an
isomorphism

M10,r = ZG⊕ZH/〈ǫ(1−g)− (1−h)r+1〉 ≃ ZG⊕ZH⊕Zx/〈ǫ− (1−h)r −x〉

induced by the inclusion ZG ⊕ ZH →֒ ZG ⊕ ZH ⊕ Zx.
This allows us to write M10,r as the pushout

ZH
h 7→ǫ //

h 7→(1−h)r+x

��

ZG

��
ZH ⊕ Zx // M10,r

Completing both lines on the right we see that M10,r is an extension

0 → ZH ⊕ Zx → M10,r → ZG/ZH → 0

with extension class determined by the vertical map h 7→ (1 − h)r + x cf.
[CR, 8.12] and we identify (the p-adic completion of) M10,r with one of the
indecomposable lattices in the list [CR, 34.32].

Similarly, M1, . . . ,M12,r are representatives of the genera of indecompos-
able ZG-lattices.

Theorem 12.3. Every indecomposable torus T over k split by G has char-
acter lattice isomorphic to one of the ZG-lattices M in the list (L) after
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p-localization and ed(T ) = ed(T ; p) = ed(Diag(M); p). Their essential di-
mensions are given in the tables below.

M rkM ed(T )
M1 1 0
M2 p 0
M3 p − 1 1
M4 p2 0
M5 p2 − 1 1
M6 p2 1

M rkM ed(T )
M7 p2 − p p
M8 p2 − p + 1 p − 1
M9,r p2 p
M10,r p2 + 1 p − 1
M11,r p2 − 1 p + 1
M12,r p2 p

Proof of Proposition 12.3. We will assume p > 2 in the sequel. For p = 2
the Theoerem is still true but some easy additional arguments are needed
which we leave out here.

The essential p-dimension of tori corresponding to M1 . . . ,M6 easily fol-
lows from the discussion in section 11. Let M be one of the lattices M7, . . . ,M12,r

and T = Diag M the corresponding torus. We will determine the minimal
rank of a permutation ZG-lattice P admitting a homomorphism P → M
which becomes surjective after localization at p. Then we conclude ed(T ; p) =
rkP − rkM with Corollary 9.2.

We have the bounds

(13) rkM ≤ rkP ≤ p2 (or p2 + p),

where the upper bound holds since every M is given as a quotient of ZG
(or ZG ⊕ ZH). Let C = Splitk(T [p]) the finite constant group used in the
proof of Theorem 1.3. The rank of C determines exactly the number of
direct summands into which P decomposes. Moreover each indecomposable
summand has rank a power of p.

As an example, we show how to find C for M = M11,r: The relations
gj · (ǫ − (1 − h)r); δH are written out as

p−1∑

i=0

gpi+j −
r∑

ℓ=0

(
r

ℓ

)
(−1)ℓhℓ+j, 0 ≤ j ≤ p − 1;

p−1∑

i=0

hi

and the ksep-point of the torus are

T (ksep) =
{
(t0, . . . , tp2−1, s0, . . . , sp−1) |

p−1∏

i=0

tpi+j =

r∏

ℓ=0

s
(−1)ℓ(r

ℓ)
ℓ+j , 0 ≤ j ≤ p − 1;

p−1∏

i=0

si = 1
}

and C is the constant group of fixed points of the p-torsion T [p]:

C(k) =
{(

ζi
p, . . . , ζ

i
p, ζ

j
p , . . . , ζj

p

)
| 0 ≤ i, j ≤ p − 1

}
≃ µ2

p.

(Note that the primitive pth root of unity ζp is in k by our assumption that k
is p-closed). For other lattices this is similar: C is equal to Splitk(Diag(P )[p]) ≃
µr

p where M is presented as a quotient P/N of a permutation lattice P (of
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minimal rank) as in (L) and where r denotes the number of summands in a
decomposition of P .

M rank C rank M possible rkP
M7 1 p2 − p p2

M8 1 p2 − p + 1 p2

M9,r 2 p2 p2 + 1 or p2 + p
M10,r 2 p2 + 1 p2 + 1 or p2 + p
M11,r 2 p2 − 1 p2 + 1 or p2 + p
M12,r 2 p2 p2 + 1 or p2 + p

We need to exclude the possibility rkP = p2 + 1 for the lattices M =
M9,r, . . . ,M12,r. We can only have the value p2 +1 if there exists a character
in M which is fixed under the Galois group and nontrivial on C. The fol-
lowing Lemma 12.4 tells us, that such characters do not exist in either case.
Hence the minimal dimension of a p-faithful representation of all these tori
is p2 + p. �

Lemma 12.4. For i = 9, . . . , 12 and r ≥ 1 every character χ ∈ Mi,r fixed
under G has trivial restriction to C.

Proof. By [Hi] the cohomology group H0(G,Mi,r) = MG
i,r of G-fixed points

in Mi,r is trivial for i = 11, has rank 1 for i = 9, 12 and rank 2 for i = 10,
respectively. They are represented by ZδH in M9,r, by Z(ǫ − (1 − h)r) in
M12,r and by Z(ǫ − (1 − h)r) ⊕ ZδH in M10,r, respectively. Since all these
characters are trivial on

C = Splitk(Diag(ZG ⊕ ZH)[p]),

the claim follows. �
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