
NOTE ON THE COHOMOLOGICAL INVARIANT OF

PFISTER FORMS

M.TEZUKA AND N.YAGITA

Abstract. The cohomological invariant ring of the n-Pfister forms
is isomorphic to the invariant ring in that of an elementary abelian
2-group of rank n under a GLn(Z/2)-action.

1. Introduction

Let G be an algebraic group over k with ch(k) 6= 2. The cohomo-
logical invariant Inv∗(G;Z/2) is (roughly speaking) the ring of natural
functors H1(F ;G) → H∗(F ;Z/2) for the category of finitely generated
field F over k. (For details, see the excellent book [Ga-Me-Se]). More-
over, we can define the cohomological invariant Inv∗(Pfistern;Z/2)
of n-Pfister forms, while there does not exist the corresponding group
G for n ≥ 4. In Theorem 18.1 in [Ga-Me-Se], this invariant has been
computed.
In this note, we show that this cohomological invariant is isomorphic

to the invariant ring in that of an elementary abelian 2-group of rank
n under a GLn(Z/2)-action, namely,

Inv∗(Pfistern;Z/2) ∼= Inv∗((Z/2)n;Z/2)GLn(Z/2).

2. motivic cohomology and cohomological invariant

We recall the motivic cohomologyH∗,∗′(X ;Z/2) for a smooth scheme
X over k with ch(k) 6= 2. By the Milnor conjecture (which is now
solved by Voevosky), we know H∗,∗′(X ;Z/2) ∼= H∗

et(X ;Z/2) for ∗ ≤ ∗′.
Take τ ∈ H0,1(Spec;Z/2) ∼= Z/2 as a nonzero element. It is known
that H∗,∗′(X ;Z/2) = 0 for (∗ − ∗′) > dim(X). Hence we have

H∗,∗′(Spec(k);Z/2) ∼= H∗
et(Spec(k);Z/2)[τ ].

Let us write H∗,∗′ = H∗,∗′(Spec(k);Z/2) and H∗ = H∗
et(Spec(k);Z/2)

so that H∗,∗′ ∼= H∗[τ ].
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Let BG be a classifying space of G ([To], [Vo2]). Let H∗(X ;H∗′

Z/2)
be the sheaf cohomology where Hn

Z/2 is the Zarisky sheaf induced from

the presheaf Hn
et(V ;Z/p) for open subset V of X . Then Totaro proved

that
Inv∗(BG;Z/2) ∼= H0(BG;H∗

Z/2)

in a letter to Serre [Ga-Me-Se]. The Milnor conjecture implies the
Beilinson and Lichtenbaum conjecture (see [Vo2,3]). This fact implies
the following long exact sequences of motivic and sheaf cohomology
theories (Lemma 3.1 in [Or-Vi-Vo], [Vo3])

→ Hm,n−1(X ;Z/2)
×τ
→ Hm,n(X ;Z/2)

→ Hm−n(X ;Hn
Z/2) → Hm+1,n−1(X ;Z/2)

×τ
→ .

Thus we have

Theorem 2.1. There is an additive isomorphism

Inv∗(G;Z/2) ∼= H∗,∗(BG;Z/2)/(τ)⊕Ker(τ)|H∗+1,∗−1(BG;Z/2).

As an application, we first consider the case G = Z/2. The mod(2)
motivic cohomology is computed in [Vo1,2].

H∗,∗′(BZ/2;Z/2) ∼= H∗,∗′[y]⊗∆(x)

with β(x) = y, hence deg(y) = (2, 1) and deg(x) = (1, 1). Here Vo-
evodsky shows ([Vo1,2])

x2 = τy + ρx with ρ = (−1) ∈ H1 = k∗/(k∗)2.

Next consider their productG = (Z/2)n. The cohomologyH∗,∗′(BZ/2;Z/2)
has the Kunneth formula (also by Voevodsky). Hence the motivic co-
homology is given

H∗,∗′(BG;Z/2) ∼= H∗,∗′[y1, ..., yn]⊗∆(x1, .., xn)

where β(xi) = yi and x2
i = τyi + ρxi. Hence from Theorem 2.1, we get

(as stated in [Ga-Me-Se])

Lemma 2.2. Let G be an elementary abelian 2-group of rank(G) = n.
Then Inv∗(G;Z/2) ∼= H∗ ⊗∆(x1, ..., xn) with x2

i = ρxi.

3. Dickson invariants

Recall that the mod 2 (topological) cohomology

H∗(B(Z/2)n;Z/2) ∼= Z/2[x1, ..., xn] |xi| = 1.

It is well known that the invariant ring under the GLn(Z/2)-action is
the Dickson algebra

H∗(B(Z/2)n;Z/2)GLn(Z/2) ∼= Z/2[dn,0, ..., dn,n−1]
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where each generator dn,i is given by

wt(x) = Πǫi=0 or 1(t + ǫ1x1 + ...ǫnxn)

= t2
n

+ dn,n−1t
2n−1

+ dn,n−2t
2n−2

+ ...+ dn,0t.

Examples. Let us write by wi the elementary symmetric function
for xj in H∗(B(Z/2)n;Z/2). Then

{

d2,1 = x2
1 + x1x2 + x2

2 = w2
1 + w2

d2,0 = x2
1x2 + x1x

2
2 = w1w2

.

We want to know the Dickson invariant ring in the cohomological
invariant. Let us consider

U = Inv∗k=R
((Z/2)n;Z/2) ∼= H∗,∗′(B(Z/2)n|R;Z/2)/(τ)

∼= Z/2[ρ]⊗∆(x1, ..., xn), x2
i = ρxi.

For example, in U , we see d2,0 = ρx1x2 + x1ρx2 = 0, and

d2,1 = ρx1 + x1x2 + ρx2 = ρw1 + w2.

Lemma 3.1. In U , we have dn,i = 0 for i < n− 1 and

dn,n−1 =

n
∑

i≥1

wiρ
2n−1−i = (ρ+ x1)...(ρ+ xn)ρ

2n−1−n + ρ2
n−1

.

Proof. Decompose that

wt(x) = Π(t + ǫ1x1 + ...ǫn−1xn−1)× Π(t+ xn + ǫ1x1 + ...ǫn−1xn−1).

By induction on n, we assume this element is

(t2
n−1

+ dn−1,n−2t
2n−2

)((t+ xn)
2n−1

+ dn−1,n−2(t + xn)
2n−2

).

Letting dn−1,n−2 = d, t2
n−2

= T and x2n−2

= X , we see that the above
formula is

= (T 2 + dT )(T 2 +X2 + dT + dX)

= T 4 + (d2 + dX +X2)T 2 + (d2X + dX2)T.

Here note X2 = ρ∗X = ρ∗
′

xn, d
2 = ρ∗d (since (ρ+ x)2 = ρ(ρ+ x)). So

(d2X + dX2) = 0. Let a = an−1 = (ρ+ x1)...(ρ+ xn−1). Then we have

d2 + dX +X2 = ρ∗d+ ρ∗−1dxn + ρ∗
′

xn

= ρ♯(a + ρ∗
′′

) + ρ♯−1(a+ ρ∗
′′

)xn + ρ∗
′

xn

= ρ♯−1a(ρ+ xn) + ρ♯
′′

= ρ♯−1an + ρ♯
′′

as desired. �
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Corollary 3.2. Let us write

en = ρ−2n−1+ndn,1 =
n

∑

i≥1

wiρ
n−i = (ρ+ x1)...(ρ+ xn) + ρn.

Then we have

Inv∗((Z/2)n;Z/2)GLn(Z/2) ∼= H∗{1, en}.

Proof. By Ideal(ρ), we consider the associated graded algebra

gr(H∗ ⊗∆(x1, ..., xn)) ∼= gr(H∗)⊗ Λ(x1, ..., xn) (x2
i = 0).

Note en = wn in the above graded algebra. We can see

Λ(x1, ..., xn)
GLn(Z/2) ∼= Z/2{1, wn}

as following arguments.
Since x2

i = 0, the only possibility of invariant is ws. Suppose s < n.
Write

ws = x1(
∑

16=ik

xi1 ...xis−1
) + (

∑

16=ik

xi1 ...xis).

Consider the action x12 : x1 7→ x1 + x2 but x12 : xi 7→ xi for i > 1.
Then

(x12−1)ws = x2(
∑

16=ik

xi1 ...xis−1
) = x2x3...xs+1+... 6= 0 in Λ(x1, ..., xn).

All elements in H∗ and en are really invariants in H∗⊗∆(x1, ..., xn).
Thus we have the corollary. �

Let n = 2 and G = SO3 or n = 3 and G = G2 the exceptional group.
Then G has only one conjugacy class An of maximal elementary abelian
2 groups of rank n. The Weyl group WG(An) ∼= GLn(Z/2). Hence we
have the restriction map

Inv∗(G;Z/2) → Inv∗(An;Z/2)
WG(An) ∼= H∗{1, en}.

The result in [Ga-Me-Se] shows this map is an isomorphism.

4. Pfister forms

The most important quadratic forms are Pfister forms. Given a =
(a1, ..., an) ∈ (k∗/(k∗)2)×n, the n-th Pfister form Pa is the quadratic
form defined as

Pa = 〈〈a1, ..., an〉〉 = 〈1,−a1〉 ⊗ ...⊗ 〈1,−an〉

= ⊕1≤i1<...<is≤n〈(−ai1)...(−ais)〉.
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Given a quadratic form qa = 〈a1, ..., an〉, the total Stiefel-Whitney
class is given by

wt(qa) = Π(t+ ai).

Hence we know

wt(Pa) = Πǫi=0 or 1(t+ ǫ1(ρ+ x1) + ...+ ǫn(ρ+ xn))

identifying xi = (ai). Hence the following proposition follows the pre-
ceding lemma. (Substitute xi + ρ for xi in the right hand side of the
euation in Lemma 3.1.)

Proposition 4.1. Let xi = (ai) ∈ k∗/(k∗)2 and wn = x1...xn. Then

wt(Pa) = t2
n

+ (wn + ρn)ρ2
n−1−nt2

n−1

.

Next consider the map from (k∗/(k∗)2)×n to the set of n-th Pfister
forms Pfistn defined by

p : a = (a1, ..., an) 7→ P−a = 〈〈 − a1, ...,−an〉〉 = 〈1, a1〉 ⊗ ...⊗ 〈1, an〉.

This map induces the map of cohomological invariants

p∗ : Inv∗(Pfistern;Z/2) → Inv∗((k∗/(k∗)2)×n;Z/2).

Here the last invariant is isomorphic to

Inv∗((Z/2)n;Z/2) ∼= H∗ ⊗∆(x1, ..., xn).

On H∗ ⊗ ∆(x1, ..., xn), we can define the usual GLn(Z/2)-action.
This action is also written as follows. Consider the Bruhat decompo-
sition

GLn(Z/2) =
∐

w∈Sn

BwB

where B is the Borel group generated by upper triangular matrices,
and Sn is the n-th symmetric group generated by transition matrices.
The group B is generated by xij = 1+eij ; the elementary matrix with
(i, j) entries 1 with the relations

x2
ij = 1, [xij , xkl] =

{

xil if j = k

0 otherwise.

Define w(xi) = xw(i) for w ∈ Sn and

xij(xi) = xi + xj , xij(xk) = xk for i 6= k.

Then the GLn(Z/2)-action is decided on Inv∗((Z/2)n;Z/2).

Theorem 4.2. The above map p∗ induces the isomorphism

Inv∗(Pfistern;Z/2) ∼= H∗ ⊗∆(x1, ..., xn)
GLn(Z/2) ∼= H∗{1, en}.
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Proof. On (k∗/(k∗)2)×n, we can define the GLn(Z/2)-action by

xij(a1, ...an) = (a1, ..., ai−1, aiaj, ai+1, ..., an),

w(a1, ..., an) = (aw(1), ..., aw(n)).

This induces the action on Inv∗((Z/2)n;Z/2) by w(xi) = xw(i) and

xij(xi) = xi + xj , xij(xk) = xk for i 6= k.

Define a GLn(Z/2) action on Pfistern by xijp(a) = p(xij(a)). Then
this action is invariant, indeed,

x12〈〈a1, a2〉〉 = px12(−a1,−a2) = p(a1a2,−a2)

= 〈〈 − a1a2, a2〉〉 = 〈1, a1a2,−a2,−a1a
2
2〉

= 〈1, a1a2,−a2,−a1〉 = 〈〈a1, a2〉〉.

Hence we have the map

q∗ : Inv∗(Pfistern;Z/2) → H∗ ⊗∆(x1, ..., xn)
GLn(Z/2).

Since P−a 7→ en = wn(P−a) + ρn is a cohomology invariant and hence
the above map is epic.
For each finitely generated field F over k, the map p : (K∗/(K∗)2)n →

Pfistern|K is of course an epimorphism. Hence the induced map

p∗(x) : (K∗/(K∗)2)n → Pfistern
x
→ Hn(K;Z/2)

is always injective. �

If we consider the map

q : a = (a1, ..., an) 7→ Pa = 〈〈a1, ..., an〉〉,

then the map q∗ also induces the isomorphism

Inv∗(Pfistern;Z/2) ∼= H∗ ⊗∆(x1, ..., xn)
GLn(Z/2)II ∼= H∗{1, wn}

where GL(Z/2)II is the unusual action defined by xij(xi) = ρ+xi+xj .
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