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Abstract

We prove that under some assumptions on an algebraic group G, indecomposable direct summands of the motive

of a projective G-homogeneous variety with coefficients in Fp remain indecomposable if the ring of coefficients

is any field of characteristic p. In particular for any projective G-homogeneous variety X, the decomposition of

the motive of X in a direct sum of indecomposable motives with coefficients in any finite field of characteristic p

corresponds to the decomposition of the motive of X with coefficients in Fp. We also construct a counterexample

to this result in the case where G is arbitrary.

To cite this article: A. Name1, A. Name2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Résumé

Décompositions motiviques des variétés projectives homogènes et changement des coefficients.

Nous prouvons que sous certaines hypothèses sur un groupe algébrique G, tout facteur direct indécomposable

du motif associé à une variété projective G-homogène à coefficients dans Fp demeure indécomposable si l’anneau

des coefficients est un corps de caractéristique p. En particulier pour toute variété projective G-homogène X, la

décomposition du motif de X comme somme directe de motifs indécomposables à coefficients dans tout corps fini

de caractéristique p correspond à la décomposition du motif de X à coefficients dans Fp. Nous exhibons de plus

un contre-exemple à ce résultat dans le cas où le groupe G est quelconque.

Pour citer cet article : A. Name1, A. Name2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Introduction

Let F be a field, Λ be a commutative ring, CM(F ; Λ) be the category of Grothendieck Chow motives

with coefficients in Λ, G a semi-simple affine algebraic group and X a projective G-homogeneous F -
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variety. The purpose of this note is to study the behaviour of the complete motivic decomposition (in a
direct sum of indecomposable motives) of X ∈ CM(F ; Λ) when changing the ring of coefficients. In the
first part we prove some very elementary results in non-commutative algebra and find sufficient conditions
for the tensor product of two connected rings to be connected. In the second part we show that under
some assumptions on G, indecomposable direct summands of X in CM(F ;Fp) remain indecomposable if
the ring of coefficients is any field of characteristic p (Theorem 2.1), since these conditions hold for the
reduced endomorphism ring of indecomposable direct summands of X . In particular theorem 2.1 implies
that the complete decomposition of the motive of X with coefficients in any finite field of characteristic
p corresponds to the complete decomposition of the motive of X with coefficients in Fp. Finally we show
that theorem 2.1 doesn’t hold for arbitrary G by producing a counterexample.
Let Λ be a commutative ring. Given a field F , an F -variety will be understood as a separated scheme

of finite type over F . Given such Λ and an F -variety X , we can consider CHi(X ; Λ), the Chow group of i-
dimensional cycles onX modulo rational equivalence with coefficients in Λ, defined as CHi(X)⊗ZΛ. These
groups are the first step in the construction of the category CM(F ; Λ) of Grothendieck Chow motives with
coefficients in Λ. This category is constructed as the pseudo-abelian envelope of the category CR(F ; Λ) of
correspondences with coefficients in Λ. Our main reference for the construction and the main properties
of these categories is [2]. For a field extension E/F and any correspondence α ∈ CH(X×Y ; Λ) we denote
by αE the pull-back of α along the natural morphism (X × Y )E → X × Y . Considering a morphism of
commutative rings ϕ : Λ −→ Λ′ we define the two following functors. The change of base field functor is
the additive functor resE/F : CM(F ; Λ) −→ CM(E; Λ) which maps any summand (X, π)[i] ∈ CM(F ; Λ)
to (XE , πE)[i] and any morphism α : (X, π)[i] → (Y, ρ)[j] to αE . The change of coefficents functor
is the additive functor coeffΛ′/Λ : CM(F ; Λ) −→ CM(F ; Λ′) which maps any summand (X, π)[i] to
(X, (id⊗ ϕ)(π))[i] and any morphism α : (X, π)[i] → (Y, ρ)[j] to (id⊗ ϕ)(α).
Acknowledgements I am very grateful to Nikita Karpenko for his suggestions and his support during
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1. On the tensor product of connected rings

Recall that a ring A is connected if there are no idempotents in A besides 0 and 1.
Proposition 1.1 Let A be a finite and connected ring. Then any element a in A is either nilpotent or

invertible. The set N of nilpotent elements in A is a two-sided and nilpotent ideal.

In order to prove Proposition 1.1 we will need the following elementary lemma.
Lemma 1.2 Let A be a finite ring. An appropriate power of any element a of A is idempotent.

Proof. For any a ∈ A, the set {an, n ∈ N} is finite, hence there is a couple (p, k) ∈ N
2 (with k non-zero)

such that ap = ap+k. The sequence (an)n≥p is k-periodic and for example if s is the lowest integer such
that p < sk, ask is idempotent.
Proof of Proposition 1.1. For any a ∈ A, an appropriate power of a is an idempotent by lemma 1.2.

Since A is connected, this power is either 0 or 1, that is to say a is either nilpotent or invertible.
We now show that the set N of nilpotent elements in A is a two-sided ideal. First if a is nilpotent in

A, then for any b in A, ab and ba are not invertible, hence ab and ba belong to N .
It remains to show that the sum of two nilpotent elements in A is nilpotent. Setting ν for the number

of nilpotent elements in A, we claim that for any sequence a1,. . . , aν in N , a1...aν = 0. Indeed if aν+1 is
any nilpotent in A the finite sequence Π1 = a1, Π2 = a1a2,. . . , Πν+1 = a1a2...aν+1 consists of nilpotents
and by the pigeon-hole principle Πk = Πs, for some k and s satisfying 1 ≤ k < s ≤ ν + 1. Therefore
Πs = Πkak+1...as = Πk which implies that Πk(1 − ak+1...as) = 0 and Πk = 0 since 1 − ak+1...as is
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invertible. With this in hand it is clear that for any a and b in N , (a+ b)ν = 0. Furthermore N ν = 0 and
N is nilpotent.
Corollary 1.3 Let A be a finite and connected Fp-algebra endowed with a ring morphism ϕ : A −→ Fp.

Then the set N of nilpotent elements in A is precisely ker(ϕ). Furthermore for any connected Fp-algebra

E, A⊗Fp
E is connected.

Proof. For any a ∈ N and n ∈ N
∗ such that an = 0, 0 = ϕ(an) = ϕ(a)n, hence a lies in the kernel of

ϕ. On the other hand if ϕ(a) = 0, a is not invertible thus a is nilpotent and N = ker(ϕ). Since N is
nilpotent, N ⊗ E is also nilpotent. The sequence

0 // N ⊗ E //A⊗ E
ψ

//E // 0

is exact and we want to show that any idempotent P in A ⊗Fp
E is either 0 or 1. Since E is connected,

ψ(P ) is either 0 or 1. We may replace P by 1 − P and so assume that P lies in the kernel of ψ, which
implies that the idempotent P is nilpotent, hence P = 0.

2. Application to motivic decompositions of projective homogeneous varieties

For any semi-simple affine algebraic group G, the full subcategory of CM(F ; Λ) whose objects are finite
direct sums of twists of direct summands of the motives of projective G-homogeneous F -varieties will
be denoted CMG(F ; Λ). We now use corollary 1.3 to study how motivic decompositions in CMG(F ; Λ)
behave when extending the ring of coefficients. A pseudo-abelian category C satisfies the Krull-Schmidt

principle if the monoid (C,⊕) is free, where C denotes the set of the isomorphism classes of objects of C.
In the sequel Λ will be a connected ring and X an F -variety. A field extension E/F is a splitting field

of X if the E-motive XE is isomorphic to a finite direct sum of twists of Tate motives. The F -variety
X is geometrically split if X splits over an extension of F , and X satisfies the nilpotence principle, if for
any field extension E/F the kernel of the morphism resE/F : End(M(X)) −→ End(M(XE)) consists
of nilpotents. Any projective homogeneous variety (under the action of a semi-simple affine algebraic
group) is geometrically split and satisfies the nilpotence principle (see [1]), therefore if Λ is finite the
Krull-Schmidt principle holds for CMG(F ; Λ) by [5, Corollary 3.6], and we can serenely deal with motivic
decompositions in CMG(F ; Λ).
Let G be a semi-simple affine adjoint algebraic group over F and p a prime. The absolute Galois group

Gal(Fsep/F ) acts on the Dynkin diagram of G and we say that G is of inner type if this action is trivial.
By [1] the subfield FG of Fsep corresponding to the kernel of this action is a finite Galois extension of F ,
and we will say that G is p-inner if [FG : F ] is a power of p. We now state the main result.
Theorem 2.1 Let G be a semi-simple affine adjoint p-inner algebraic group andM ∈ CMG(F ;Fp). Then
for any field L of characteristic p, M is indecomposable if and only if coeffL/Fp

(M) is indecomposable.

If X is geometrically split the image of any correspondence α ∈ CHdim(X)(X ×X ; Λ) by the change of

base field functor resE/F to a splitting field E/F of X will be denoted α. The reduced endomorphism ring

of any direct summand (X, π) is defined as resE/F (EndCM(F ;Λ)((X, π))) and denoted by End((X, π)).
Let X be a complete and irreducible F -variety. The pull-back of the natural morphism Spec(F (X))×

X −→ X×X gives rise to mult : CHdim(X)(X×X ; Λ) −→ CH0(XF (X); Λ) −→ Λ (where the second map
is the usual degree morphism). For any correspondence α ∈ CHdim(X)(X ×X ; Λ), mult(α) is called the
multiplicity of α and we say that a direct summand (X, π) given by a projector π ∈ CHdim(X)(X×X ; Λ)
is upper if mult(π) = 1. If (X, π) is an upper direct summand of a complete and irreducible F -variety,
the multiplicity mult : EndCM(F ;Λ)((X, π)) −→ Λ is a morphism of rings by [4, Corollary 1.7].
Proposition 2.1 Let G be a semi-simple affine algebraic group and M = (X, π) ∈ CM(F ;Fp) the upper

direct summand of the motive of an irreducible and projective G-homogeneous F -variety. Then for any
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field L of characteristic p, M is indecomposable if and only if coeffL/Fp
(M) is indecomposable.

Proof. Since the change of coefficients functor is additive and maps any non-zero projector to a non-zero
projector, it is clear that if coeffL/Fp

(M) is indecomposable, M is also indecomposable. Considering a

splitting field E of X , the reduced endomorphism ring End(M) := π◦End(X)◦π is connected sinceM is
indecomposable and finite. Corollary 1.3, with A = End(M), E = L and ϕ = mult implies that End(M)⊗
L = End(coeffL/Fp

(M)) is connected, therefore by the nilpotence principle End(coeffL/Fp
(M)) is also

connected, that is to say coeffL/Fp
(M) is indecomposable.

Proof of Theorem 2.1. Recall that G is a semi-simple affine adjoint p-inner algebraic group and consider
a projective G-homogeneous F -variety X . By [6, Theorem 1.1], any indecomposable direct summand M
of X is a twist of the upper summand of the motive of an irreducible and projective G-homogeneous
F -variety Y , thus we can apply proposition 2.1 to each indecomposable direct summand of X .
Remark : If Λ is a finite, commutative and connected ring, complete motivic decompositions in

CM(F ; Λ) remain complete when the coefficients are extended to the residue field of Λ by [7, Corollary
2.6], hence the study of motivic decompositions in CMG(F ; Λ), where Λ is any finite connected ring whose
residue field is of characteristic p, is reduced to the study motivic decompositions in CMG(F ;Fp).
We now produce a counterexample to Theorem 2.1 in the case where the algebraic group G doesn’t

satisfy the needed assumptions. Let L/F be a Galois extension of degree 3. By [1, Section 7], the endomor-
phism ring End(M(Spec(L))) of the motive associated with the F -variety Spec(L) with coefficients in F2

is the F2-algebra of Gal(L/F ), i.e.
F2[X]

(X3−1) ≃ F2×F4, henceM(Spec(L)) =M⊕N , with End(N) = F4 and

bothM and N are indecomposable. Now End(resF4/F2
(N)) = F4⊗F4 is not connected since 1⊗α+α⊗1

is a non-trivial idempotent for any α ∈ F4 \ F2, hence resF4/F2
(N) is decomposable.

Consider the (PGL2)L-homogeneous L-variety P
1
L. The Weil restriction R(P1

L) is a projective homoge-
neous F -variety under the action of the Weil restriction of (PGL2)L, and the minimal extension such that
R((PGL2)L) is of inner type is L. By [3, Example 4.8], the motive with coefficients in F2 of R(P1

L) con-
tains two twists of Spec(L) as direct summands, therefore at least two indecomposable direct summands
of R(P1

L) split off over F4.
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