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Abstract. Let X be a Brauer Severi variety over a field k of characteristic not 2 and

let D be a division algebra over k with a k-linear involution. We investigate Witt groups

of certain hermitian forms over D ⊗k OX .

Introduction

Let k be a field. For any Brauer Severi variety over k with structure morphism τ : X →

Spec(k), the base change morphism τ∗ : W (k) → W (X) between the Witt rings of k and of

X was shown to be surjective in [Pu 2, 3], provided that char k 6= 2. The Witt groups of

symmetric bilinear forms over X with values in a line bundle which generates PicX were

calculated in [Pu4, 5]. In the present paper, we see that the method involved in both proofs,

i.e. the killing of certain cohomology groups, carries over to the setting of hermitian forms

over finite separable field extensions of k with a k-linear involution. Moreover, the method

employed in [Pu1] to prove that τ∗ : W (k) → W (X) is an isomorphism if X is the Brauer

Severi variety associated to a central simple algebra of odd index, generalizes to Witt groups

of ǫ-hermitian forms.

The content of the paper is as follows. Let A be an algebra over k together with a k-linear

involution σ. After the preliminaries in Section 1, Section 2 deals with the injectivity and

surjectivity of the group homomorphism Uτ : W ε(A) → W ε(A ⊗k OX) in certain special

cases. The Extension Theorem in Section 3 generalizes [A, Erster Schritt] to hermitian

spaces and Theorem 8 generalizes Horrock’s Theorem [B-H], proved in Section 4. Together

with the results on extension groups in Section 5 the extension theorem is used to prove

that for a separable field extension l/k with a k-linear involution σ, char k 6= 2,

Uτ : W 1(l) → W 1(l ⊗k OX)

is surjective. This result can be found in Section 6. We finish with a brief look at the case

that X = P1
k, k a field of characteristic not 2 and D a division algebra over k with a k-linear

involution σ in Section 7. Then Uτ : W ǫ(D) → W ǫ(D ⊗ OX) is bijective for ǫ = ±1. A

strategy for a possible proof of the same result for X = Pn
k is discussed in 7.2.

For the basic terminology and results on extension groups, the reader is referred to [H]

and [Hi-S].
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1. Basic terminology

1.1. Let X be a scheme. By an “OX -algebra” we will always mean an associative OX -

algebra which is unital and locally free of finite constant rank as OX -module. Let A be an

OX -algebra with an OX -linear involution σ. Let ε ∈ H0(X,A) be an element of the center

of A such that εσ(ε) = 1. Let M be a vector bundle over X which is locally free of finite

rank as a right A-module. Put M∗ = HomA(M,A) for the dual sheaf considered as a right

A-module ma = σ(a)m through the involution σ for all a in A, m in M. Then ∗ is an exact

contravariant duality functor [K, p. 75]. We canonically identify M and M∗ ∗.

A isomorphism h : M → M∗ is called a (nondegenerate) ε-hermitian form if h = εh∗ and

(M, h) is called an ε-hermitian space over A. Two ε-hermitian spaces (M, h) and (M′, h′)

over X are isometric, written as (M, h) ∼= (M′, h′) if there is an OX -linear isomorphism

f : M → M′ such that f∗hf = h′. For two ε-hermitian spaces (Mi, hi), i = 1, 2, the

orthogonal sum (M1, h1) ⊥ (M2, h2) of (M1, h1) and (M2, h2) is defined as the ε-hermitian

space

(M1 ⊕M2,

[
h1 0

0 h2

]
),

with the element [
h1 0

0 h2

]
∈ Hom(M1 ⊕ M2, M

∗
1 ⊕ M∗

2 )

denoted by h1 ⊥ h2. Given an ε-hermitian space (M, h) and a right A-submodule N ⊂ M,

always assumed to be locally a direct summand of M which is locally free of finite rank as

a right A-module, with inclusion ι : N →֒ M,

A⊥ = ker(M
h

−→ M∗ ι∗
−→ N ∗)

is a right A-submodule of M, the orthogonal complement of N in (M, h). A ε-hermitian

space (M, h) is called metabolic if M contains a subbundle N which is locally free of finite

rank as a right A-module such that N = N⊥, making the short exact sequence

0 −→ N
ι

−→ M
ι∗h
−→ N ∗ −→ 0

exact. Given a locally free right A-module of finite rank P ,

Hǫ(P) = (P ⊕ P∗,

[
0 1

ε 0

]
)

is a metabolic space, the hyperbolic space of P . An ε-hermitian space (M, h) is hyperbolic

if (M, h) ∼= Hǫ(P) for a suitable P . Two ε-hermitian spaces (M, h) and (M′, h′) over X

are Witt equivalent, written as (M, h) ∼ (M′, h′) if there exist metabolic ε-hermitian spaces

(M1, h1) and (M2, h2) such that

(M, h) ⊥ (M1, h1) ∼= (M′, h′) ⊥ (M2, h2).

Witt-equivalence is an equivalence relation and the set of equivalence classes

W ε(A) = { [(M, h)] | (M, h) an ε-hermitian space }
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together with the addition canonically induced by the orthogonal sum is a group, the Witt

group of ε-hermitian spaces.

1.2. Let Y be a scheme and τ : Y → X a morphism of schemes. For a vector bundle F

over X , τ∗F ∼= F ⊗OX
OY is a vector bundle over Y , τ∗A ∼= A ⊗OX

OY is an algebra

over Y with involution σ ⊗ 1, and for every locally free right A-module M of finite rank,

τ∗M ∼= M⊗OX
OY is a locally free right τ∗A-module of finite rank. Given an ε-hermitian

space (M, h) over A, τ∗(M, h) ∼= (τ∗M, τ∗h) is an τ∗ε-hermitian space over τ∗A. τ induces

a group homomorphism

Uτ : W ε(A) −→ W ε′

(A⊗OX
OY ), (M, h) → (M, h) ⊗A (A⊗OX

OY )

where ε′ = τ∗ε. If π : Z → Y is another morphism of schemes then Uτ◦π = Uπ ◦ Uτ .

1.3. Affine schemes. Let X = Spec R be an affine scheme. Under the usual categorical

equivalence, vector bundles over X can be identified with finitely generated projective R-

modules. For an algebra A over R with an R-linear involution σ, A always assumed to be

finitely generated projective of constant rank as an R-module, W ε(A) canonically identifies

with W ε(Ã), the Witt group of ε-hermitian forms over the OX -algebra Ã, the sheaf of

OX -algebras associated to A. Under this identification, the base change homomorphism

W ε(Ã) −→ W ε(Ã ⊗OX
OY )

for a morphism Y = Spec R′ −→ X = Spec R, corresponds to the base change

W ε(A) −→ W ε(A ⊗R R′)

from R to the R-algebra R′.

1.4. Brauer Severy varieties. Let k be a field. If B is a central simple algebra over k of

dimkB = n2, then B ∼= Mats(D) for a central division algebra D over k. Let r = exp A be

the order of B in the Brauer group Br k. Let k′/k be a finite separable field extension which

is a maximal subfield of D, so [k′ : k] = d. Let X be the Brauer Severi variety associated

with B and X ′ = X ×k k′. Then X ′ ∼= P
n−1
k′ . We know that PicX ∼= Z and that there is an

element L generating PicX with L ⊗OX
OX′

∼= OX′(r). X ∼= P
n−1
k if and only if r = 1, if

and only if X has a rational point [A-V]. In that case L = OX(1). We define L(0) = OX ,

L(m) = L⊗· · ·⊗L (m-times) for m > 0 and L(m) = L∨⊗· · ·⊗L∨ ((−m)-times) for m < 0,

m ∈ Z.

1.5. Some facts on vector bundles over proper schemes. Let X be a proper scheme

over k and l/k an algebraic field extension. The Theorem of Krull-Schmidt holds for vector

bundles over X , i.e., every vector bundle on X can be decomposed as a direct sum of

indecomposable vector bundles, unique up to isomorphism and order of sumands [AEJ,

p. 1324]. Moreover, non-isomorphic vector bundles on X extend to non-isomorphic vector

bundles on Xl = X ×k l, for every separable algebraic field extension l/k [AEJ, p. 1325].

Let l/k be a separable finite field extension of degree s = [l : k]. For a vector bundle N

on Xl, the direct image π∗N of N under the projection morphism π : Xl → X is a vector

bundle on X denoted by trl/k(N ) [AEJ, p. 1362 and p. 1329].
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The canonical projection π : Xl → X is an affine flat morphism [AEJ, p. 1329] and the

direct image B = π∗OXl
is an OX -algebra which is locally free of rank s as an OX -module,

i.e.

trl/k(OXl
) = π∗OXl

∼= Os
X .

The assignment F → π∗F gives an equivalence of categories from quasi-coherent OXl
-

modules to quasi-coherent OX -modules that are B-modules at the same time [H, p. 145,

Ex. 5.17]. This equivalence matches locally free OXl
-modules of finite rank with locally free

B-modules of finite rank and, in particular, Pic(Xl) with Pic(B).

2. Certain special cases

2.1. On the injectivity of Uτ . Let A be an algebra over k together with a k-linear

involution σ. Let n ≥ 2.

Theorem 1. Let X be a k-scheme with a rational point. Then

Uτ : W ε(A) −→ W ε(A ⊗k OX)

is injective.

Proof. Pick a k-rational point in X , i.e. a k-morphism δ : Spec k → X. Then τδ = id on

Spec k, hence UδUτ = id on W ε(A ⊗k OX), implying that Uτ is injective. �

A similar trick as used in [Pu1] gives us the next result:

Theorem 2. Let X be a Brauer Severi variety associated to a central simple algebra of odd

index. Then

Uτ : W ε(A) −→ W ε(A ⊗k OX)

is injective.

Proof. Let B ∼= Mats(D) be the central simple algebra associated to X and k′/k be a finite

separable field extension which is a maximal subfield of the division algebra D, hence of odd

degree. Define X ′ = X ×k k′. Let (M1, h1) and (M2, h2) be two ǫ-hermitian spaces over A

such that

(M1, h1) ⊗A (A ⊗k OX) ∼ (M2, h2) ⊗A (A ⊗k OX).

Then

(M1, h1) ⊗A (A ⊗k OX′) ∼ (M2, h2) ⊗A (A ⊗k OX′)

which implies

(M1, h1) ⊗A (A ⊗k k′) ∼ (M2, h2) ⊗A (A ⊗k k′)

by Theorem 1. The assertion now follows from [K, (10.3.1), p. 62]. �

Theorem 3. Let X be a Brauer Severi variety associated to a central simple algebra of odd

index. Let A be a division algebra over k and suppose char k 6= 2. Let (M1, h1) and (M2, h2)

be two ǫ-hermitian spaces over A which become isometric over A ⊗k OX . Then

(M1, h1) ∼= (M2, h2).
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Proof. Since

(M1, h1) ⊗A (A ⊗k OX) ∼= (M2, h2) ⊗A (A ⊗k OX)

we have (M1, h1) ∼ (M2, h2) by Theorem 1. By [K, (10.3.3), p. 63], this yields (M1, h1) ∼=

(M2, h2). �

2.2. On the surjectivity of Uτ . Let A be an algebra over k (e.g. quadratic étale or

central simple) together with a k-linear involution σ. Let X be a scheme over k and let k′/k

be a separable odd degree field extension. Let X ′ = X ×k k′ and A′ = A ⊗k k′. Observe

that A′ ⊗k′ OX′
∼= A ⊗k OX′ .

Theorem 4. If

Uτ : W ε(A′) −→ W ε(A ⊗k OX′)

is surjective, then

Uτ : W ε(A) −→ W ε(A ⊗k OX)

is surjective.

Proof. Let trk′/k : k′ → k be the trace of the extension k′/k. Its A-linear extension id ⊗

trk′/k : A ⊗k k′ → A is an involution trace form in the sense of [K, (7.3.2), p. 41]. Both

maps induce group homomorphisms trk′/k : W (k′) → W (k), trk′/k : W (X ′) → W (X) and

T : W ε(A ⊗k k′) → W ε(A), T : W ε(A ⊗k OX′) → W ε(A ⊗k OX). As in [K, p. 62], we can

show that

T (Uτ(M, h) ⊗ (F , γ)) ∼ (M, h) ⊗ trk′/k(F , γ)

or, equivalently,

T (((M, h) ⊗A (A⊗OX
OX′)) ⊗ (F , γ)) ∼ (M, h) ⊗ trk′/k(F , γ)

for all ε-hermitian spaces (M, h) over A = A ⊗k OX and symmetric bilinear spaces (F , γ)

over X ′. Analogously,

T (((M, h) ⊗A (A ⊗k k′)) ⊗ (F, γ)) ∼ (M, h) ⊗ trk′/k(F, γ)

for all ε-hermitian spaces (M, h) over A and nonsingular symmetric bilinear spaces (F, γ)

over k′. Since [k′ : k] is odd, we get

trk′/k(〈1〉OX′ ) ∼ 〈1〉OX
,

T ((M, h) ⊗A (A⊗OX
OX′)) ∼ (M, h) and T ((M, h) ⊗A (A ⊗k k′)) ∼ (M, h)

as in [K, p. 62]. For an ε-hermitian space (M, h) over A it follows that

(M, h) ∼= (M, h) ⊗ 〈1〉OX
∼ (M, h) ⊗ trk′/k(〈1〉OX′ )

∼ T (((M, h) ⊗A (A⊗OX
OX′)) ⊗ 〈1〉OX′ )

∼ T ((M ′, h′) ⊗A′ (A′ ⊗k′ OX′)) ∼ T (M ′, h′) ⊗A (A ⊗OX),

for a suitable hermitian space (M ′, h′) over A′, where the second last equivalence holds by

the assumption that Uτ : W ε(A′) → W ε(A ⊗k OX′) is surjective. �
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Corollary 5. Let X be a Brauer Severi variety of odd index. Let Mats(D) be the central

simple algebra associated to X. Let k′/k be a finite separable field extension which is a

maximal subfield of D, such that

Uτ : W ε(A′) −→ W ε(A ⊗k OX′)

is surjective (X ′ ∼= P
n−1
k ), then

Uτ : W ε(A) −→ W ε(A ⊗k OX)

is surjective.

3. Extension theorem for hermitian spaces

Let X be a scheme such that 2 ∈ H0(X,O×
X) and A an algebra over X with an OX -linear

involution σ. An ǫ-hermitian space (M, h) with ǫ = 1 is called a hermitian space. For a

hermitian space (M, h), a subbundle N ⊂ M is called totally isotropic if N ⊂ N⊥. For

a totally isotropic subbundle N ⊂ M, we obtain an induced hermitian space (M, h) by

setting M = N⊥/N and writing ι : N⊥ →֒ M for the inclusion, π : N⊥ → M for the

projection. Then h is uniquely determined by ι∗ ◦ h ◦ ι = π∗ ◦ h ◦ π. We get a short exact

sequence

0 −−−−→ N⊥ κ
−−−−→ M⊕M

(κ∗,h⊕−h)
−−−−−−−→ N⊥∗ −−−−→ 0

with κ = (π, id) implying that (M, h) ⊥ (M,−h) is metabolic. Since (M, h) ⊥ (M,−h) is

metabolic as well, (M, h) and (M, h) are Witt equivalent. We get a short exact sequence

of locally free right A-modules of constant finite rank

0 −−−−→ N
ι

−−−−→ N⊥ π
−−−−→ M −−−−→ 0.

Analogously as observed in [Pu2, 4], we can reverse this construction as follows:

For a locally free right A-module M of constant finite rank, let {Exti(M, ·)} be the right

derived functor of the group of A-module homomorphisms HomA(M, ·), which is a universal

contravariant δ-functor from locally free right A-modules of constant finite rank to abelian

groups.

Theorem 6. Let (G, b) be a hermitian space over A and

(1) 0 −−−−→ N
ι

−−−−→ B
π

−−−−→ G −−−−→ 0

a short exact sequence of locally free right A-modules of constant finite rank. Suppose that

Ext1(N ∗,N ) = Ext2(N ∗,N ) = 0.

Then there exists a hermitian space (M, h) and identifications of N , B in M such that

B = N⊥ in (M, h) and (G, b) ∼= (M, h). In particular, (G, b) and (M, h) are Witt equivalent.

Moreover, for (M, h) as in Theorem 6, we have B⊥ = N , hence the sequence

(2) 0 −−−−→ N −−−−→ M
ι∗h

−−−−→ B∗ −−−−→ 0

is exact, with ι being the inclusion B →֒ M.

For the proof of this result, we need the following elementary results which we state here

for the convenience of the reader:
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Lemma 7. (a) Let (P) and (Q) be two extensions of of locally free right A-modules of

constant finite rank such that

(P ) 0 −−−−→ M′ −−−−→ M −−−−→ M′′ −−−−→ 0

id

y α

y α′′

y

(Q) 0 −−−−→ M′ p∗ι
−−−−→ M1

κ∗

−−−−→ M′′
2 −−−−→ 0

with α′′ : M′′ −→ M′′
1 an A-linear map. If ξ ∈ Ext1(M′′,M′) (resp. ξ1 ∈ Ext1(M′′

1 ,M′))

corresponds to the extension (P) (resp. (Q)), then the following statements are equivalent:

(i) There exists an A-linear map α : M −→ M1 making the above diagram commutative.

(ii) Ext1(α′′,M′)ξ1 = ξ.

(b) Let

(P ) 0 −−−−→ M′ −−−−→ M
π

−−−−→ M′′ −−−−→ 0
y α

y
y

(Q) 0
ι1−−−−→ M′ p∗ι

−−−−→ M1
κ∗

−−−−→ M′′
2 −−−−→ 0

be a commutative diagram of of locally free right A-modules of constant finite rank with exact

rows. Then an A-linear map β : M −→ M1 makes the diagram commutative as well if and

only if there exists an A-linear map γ : M′′ −→ M1 such that

β = α + ι1γπ.

In this case γ is unique.

The proof of Theorem 6 is now analogous to the proof in [A], Erster Schritt:

Proof. We dualize (1) and replace G∗ by G via b. This yields the short exact sequence

(3) 0 −−−−→ G
π∗b

−−−−→ B∗ ι∗
−−−−→ N ∗ −−−−→ 0.

By applying {Exti(·,N )} to (3) we obtain a long exact sequence. In particular,

(4) 0 = Ext1(N ∗,N ) −−−−→ Ext1(B∗,N )
Ext1(π∗b,N )
−−−−−−−−→ Ext1(G,N ) −−−−→ Ext2(N ∗,N ) = 0.

Therefore

Ext1(π∗b,N ) : Ext1(B∗,N ) −→ Ext1(G,N )

is an isomorphism. Now let ξ ∈ Ext1(G,N ) correspond to the isomorphism class of extension

(1). Then we thus find a unique ξ1 ∈ Ext1(B∗,N ) such that Ext1(π∗b,N )(ξ1) = ξ. This

yields an extension of locally free right A-modules of constant finite rank

(5) 0 −−−−→ N −−−−→ M
p

−−−−→ B∗ −−−−→ 0
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over X , see (2). Using (1) and (5) we obtain the following commutative diagram (Lemma 7

(a)):

(6)

0 0
y

y

0 −−−−→ N
ι

−−−−→ B
π

−−−−→ G −−−−→ 0

id

y κ

y π∗b

y

0 −−−−→ N −−−−→ M
p

−−−−→ B∗ −−−−→ 0

ι∗p

y ι∗
y

N ∗ id
−−−−→ N ∗

y
y

0 0

Diagram chasing confirms that the middle column of the above diagram is also exact. Using

that b = b∗ we dualize and obtain

0 0
x

x

0 −−−−→ G∗ π∗

−−−−→ B∗ ι∗
−−−−→ N ∗ −−−−→ 0

bπ

x κ∗

x id

x

0 −−−−→ B
p∗

−−−−→ M∗ −−−−→ N ∗ −−−−→ 0

ι

x p∗ι

x

N
id

−−−−→ N
x

x

0 0

By replacing G∗ with G via b we replace bπ by π and π∗ by π∗b. We obtain

(7)

0 0
y

y

0 −−−−→ N
ι

−−−−→ B
π

−−−−→ G −−−−→ 0

id

y p∗

y π∗b

y

0 −−−−→ N
p∗ι

−−−−→ M∗ κ∗

−−−−→ B∗ −−−−→ 0

ι∗p

y ι∗
y

N ∗ id
−−−−→ N ∗

y
y

0 −−−−→ 0
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Let ξ∗1 ∈ Ext1(B∗,N ) correspond to the extension

(8) 0 −−−−→ N
p∗ι

−−−−→ M∗ κ∗

−−−−→ B∗ −−−−→ .

Then Ext1(π∗b,N )ξ∗1 = ξ by Lemma 7 (a), thus ξ∗1 = ξ and the extensions (5) and (8) are

isomorphic. (This step does not generalize to ǫ-hermitian forms with ǫ 6= 1.) Therefore there

exists an A-linear map h : M −→ M∗ which makes the following diagram commutative:

(9)

0 −−−−→ N
κι

−−−−→ M
p

−−−−→ B∗ −−−−→ 0

id

y h

y id

y

0 −−−−→ N
p∗ι

−−−−→ M∗ κ∗

−−−−→ B∗ −−−−→ 0

h is an isomorphism and by Lemma 7 (b) unique up to summands of the form p∗ιβp with

β ∈ HomA(B∗,N ). The diagram

0 −−−−→ N
ι

−−−−→ B
π

−−−−→ G −−−−→ 0

id

y p∗,hκ

y π∗b

y

0 −−−−→ N
p∗ι

−−−−→ M∗ κ∗

−−−−→ B∗ −−−−→ 0

is made commutative by both maps written next to the arrow in the middle, since we have

hκι = p∗ι by (9) and κ∗p∗ = π∗bπ = pκ = κ∗hκ by (7), (6) and (9). Lemma 7 (b) implies

that there exists a γ ∈ Ext1(G,N ) such that hκ = p∗ + p∗ιγπ. Since Ext1(N ∗,N ) = 0, (3)

induces the exact sequence

(10) HomA(N ∗,N )
HomA(ι∗,N )
−−−−−−−−→ HomA(B∗,N )

HomA(π∗b,N )
−−−−−−−−−→ HomA(G,N ) −−−−→ 0.

Therefore γ = βπ∗b for some β ∈ HomA(B∗,N ) which yields

hκ = p∗ + p∗ιβπ∗bπ = p∗ + p∗ιβpκ

and so (h − p∗ιβp)κ = p∗. Since h is unique up to certain summands, see above, we may

assume that

(11) hκ = p∗.

Moreover, h is uniquely determined by this equation together with (9), up to summands of

the form p∗ιβp with β ∈ HomA(B∗,N ) such that p∗ιβpκ = 0. We also have p∗ιβpκ = 0 if

and only if p∗ιβπ∗bπ = 0 by (6), if and only if βπ∗b = 0 (p∗ι is injective, π surjective), if

and only if β = αι∗ by (10). Therefore h is uniquely determined up to summands of the

form p∗ιαι∗p with α ∈ HomA(N ∗,N ).

Now h∗ : M −→ M∗ satisfies h∗κ = (κ∗h)∗ = p∗ by (9), hence (11), and h∗κι = p∗ι,

κ∗H∗ = (hκ)∗ = p by (11), hence (9). Therefore the fact that h is uniquely determined

up to summands of the form p∗ιαι∗p with α ∈ HomA(N ∗,N ) even yields a unique α ∈

HomA(N ∗,N ) satisfying h∗ = h + p∗ιαι∗p and dualizing implies that α = −α∗. Replacing

h by h + 1
2p∗ιαι∗p if necessary, we may assume in addition that

h = h∗.
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We have thus obtained a hermitian space (M, h) containing N as a subbundle via κι by (6),

such that

N⊥ = ker(ι∗κ∗h) = ker(ι∗(hκ)∗) = ker(ι∗p) = im(κ)

and N = im(κι) ⊂ im(κ). We conclude that N is totally isotropic and that B, viewed as a

subbundle of M via κ, can be identified with N⊥. Under these identifications, the diagram

B
κ

−−−−→ M
h

−−−−→ M∗ κ∗

−−−−→ B∗

π

y π∗

y

G
b

−−−−→ G∗

corresponds to the equation displayed in the first paragraph of 3.1, it commutes because

of (7). Hence (G, b) and (M, h) are isometric, as claimed. The last assertion now follows

easily. �

Note that our assumption that 2 ∈ H0(X,O×
X) is needed in the proof and cannot be

omitted.

4. A generalization of Horrock’s Theorem

Let k be a field and D be a division algebra over k. Let X = P
n
k and τ : P

n
k → Spec k be

the structure morphism. Let D = τ∗D ∼= D ⊗k OX .

Given a locally free right D-module E , let E(m) = OX(m) ⊗OX
E for any integer m. For

a locally free right D-module E define

Exti(D, E(∗)) =
⊕

j∈Z

Exti(D, E(j))

for integers j ≥ 0.

We generalize Horrock’s Theorem [B-H, Sect. 5, Lemma 1] which was an important

ingredient in the proofs of [A] and [Pu2]:

Theorem 8. A locally free right D-module E satisfies

E ∼= D(m1) ⊕ · · · ⊕ D(mt)

if and only if

(12) Exti(D, E(∗)) = 0 (i ∈ Z, 0 < i < n).

Proof. By the cohomology of projective space, the condition (12) is necessary.

We prove that it is sufficient by induction on n. For n = 1 every locally free right

D-module E is of the form

E ∼= D(m1) ⊕ · · · ⊕ D(mt)

[K, p. 407, VII.(3.1.1)], so there is nothing to prove. So suppose n > 1 and assume that the

assertion holds for n− 1 in place of n. Z = P
n−1
k is a closed subscheme of X with inclusion

i : Z →֒ X . Via identification with the hyperplane xn = 0, we obtain a short exact sequence

0 −−−−→ OX(−1) −−−−→ OX −−−−→ i∗OZ −−−−→ 0.
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Let E be a locally free right D-module satisfying (12), then tensor the above sequence with

E(j) to obtain

(13) 0 −−−−→ E(j − 1) −−−−→ E(j) −−−−→ i∗[(E|Z)(j)] −−−−→ 0.

By (12) this yields

Exti(D, (E|Z)(∗)) = 0 for 0 < i < n − 1,

so, by the induction hypothesis, E|Z is a direct sum of locally free right D|Z -modules of

rank one of the kind D|Z(m): there are integers s1, . . . , st, F = D(s1) ⊕ . . .D(st) and an

isomorphism

Ψ : F|Z −→ E|Z

of locally free right D|Z -modules. Put j = 0 in (13) then

0 −−−−→ E(−1) −−−−→ E −−−−→ i∗(E|Z) −−−−→ 0.

is a short exact sequence of locally free right D-modules, where E −→ i∗(E|Z) is the canonical

restriction map. Applying HomD(F , ·) to this yields the exact sequence

HomD(F , E) −→ HomD(F , i∗(E|Z)) = HomD(F|Z , E|Z) −→ Ext1(F , E(−1))

and since we assume that E satisfies (12),

Ext1(F , E(−1)) ∼=

t⊕

j=1

Ext1(D(sj), E(−1)) ∼=

t⊕

j=1

Ext1(D, E(−sj − 1)) = 0.

Therefore the natural map HomD(F , E) −→ HomD(F|Z , E|Z) is surjective, so that Ψ extends

to a D-linear homomorphism ϕ : F → E . Now view ϕ as an OX -linear map between vector

bundles F and E over X : then

detϕ ∈ HomOX
(detF , det E) ∼= H0(X, (detF)∨ ⊗ (det E)) ∼= H0(X,OX(m))

for some integer m. Restricting this to Z shows that m = 0 and thus detϕ ∈ k×. Hence ϕ

is an isomorphism. �

5. Killing extension groups for X = P
n−1
k

The proof of surjectivity of the base change morphism τ∗ : W (k) → W (X) between the

Witt rings of k and a Brauer Severi variety X in [A], [Pu 2, 3], used the killing of cohomology

groups. In our setup, this corresponds to the following observations we phrase in terms of

extension groups. We phrase the proofs in a general setting in order to see if and where they

could be used in a more general setup.

Let k be a field of characteristic not 2 and D be a division algebra over k. Let X = P
n−1
k ,

D = τ∗D ∼= D ⊗k OX and F(m) = OX(m)⊗F for any integer m and any locally free right

D-module F .

Every right D-module W may be viewed as a right module over Spec D, so for a right

D-module F , the notation F ⊗D W = F ⊗OSpec D
W used in the following makes sense and

is a D-module.

Let Ω = ΩX/k be the sheaf of relative differentials of X over k and Ωl = ΛlΩ the sheaf of

l-forms over k. Define Ωl
D = Ωl ⊗OX

D.
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5.1. Let X be a scheme and A an algebra over X . Let α : F1 → F2 be an A-linear map of

right A-modules. For any right A-module G and i ∈ N0 we get an induced homomorphism

Exti(α,G) : Exti(F2,G) −→ Exti(F1,G)

and

{Exti(α, · )} : {Exti(F2, ·)} −→ {Exti(F1, ·)}

is a homomorphism of δ-functors.

Lemma 9. Assume that D is a field extension of k. Let l ∈ Z with 0 ≤ l < n − 2 and F

a locally free D-module. Then there exists a finite dimensional D-vector space W as well as

an extension

0 −−−−→ F −−−−→ P −−−−→ (Ωr ⊗k D) ⊗D W −−−−→ 0.

of locally free D-modules such that the connecting homomorphism

δ : HomD(Ωl
D, Ωl

D ⊗D W ) −→ Ext1(Ωl
D,F)

is an isomorphism.

Proof. Let W be an arbitrary free D-vector space of finite dimension. Multiplication by

x ∈ W yields a D-linear map

τx : Ωl
D −→ Ωl

D ⊗D W, s → s ⊗ x.

For a locally free D-module F , the map

θ = θF : HomD(Ωl
D ⊗D W,F) −→ HomD(W, Hom(Ωl

D,F))

defined by

[θ(ϕ)](x) = ϕ ◦ τx

for ϕ ∈ HomD(Ωl
D ⊗D W,F), x ∈ W is an isomorphism with inverse satisfying

[θ−1(Ψ)](s ⊗ x) = Ψ(x)s

for Ψ ∈ HomD(W, Hom(Ωl
D,F)), s ∈ Ωl

D, x ∈ W . θ is functorial in F and since the functor

HomD(W, ·) is exact for a fixed D-vector space W , we get an induced isomorphism

{θi} : {Exti(Ωl
D ⊗D W, ·)} −→ {HomD(W, Exti(Ωl

D, ·))}

of universal δ-functors.

Now

{Exti(τx, ·)} : {Exti(Ωl
D ⊗D W, ·)} −→ {Exti(Ωl

D, ·)}

is a homomorphism of δ-functors by 5.1. Let V be a finite dimensional D-vector space, then

the evaluation map

ǫx = ǫx,Z : HomD(W, V ) −→ V, α → α(x)
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is functorial in V . We obtain a diagram of δ-functors

{Exti(Ωl
D ⊗D W, ·)}

{θi}
−−−−→ {HomD(W, Exti(Ωl

D, ·))}

{Exti(τx,·)}

y {ǫ
x,Exti(Ωl

D
,·)

}
y

{Exti(Ωl
D, ·)} = = {Exti(Ωl

D, ·)}

which commutes since it commutes in degree zero:

ǫx,Hom(Ωl
D

,F)θ(ϕ) = [θ(ϕ)](x) = ϕ ◦ τx = Hom(τx,F)(ϕ).

This implies that

(A) [θi(ζ)](x) = ǫxθi(ζ) = Exti(τx, ǫ)(ζ)

for all i ∈ N0, ζ ∈ Exti(Ωl
D ⊗D W,F) and x ∈ W .

Let λ : W −→ Exti(Ωl
D,F) be a D-linear map, put ζ = (θ1)−1(λ) ∈ Ext1(Ωl

D ⊗D W,F)

and write

(B) 0 −−−−→ F −−−−→ P −−−−→ (Ωl
D) ⊗D W −−−−→ 0.

for the extension of (Ωl
D)⊗D W by F corresponding to ζ [H, III, Ex. 6.1]. Use the canonical

maps

µ : Hom(Ωl
D, Ωl

D) ⊗D W −→ Hom(Ωl
D, Ωl

D ⊗D W ), ϕ ⊗ x → τx ◦ ϕ

and

κ : W −→ Hom(Ωl
D, Ωl

D) ⊗D W, x → id ⊗ x,

the diagram

W
λ

−−−−→ Ext1(Ωl
D,F)

κ

y δ

y

Hom(Ωl
D, Ωl

D) ⊗D W
µ

−−−−→ Hom(Ωl
D, Ωl

D ⊗D W )

commutes, where δ is the connecting homomorphism arising from (B). Indeed, given x ∈ W ,

{Exti(τx, · )} : {Exti(Ωl
D ⊗D W, ·)} −→ {Exti(Ωl

D, ·)}

is a homomorphism of δ-functors by 5.1. Thus the diagram

Hom(Ωl
D ⊗D W, Ωl

D ⊗D W )
δ

−−−−→ Ext1(Ωl
D ⊗D W,F)

Hom(τx,Ωl
D⊗DW )

y Ext1(τx,F)

y

Hom(Ωl
D, Ωl

D ⊗D W )
δ

−−−−→ Ext1(Ωl
D,F)

commutes, yielding

δµκ(x) = δµ(idΩl
D
⊗ x) = δ(τx) = δHom(τx, Ωl

D ⊗D W ) =

Ext1(τx,F) δ (idΩl
D
⊗W ) = Ext1(τx,F)(ζ) = [θ1(ζ)](x) = λ(x)

by (A). κ is an isomorphism since Hom(Ωl, Ωl) ∼= k (see for instance [Pu, 3.3(b)]), thus

Hom(Ωl
D, Ωl

D) ∼= D. µ is functorial in W and commutes with direct sums. Hence it is an

isomorphism as well since it obviously is so for V = D. Taking W = Ext1(Ωl
D,F) and

λ = idW , the map δ behaves a desired. �
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Note that in this last step of the proof, we need W = Ext1(Ωl
D,F) to be a free D-module

which is guaranteed if D is a field extension. It is not clear how to generalize this proof if

D is not a field extension, even if we assume that every finitely generated projective right

D-module is free. The result is needed to prove both Lemma 10 and Proposition 11.

5.2. In the ensuing lemma we will use the following property of Ext-functors: Let

0 −−−−→ Mj −−−−→ Fj −−−−→ Nj −−−−→ 0

for j = 1, 2 be two short exact sequences of locally free right D-modules. Then the diagram

Exti(M2,N1)
δ

−−−−→ Exti+1(M2,M1)

δ

y −δ

y

Exti+1(N2,N1)
δ

−−−−→ Exti+2(N2,M1)

commutes for all i ≥ 0 ([H-S, IV.9.9] or just adapt [N, Satz 3.6]).

Lemma 10. Assume that D is a field extension of k. Let l ∈ Z with 0 ≤ l < n − 2, m = 0

and F a locally free D-module such that

Exti(D,F(∗)) = 0 (0 < i < l + 1),

Extl+1(D,F(j)) = 0 (j > m).

Then, in the situation of Lemma 9, the connecting homomorphism

δ : Extl(D, Ωl
D ⊗ W,F) −→ Extl+1(D,F)

is an isomorphism.

Proof. For l = 0 this is shown in Lemma 9, thus we assume l > 0. Let E be a D-module,

i, j, p ∈ Z such that i ≥ 0, 1 ≤ p ≤ l and

0 −−−−→ Ωl −−−−→ OX(−l)(
n

l) −−−−→ Ωl−1 −−−−→ 0

be the extended Euler sequence of X [Pu2, (3.1)]. Tensoring by D yields the short exact

sequence

0 −−−−→ Ωl
D −−−−→ D(−l)(

n

l) −−−−→ Ωl−1
D −−−−→ 0

of D-modules and twisting it by OX(j) the short exact sequence

0 −−−−→ Ωl
D(j) −−−−→ D(−l + j)(

n

l) −−−−→ Ωl−1
D (j) −−−−→ 0

of D-modules.

This induces a long exact Ext-sequence, part of it looking as follows:

Exti+l−p(D(−p + j), E)(
n

p) −−−−→ Exti+l−p(Ωp
D(j), E)(

n

p)

δp

−−−−→ Exti+l−(p−1)(Ωp−1
D (j), E) −−−−→ Exti+l−p+1(Ωp

D(j), E).

Combining for p = 1, . . . , l we get a homomorphism

δ : δ1 . . . δl : Exti(Ωl
D(j), E) −→ Exti+l(D(j), E)

which is injective, resp. surjective, if each δp is injective, resp. surjective. This is the case if

Exti+l−p(D(−p + j), E) = Exti+l−p(D, E(−p + j)) = 0
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resp.

Exti+l−p+1(D(−p + j), E) = Exti+l−p+1(D, E(−p + j)) = 0

for 1 ≤ p ≤ l.

Applying this to the special cases i = j = 0, E = Ωl
D ⊗D W and i = 1, j = 0, E = F , we

obtain that the diagram

Hom(Ωl
D, Ωl

D ⊗D W )
δ

−−−−→ Extl(D, Ωl
D ⊗D W )

δ

y δ

y

Ext1(Ωl
D,F)

δ
−−−−→ Extl+1(D,F)

commutes up to a sign by 5.2. For 1 ≤ p ≤ l, we have

Extl−p+1(D, Ωl
D ⊗D W ⊗OX(p)) = Extl−p+1(D, Ωl

D ⊗OX(p))rank W = 0

since Extl−p+1(OX , Ωl(p)) = 0 by [Pu2, 3.3 (c)] and also

Extl−p+2(D, Ωl
D ⊗D W ⊗OZ(p)) = Extl−p+2(D, Ωl

D ⊗OX(p))rank W = 0

since Extl−p+2(OX , Ωl(p)) = 0 by [Pu2, 3.3 (d)], so the upper map δ is injective.

For 1 ≤ p ≤ l, we have

Extl−p+1(D,F(p)) = 0

and also

Extl−p+2(D,F(p)) = 0

by the hypothesis on F , so the lower map δ is an isomorphism. The left-hand map δ is an

isomorphism by Lemma 9, therefore also the right-hand side map δ must be an isomorphism,

as desired. �

We can now prove:

Proposition 11. Assume that D is a field extension of k.

Let l, m ∈ Z with 0 ≤ l ≤ n − 2 and let F be a locally free D-module such that

Exti(D,F(∗)) = 0 (0 < i < l + 1),

Extl+1(D,F(j)) = 0 (j > m).

Then there is a finite dimensional D-vector space W and an extension

0 −−−−→ F −−−−→ P −−−−→ Ωl
D(−m) ⊗D W −−−−→ 0.

such that

Exti(D,P(j)) = 0 (i, j ∈ Z, 0 < i < l + 1),

Extl+1(D,P(j)) = 0 (j ∈ Z, j ≥ m),

Extl+1(D,P(j)) ∼= Extl+1(D,F(j)) (j ∈ Z, j < m).
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Proof. By twisting by OX(m) we may assume that m = 0.

Twisting the short exact sequence of Lemma 9 by OX(j) yields the short exact sequence

0 −−−−→ F(j) −−−−→ P(j) −−−−→ (Ωr
D ⊗D W )(j) −−−−→ 0.

By hypotheses on F , Exti(D,F(∗)) = 0 for 0 < i < l+1. Moreover, Exti(D, Ωl
D(j)⊗D W ) =

0, unless i = l and j = 0 [Pu2, 3.3(d)], forcing Exti(D,P(j)) = 0 for 0 < i < l + 1, i 6= l or

j 6= 0. In case i = l and j = 0, the exact sequence

0 −−−−→ Extl(D,P) −−−−→ Extl(D, Ωr
D ⊗D W )

δ
−−−−→ Extl+1(D,F)

together with Lemma 10 shows that Extl(D,P) = 0. Summing up, Exti(D,P(j)) = 0 for

0 < i < l + 1.

Now consider the exact sequence

Extl(D, Ωr
D ⊗D W (j))

δ
−−−−→ Extl+1(D,F(j))

−−−−→ Extl+1(D,P(j)) −−−−→ Extl+1(D, (Ωl
D ⊗D W )(j)) = 0,

the last extension group being zero by [Pu2, 3.3 (d)]. If j 6= 0, also Extl(D, (Ωr
D⊗DW )(j)) =

0 which implies Extl+1(D,P(j)) ∼= Extl+1(D,F(j)) = 0 for j > 0. If j = 0, δ is an

isomorphism by Lemma 10 which shows Extl+1(D,P) = 0 and completes the proof. �

Lemma 12. Let D be a field extension of k. Let l, m ∈ Z with 0 ≤ l ≤ n−1
2 − 1 and

m ≥ −l − 1 for l = n−1
2 − 1. Given any finite dimensional D-vector space W , put R =

Ωl
D(−m) ⊗D W. Then

Ext1(R,R∗) = Ext2(R,R∗) = 0

Proof. Exti is additive in both variables, so we may assume that W = D and have to show

that

Exti(Ωl
D(−m), (Ωl

D(−m))∗) = 0

for i = 1, 2. Put j = −m, F = Ωl
D(−m)∗, then as in the proof of Lemma 10 we obtain a

homomorphism

δ : Exti(Ωl
D(−m), (Ωl

D(−m))∗) −→ Exti+l(D, (Ωl
D(−2m))∗).

Since n−1 ≥ 2l+1 we have l < n−1−i− l+p for all p = 1, . . . , l. By Serre-duality, we know

that Hi+l−p(X, Ωl(−m)∨(p + m)) = 0, therefore also Exti+l−p(D, Ωl
D(−m)∗(p + m)) = 0,

which together with [Pu2, 3.3 (d)] proves injectivity of δ as in the proof of Lemma 10.

Using Serre-duality and [Pu2, 3.3 (d)], we can check that Hi+l(X, Ωl(−2m)∨) = 0 therefore

Exti+l(D, Ωl
D(−2m)∗) = 0 for i = 1, 2. Hence δ is surjective as well. �

6. Hermitian forms over field extensions of k

6.1. Let k be a field of characteristic not 2 and X a Brauer Severi variety over k. Let

l/k be a separable field extension with a k-linear involution σ. Put Y = X ×k l and

Xs = X ×k ks
∼= P

n−1
ks

for ks a separable closure of k. Recall from [Pu2, 5.2] that every line

bundle OXs
(m) has a G-invariant isomorphism class, where G = Gal (ks/k) is the Galois

group of ks/k. That means OXs
(m) ∼= OXs

(m)τ for all τ ∈ G. We look at (σ-)hermitian
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spaces (M, h) over D = l ⊗k OX , pointing out that l ⊗k OX = π∗OY , see 1.5. In other

words, Y is affine over X and defined by the sheaf of OX -algebras l ⊗k OX :

Y = Spec
X

(l ⊗k OX)

[H, II. Ex. 5.17].

Let M be a right D-module which is locally free of finite rank. Then M canonically is

an OX -module and we denote the associated OY -module by M̃ as in [H, II. Ex. 5.17].

Proposition 13. Suppose Y = P
n−1
l . Then every hermitian space (M, h) over l ⊗k OX

such that M̃ splits into a direct sum of line bundles is Witt equivalent to a hermitian space

extended from l.

Proof. If M̃ splits into the direct sum of line bundles, then

M̃ ∼=

t⊕

i=1

OY (si)

as OY -module. We have OY (m) ∼= OY (m)∗ if and only if m = 0 [Pu2, 5.2]. Hence there is

no non-trivial line bundle over Y which is selfdual with respect to ∗. By the Krull-Schmidt

Theorem for hermitian spaces [K, (6.3.1), p. 98] and by [K, (6.4.1), p. 99],

(M, h) ∼= (M0, h0) ⊗l (l ⊗OY ) ⊥ a hyperbolic space.

�

Theorem 14. Suppose X = P
n−1
k . Then

Uτ : W 1(l) −→ W 1(l ⊗k OX)

is surjective.

The proof is similar to the one given in [A] or in [Pu2, 5.1]:

Proof. If n = 2, for every hermitian space (M, h) over l ⊗k OX the vector bundle M splits

into a direct sum of line bundles, hence surjectivity follows from Proposition 13 and we may

assume n ≥ 3.

We show by induction on a ≥ 0: If (M, h) is a hermitian space over D = l ⊗k OX such

that

a = max{i ∈ Z | 0 ≤ i < n − 1, Extn−i−1(D,M(∗)) 6= 0}

then (M, h), up to Witt equivalence, is a hermitian space extended from l. Note that the

set on the right hand side is not empty here.

If a = 0 then Extn−i−1(D,M(∗)) = 0 for 0 < i < n − 1, so by the generalization of

Horrocks’ Theorem, M ∼= D(s1) ⊕ · · · ⊕ D(st) for some si’s and, by Proposition 13, (M, h)

is Witt equivalent to some hermitian space extended from l. This settles the induction

beginning.

In the induction step, let a > 0 and suppose the induction hypothesis holds for all

nonnegative integers a′ < a.

There is no harm in assuming a < n − 1, so if l = n − 2 − a, then

(14) 0 ≤ l < n − 2.
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It suffices to show that a hermitian space (M, h) with

Exti(D,M(∗)) = 0 for 0 < i < l + 1,

up to Witt equivalence is extended from l. This will be done by induction on

s = dimExtl+1(D,M(∗)).

If s = 0 then Extl+1(D,M(∗)) = Extn−a−1(D,M(∗)) = 0, therefore

max{i ∈ Z | 0 ≤ i < n − 1, Extn−i−1(D,M(∗)) 6= 0} < a

and we are done by induction hypothesis on a. If s > 0,

(15) l is the least nonnegative integer such that Extl+1(D,M(∗)) 6= 0.

By [H, III, Ex. 6.10], Extq(D,M(j)) = Extq(OY ,M̃(j)) = Hq(Y,M̃(j)). Thus (15) is

equivalent to saying that

(15′) l is the least nonnegative integer such that H l+1(Y,M̃(∗)) 6= 0.

Using that M ∼= M∗ and Serre duality we obtain

Hi(Y,M̃(j)) ∼= Hi(Y,M̃∨(j)) ∼= Hn−1−i(Y,M̃(−n − 2 − j))∨

and may conclude that

(16) l + 1 ≤
n − 1

2
.

Picking m ∈ Z maximal such that Extl+1(D,M(m)) 6= 0, we obtain

(17) m ≥ −l − 1 if l + 1 =
n − 1

2
.

(This is because for l + 1 = n−1
2 , m ≥ −n − 2 − m, thus 2m ≥ −n − 2 = −2l − 4 implying

m ≥ −l − 1.) In particular,

(18) Extl+1(D,M(j)) = 0 for j > m.

Because of (14, 15, 18), M satisfies the hypothesis of Proposition 11 and there exists a

locally free D-module E and an extension

(19) 0 −−−−→ M −−−−→ P −−−−→ E −−−−→ 0.

such that P satisfies the conditions listed in Proposition 11. Hence

Ext1(E , E∗) = Ext1(E , E∗) = 0.

Thus we may apply the Extension Theorem 6 to the dual of (19) with M replaced by M∗

via h, i.e., to

(20) 0 −−−−→ E∗ −−−−→ P∗ −−−−→ M −−−−→ 0.

This way we obtain a hermitian space (S, b) Witt equivalent to (M, h) and an exact sequence

of D-modules

(21) 0 −−−−→ E∗ −−−−→ S −−−−→ P −−−−→ 0.

Since Exti(D, Ωl
D(−m)∗(j)) = 0 for 0 < i ≤ l + 1 this together with (20) yields

Exti(D,S(∗)) = 0 for 0 < i < l + 1
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and that Extl+1(D,S(j)) → Extl+1(D,P(j)) is injective for all j ∈ Z. The latter shows by

using Proposition 11 that

Extl+1(D,S(j)) = 0 for j ≥ m′,

dimExtl+1(D,S(j)) ≤ dimExtl+1(D,M(j)) for j < m′.

Together this yields

dimExtl+1(D,S(∗)) ≤ s.

Applying the induction hypothesis yields the assertion that (S, b) and hence also (M, h) is

up to Witt equivalence extended from l. �

By Theorems 1, 2 and 4, this settles the case where X is associated to a central simple

algebra of odd index:

Corollary 15. (i) Let X = P
n−1
k . Then

Uτ : W 1(l) −→ W 1(l ⊗k OX)

is bijective.

(ii) Let X be a Brauer Severi variety associated to a central simple algebra of odd index.

Then

Uτ : W 1(l) −→ W 1(l ⊗k OX)

is bijective.

6.2. Let X be a Brauer Severi variety over k with associated central simple algebra Mats(E),

E a division algebra over k.

Proposition 16. (i) Suppose there is a separable maximal subfield k′ of E containing l. Let

X ′ = X ×k k′. Then every hermitian space (M, h) over l ⊗k OX such that M̃ ⊗OX′ splits

into the direct sum of line bundles is Witt equivalent to a hermitian space (M0, h0) over l.

(ii) Suppose there is a separable maximal subfield k′ of E, such that l and k′ are linearly

disjoint. Let Y ′ = X×k l′ with l′ = l⊗k k′. Then every hermitian space (M, h) over l⊗kOX

such that M̃⊗OY ′ splits into the direct sum of line bundles is Witt equivalent to a hermitian

space (M0, h0) over l.

Proof. (i) Obviously, X ′ ∼= P
n−1
k′ . If M̃ ⊗OY

OX′ splits into the direct sum of line bundles

M̃ ⊗OY
OX′

∼=

t⊕

i=1

OX′(si),

then, by the theory developed in [AEJ],

M̃ ∼=

t⊕

i=1

L(si) ⊕
h⊕

j=1

trlj/l(Nj)

as OY -module with line bundles Nj over Yj = Y ×l lj which are not already defined over Y ,

lj/l proper field extensions, and with the trlj/l(Nj)’s indecomposable. We have OX′(m) ∼=

OX′(m)∗ if and only if m = 0 [Pu2, 5.2]. Hence there is no non-trivial line bundle over

Y which is selfdual with respect to ∗. Now consider an indecomposable vector bundle
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trlj/l(Nj). Then trlj/l(Nj) ∼= trlj/l(Nj)
∗ implies that OX′(m)⊕· · ·⊕OX′(m) ∼= OX′(−m)⊕

· · · ⊕OX′(−m) [Pu2, 5.2], hence m = 0 and so there are no indecomposable OY -modules of

rank > 1 which are selfdual with respect to ∗. By the Krull-Schmidt Theorem for hermitian

spaces [K, (6.3.1), p. 98],

(M̃, h̃) ∼= (M, h) ⊗l (l ⊗OY ) ⊕ a hyperbolic space

and thus also (M, h) is Witt equivalent to a hermitian space (M0, h0) over l (we canonically

identify hermitian forms over l ⊗k OX with hermitian forms over D).

(ii) is proved analogously. �

Theorem 17. Let E have even index. Then

Uτ : W 1(l) −→ W 1(l ⊗k OX)

is surjective.

Proof. If l is a finite field extension of k with an involution σ and invariant field lσ, for a

Brauer-Severi variety X over k we may identify lσ-algebras and modules over X with OXlσ
-

algebras and modules over Xlσ , analogous to the M → M̃ construction. In particular, we

may identify hermitian forms over l ⊗k OX with hermitian forms over l ⊗lσ OXlσ
. This way

we may restrict us without loss of generality to the case that [l : k] = 2. In this case, either

there is a separable maximal subfield k′ of E containing l, or there is a maximal separable

subfield k′ of E such that k′ is linearly disjoint with l over k.

(i) Suppose that there is a separable maximal subfield k′ of E containing l. For n = 2,

Y ′ ∼= P1
l′ and the assertion is proved in Proposition 16 (i). So we may assume n ≥ 3. Let

M′ = M̃ ⊗OY
OY ′ .

We show by induction on a ≥ 0: If (M, h) is a hermitian space such that

a = max{i ∈ Z | 0 ≤ i ≤ n − 1, Hn−i−1(Y ′,M′) 6= 0}

then (M, h), up to Witt equivalence, is a hermitian space (M0, h0) over l.

If a = 0 then Hn−i−1(Y ′,M′(j)) = 0 for all j and for 0 ≤ i ≤ n−1, so by Horrocks [B-H,

Sect. 5, Lemma 1], M′ splits into the direct sum of line bundles and, by Proposition 16 (i),

(M, h) is Witt equivalent to some hermitian space (M0, h0) over l. This settles the induction

beginning. In the induction step, let a > 0 and suppose the induction hypothesis holds for

all nonnegative integers a′ < a. Then the assertion is proved analogously as Theorem 14

using [Pu3, Proposition 4.1] (there use Xl instead of X), [Pu3, Lemma 4.4], Lemma 10 and

the Extension Theorem 6.

(ii) Suppose there is a maximal separable subfield k′ of E such that k′ is linearly disjoint with

l over k. Then the proof is analogous to the one in (i), but working over P
n−1
l′ instead. �

Remark 18. Let X = P
n−1
R

and let σ be the standard involution on C. Then W ε(C) ∼=

W ε(C ⊗R OX). Since W−1(C) ∼= W 1(C) ∼= Z [K, p. 63], this implies

W±1(C) ∼= W±1(C ⊗R OX) ∼= Z.
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7. Hermitian spaces over division algebras

7.1. Let k be a field of characteristic not 2 and D be a division algebra over k with a k-linear

involution σ. Let X = P1
k, D = τ∗D ∼= D ⊗k OX and D(m) = OX(m) ⊗ D for any integer

m.

The Theorem of Krull-Schmidt holds for locally free right D-modules [K, p. 96] and for

ǫ-hermitian spaces over D if we restrict to ǫ = ±1, by [K, p. 99, (6.5.1)].

Proposition 19. Let X = P1
k and ǫ = ±1. Every ǫ-hermitian space (M, h) over D ⊗k OX

such that

M ∼= D(m1) ⊕ · · · ⊕ D(mt)

is Witt equivalent to an ǫ-hermitian space (M0, h0) ⊗D (D ⊗ OX), where (M0, h0) is an

ǫ-hermitian space over D.

Note that for the possible extension of these results described in Section 7.2 we would

need this proposition also for X = Pn
k (and ǫ = 1).

Proof. We have D(m) ∼= D(m)∗ if and only if m = 0 [K, p. 96, (5.4.1)]. Hence D itself is the

only locally free right D-module of rank 1 which is selfdual with respect to ∗. Any ǫ-hermitian

space with underlying vector bundle of type {D(m),D(m)∗} with m 6= 0 is isometric to a

hyperbolic space [K, p. 99, (6.4.2)]. By the Krull-Schmidt Theorem for ǫ-hermitian spaces

([S, p. 272] or [K, p. 96, p. 99]), M ∼= D(m1) ⊕ · · · ⊕ D(mt) implies that

(M, h) ∼= (M0, h0) ⊗D (D ⊗OX) ⊥ ⊥h
j=1(D(mj) ⊕D(−mj),

[
0 1

ǫ 0

]
)

for a suitable ǫ-hermitian space over D and suitable mj 6= 0. We conclude that

(M, h) ∼= (M0, h0) ⊗D (D ⊗OX) ⊥ a hyperbolic space.

�

Corollary 20. Let X = P1
k and ǫ = ±1. Every ǫ-hermitian space (M, h) over D ⊗k OX is

Witt equivalent to an ǫ-hermitian space (M0, h0)⊗D (D⊗OX) with (M0, h0) an ǫ-hermitian

space over D. In particular,

Uτ : W ǫ(D) −→ W ǫ(D ⊗OX)

is bijective.

Proof. For X = P1
k, every ǫ-hermitian space (M, h) over D ⊗k OX satisfies M ∼= D(m1) ⊕

· · · ⊕ D(mt) [K, p. 407, VII.(3.1.1)]. �

7.2. Let X = Pn
k and char k 6= 2. It would be desirable to prove that for a division algebra

D with a k-linear involution σ the group homomorphism

Uτ : W 1(D) −→ W 1(D ⊗OX)

is surjective. However, we will leave this open for now and only briefly discuss the problems

arising in a possible proof.
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First of all, we need to assume that

Extl+1(D,M(∗)).

is of finite rank as a right D-module and that Extn−1(D,M(∗)) 6= 0.

For n = 1 the assertion has been proved in Corollary 20, so let n ≥ 2. Imitating the

proofs in [Pu2] or [A] we proceed as follows: it would suffice to show by induction on a ≥ 0

that if (M, h) is a hermitian space satisfying

a = max{ i ∈ Z | 0 ≤ i < n, Extn−i−1(D,M(∗)) 6= 0},

then (M, h) is Witt equivalent to a hermitian space (M0, h0) ⊗D (D ⊗OX).

If a = 0 then Extn−i(D,M(j)) = 0 for all j, 0 < i < n and M ∼= D(m1)⊕· · ·⊕D(mt) by

Theorem 8 (the generalized Horrocks Theorem). If Proposition 19 can be generalized to Pn
k ,

this would imply that (M, h) is Witt equivalent to a hermitian space (M0, h0)⊗D (D⊗OX)

and settle the induction beginning.

In the induction step, let a > 0 and suppose that the induction hypothesis holds for all

nonnegative integers a′ < a. There is no harm in assuming a < n, thus we have 0 ≤ l =

n− 1− a < n− 1. It suffices to show that a hermitian space (M, h) with Exti(D,M(∗)) = 0

for 0 < i < l + 1 is Witt equivalent to a hermitian space which is extended from D. This is

done by induction on

s = dimExtl+1(D,M(∗)).

If s = 0 then we are done by the induction hypothesis on a. If s > 0 then l is the least

nonnegative integer such that Extl+1(X,M(∗)) 6= 0. We next would have to be able to

conclude that l + 1 ≤ n
2 . It is not clear if we can show it by using Serre-duality. Let

m ∈ Z be maximal such that Extl+1(D,M(m)) 6= 0. If l + 1 = n
2 , m ≥ −m − 1 − m, hence

2m ≥ −n − 1 = −2l − 3, forcing m ≥ −l − 1 if l + 1 = n
2 .

We would now need to apply a similar result as Proposition 11 in our setting here if we

want to proceed with our proof along the same lines as in Theorem 14. However, it is not

clear how to prove a statement like this, see Section 5. At this point all we can say is that

(M, qh), the quadratic space over X induced by (M, h), is Witt equivalent to a quadratic

space defined over k. We leave it open if it is possible to fix these gaps in the proof.
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