
ESSENTIAL DIMENSION

ZINOVY REICHSTEIN

Abstract. Informally speaking, the essential dimension of an algebraic
object is the minimal number of independent parameters one needs to
define it. This notion was initially introduced in the context where the
objects in question are finite field extensions [BuR97]. Essential dimen-
sion has since been investigated in several broader contexts, by a range
of techniques, and has been found to have interesting and surprising
connections to many problems in algebra and algebraic geometry.

The goal of this paper is to survey some of this research. I have
tried to explain the underlying ideas informally through motivational
remarks, examples and proof outlines (often in special cases, where the
argument is more transparent), referring an interested reader to the
literature for a more detailed treatment. The sections are arranged in
rough chronological order, from the definition of essential dimension to
open problems.

1. Definition of essential dimension

Informally speaking, the essential dimension of an algebraic object is the
minimal number of parameters one needs to define it. To motivate this no-
tion, let us consider an example, where the object in question is a quadratic
form.

Let k be a base field, K/k be a field extension and q be an n-dimensional
quadratic form over K. Assume that char(k) 6= 2 and denote the symmetric
bilinear form associated to q by b. We would now like to see if q can be
defined over a smaller field k ⊂ K0 ⊂ K. This means that there is a K-
basis e1, . . . , en of Kn such that b(ei, ej) ∈ K0 for every i, j = 1, . . . , n. If
we can find such a basis, we will say that q descends to K0 or that K0

is a field of definition of q. It is natural to ask if there is a minimal field
Kmin/k (with respect to inclusion) to which q descends. The answer to
this question is usually “no”. For example, it is not difficult to see that
the “generic” form q(x1, . . . , xn) = a1x

2
1 + · · · + anx

2
n over the field K =
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k(a1, . . . , an), where a1, . . . , an are independent variables, has no minimal
field of definition. We will thus modify our question: instead of asking for
a minimal field of definition K0 for q, we will ask for the minimal value of
the transcendence degree tr degk(K0).

1 This number is called the essential
dimension of q and is denoted by ed(q).

Note that the above definition of ed(q) is in no way particular to qua-
dratic forms. In a similar manner one can consider fields of definition of any
polynomial inK[x1, . . . , xn], any finite-dimensional K-algebra, any algebraic
variety defined over K, etc. In each case the minimal transcendence degree
of a field of definition is an interesting numerical invariant which gives us
some insight into the “complexity” of the object in question.

We will now state these observations more formally. Let k be a base
field, Fieldsk be the category of field extensions K/k, Sets be the category
of sets, and F : Fieldsk → Sets be a covariant functor. In the sequel the
word “functor” will always refer to a functor of this type. If α ∈ F(K) and
L/K is a field extension, we will denote the image of α in F(L) by αL.

For example, F(K) could be the set ofK-isomorphism classes of quadratic
forms on Kn, or of n-dimensional K-algebras, for a fixed integer n, or of
elliptic curves defined over K. In general we think of F as specifying the
type of algebraic object we want to work with, and elements of F(K) as the
of algebraic objects of this type defined over K.

Given a field extension K/k, we will say that a ∈ F(K) descends to
an intermediate field k ⊆ K0 ⊆ K if a is in the image of the induced
map F(K0) → F(K). The essential dimension ed(a) of a ∈ F(K) is the
minimum of the transcendence degrees tr degk(K0) taken over all fields k ⊆
K0 ⊆ K such that a descends to K0. The essential dimension ed(F) of the
functor F is the supremum of ed(a) taken over all a ∈ F(K) with K in
Fieldsk.

These notions are relative to the base field k; we will sometimes write edk
in place of ed to emphasize the dependence on k. If F : Fieldsk → Sets be
a covariant functor and k ⊂ k′ is a field extension, we will write edk′(F) for
ed(Fk′), where Fk′ denotes the restriction of F to Fieldsk′ . Is easy to see
that in this situation

(1.1) edk(F) ≥ edk′(F) ;

cf. [BF03, Proposition 1.5]. In particular, taking k′ to be an algebraic closure
of k, we see that for the purpose of proving a lower bound of the form
edk(F) ≥ d, where d does not depend on k, we may assume that k is
algebraically closed.

Let µn denote the group of nth roots of unity, defined over k. Whenever
we consider this group, we will assume that it is smooth, i.e., that char(k)
does not divide n.

1One may also ask which quadratic forms have a minimal field of definition. To the
best of my knowledge, this is an open question; see Section 7.1.
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Example 1.1. Let F(K) := Hr(K,µn) be the Galois cohomology functor.
Assume k is algebraically closed. If α ∈ Hr(K,µn) is non-trivial then by the
Serre vanishing theorem (see, e.g., [Se02, II.4.2, Prop. 11, p. 83]) ed(α) ≥ r.

Example 1.2. Once again, assume that k is algebraically closed. Let
Formsn,d(K) be the set of homogeneous polynomials of degree d in n vari-
ables. If α ∈ Formsn,d(K) is anisotropic over K then by the Tsen-Lang

theorem (see, e.g., [Pf95]), n ≤ ded(α) or equivalently, ed(α) ≥ logd(n).

Of particular interest to us will be the functors FG given byK → H1(K,G),
where G is an algebraic group over k. Here, as usual, H1(K,G) denotes the
set of isomorphism classes of G-torsors over Spec(K). The essential dimen-
sion of this functor is a numerical invariant of G, which, roughly speaking,
measures the complexity of G-torsors over fields. We write edG for ed FG.
Essential dimension was originally introduced in this context (and only in
characteristic 0); see [BuR97, Rei00, RY00]. The above definition of essential
dimension for a general functor F is due to A. Merkurjev; see [BF03].

In special cases this notion was investigated much earlier. To the best of
my knowledge, the first non-trivial result related to essential dimension is
due to F. Klein [Kl1884]. In our terminology, Klein showed that the essential
dimension of the symmetric group S5 over k = C, is 2. (Klein referred to
this result as “Kronecker’s theorem”, so it may in fact go back even further.)
The essential dimension of the projective linear group PGLn first came up
in C. Procesi’s pioneering work on universal division algebras in the 1960s;
see [Pr67, Section 2]. The problems of computing the essential dimension
of the symmetric group Sn and the projective linear group PGLn remain
largely open; see Section 7.

If k is an algebraically closed field then groups of essential dimension zero
are precisely the special groups, introduced by J.-P. Serre [Se58]. Recall
that an algebraic group G over k is called special if H1(K,G) = 0 for every
field extension K/k. Over an algebraically closed field of characteristic zero
these groups were classified by A. Grothendieck [Gro58] in the 1950s. The
problem of computing the essential dimension of an algebraic group may be
viewed as a natural extension of the problem of classifying special groups.

2. First examples

Recall that an action of an algebraic group G on an algebraic k-variety
X is called generically free if X has a dense G-invariant open subset U such
that the stabilizer StabG(x) = {1} for every x ∈ U(k) and primitive if G
permutes the irreducible components of X. Here k denotes an algebraic
closure of k. Equivalently, X is primitive if k(X)G is a field.

If K/k is a finitely generated field extension then elements of H1(K,G)
can be interpreted as birational isomorphism classes of generically free prim-
itive G-varieties (i.e., k-varieties with a generically free primitive G-action)
equipped with a k-isomorphism of fields k(X)G ≃ K; cf. [BF03, Section 4].
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If X is a generically free primitive G-variety, and [X] is its class in H1(K,G)
then

(2.1) ed([X]) = min dim(Y )− dim(G) ,

where the minimum is taken over all dominant rational G-equivariant maps
X 99K Y such that the G-action on Y is generically free.

An important feature of the functor H1( ∗ , G) is the existence of so-
called versal objects; see [GMS03, Section I.5]. If α ∈ H1(K,G) is a versal
torsor then it is easy to see that ed(α) ≥ ed(β) for any field extension L/k
and any β ∈ H1(L,G). In other words, ed(α) = ed(G). If G → GL(V )
is a generically free k-linear representation of G then the class [V ] of V in
H1(k(V )G, G) is versal. By (2.1), we see that

(2.2) ed(G) = mindim(Y )− dim(G) ,

where the minimum is taken over all dominant rational G-equivariant maps
V 99K Y , such that G-action on Y is generically free. In particular,

(2.3) ed(G) ≤ dim(V )− dim(G) .

Moreover, unless k is a finite field and G is special, we only need to consider
closed G-invariant subvarieties Y of V . That is,

(2.4) ed(G) = min{dim Im(f)} − dim(G) ,

where the minimum is taken over all G-equivariant rational maps f : V 99K

V such that the G-action on Im(f) is generically free; see [Me09, Theorem
4.5].

Example 2.1. Let G be a connected adjoint semisimple group over k. Then
ed(G) ≤ dim(G). To prove this inequality, apply (2.3) to the generically free
representation V = G ×G, where G is the adjoint representation of G on its
Lie algebra.

Note that the inequality ed(G) ≤ dim(G) can fail dramatically if G is not
adjoint; see Corollary 4.3.

We now turn to lower bounds on ed(G) for various algebraic groups G
and more generally, on ed(F) for various functors F : Fieldsk → Sets. The
simplest approach to such bounds is to relate the functor H1( ∗ , G) (and
more generally, F) to the functors in Examples 1.1 or 1.2, using the following
lemma, whose proof is immediate from the definition; cf. [BF03, Lemma 1.9].

Lemma 2.2. Suppose a morphism of functors φ : F → F ′ takes α to β.
Then ed(α) ≥ ed(β). In particular, if φ is surjective then ed(F) ≥ ed(F ′).

A morphism of functors F → Hd( ∗ ,µn) is called a cohomological in-
variant of degree d; it is said to be nontrivial if F(K) contains a non-zero
element of Hd(K,µn) for some K/k. Using Lemma 2.2 and Example 1.1 we
recover the following observation, due to Serre.

Lemma 2.3. Suppose k is algebraically closed. If there exists a non-trivial
cohomological invariant F → Hd( ∗ ,µn) then ed(F) ≥ d.
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In the examples below I will, as usual, write 〈a1, . . . , an〉 for the quadratic
form (x1, . . . , xn) 7→ a1x

2
1 + · · · + anx

2
n and ≪ a1, . . . , ar ≫ for the r-fold

Pfister form 〈1,−a1〉 ⊗K · · · ⊗ 〈1,−ar〉.

Example 2.4. Suppose char(k) 6= 2. Let Pfr be the functor that assigns
to a field K/k the set of K-isomorphism classes of r-fold Pfister forms,
q =≪ a1, . . . , ar ≫. Then edk(Pfr) = r.

Indeed, since q is defined over k(a1, . . . , ar), we have edk(Pfr) ≤ r. To
prove the opposite inequality, we may assume that k is algebraically closed.
Let a1, . . . , ar be independent variables and K = k(a1, . . . , ar). Then the
tautological map Pfr(K) → Forms2r ,2(K) takes q =≪ a1, . . . , ar ≫ to
an anisotropic form in 2r variables; see, e.g., [Pf95, p. 111]. Combining
Lemma 2.2 and Example 1.2 we conclude that ed(Pfr) ≥ r, as desired.

Alternatively, the inequality ed(Pfr) ≥ r also follows from Lemma 2.3,
applied to the cohomological invariant Pfr → Hr( ∗ ,µ2), which takes ≪
a1, . . . , ar ≫ to the cup product (a1) ∪ · · · ∪ (ar).

SinceH1( ∗ ,G2) is naturally isomorphic to Pf3, we conclude that ed(G2) =
3. Here G2 stands for the split exceptional group of type G2 over k.

Example 2.5. If char(k) 6= 2 then edk(On) = n.
Indeed, since every quadratic form over K/k can be diagonalized, we see

that edk(On) ≤ n. To prove the opposite inequality, we may assume that k
is algebraically closed. Define the functor φ : H1( ∗ ,On) → Pfn as follows.
Let b be the bilinear form on V = Kn, associated to q = 〈a1, . . . , an〉 ∈
H1(K,On). Then b naturally induces a non-degenerate bilinear form on
the 2n-dimensional K-vector space

∧

(V ). We now set φ(q) to be the 2r-
dimensional quadratic form associated to ∧(b). One easily checks that φ(q)
is the n-fold Pfister form φ(q) =≪ a1, . . . , an ≫. Since φ is clearly surjective,
Lemma 2.2 and Example 2.4 tell us that ed(On) ≥ ed(Pfn) = n.

We remark that φ(q) is closely related to the nth Stiefel-Whitney class
swn(q) (see [GMS03, p. 41]), and the inequality ed(On) ≥ n can also be de-
duced by applying Lemma 2.3 to the cohomological invariant swn : H

1(K,On) →
Hn(K,µ2).

Example 2.6. If k contains a primitive nth root of unity then edk(µ
r
n) = r.

Indeed, the upper bound, ed(µr
n) ≤ r, follows from (2.3). Alterna-

tively, note that any (a1, . . . , ar) ∈ H1(K,µr
n) is defined over the subfield

k(a1, . . . , ar) of K, of transcendence degree ≤ r.
To prove the opposite inequality we may assume that k is algebraically

closed. Now apply Lemma 2.3 to the cohomological invariant

H1(K,µr
n) = K∗/(K∗)n × · · · ×K∗/(K∗)n → Hr(K,µn)

given by (a1, . . . , ar) → (a1)∪ · · · ∪ (ar). Here a denotes the class of a ∈ K∗

in K∗/(K∗)n.

Remark 2.7. Suppose H is a closed subgroup of G and G → GL(V ) is
a generically free linear representation. Since every rational G-equivariant
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map V 99K Y is also H-equivariant, (2.2) tells us that

(2.5) ed(G) ≥ ed(H) + dim(H)− dim(G) .

In particular, if a finite group G contains a subgroup H ≃ (Z/pZ)r for some
prime p and if char(k) 6= p (so that we can identify (Z/pZ)r with µ

r
p over k)

then

edk(G) ≥ edk(G) ≥ edk(H) = r .

In the case where G is the symmetric group Sn and H ≃ (Z/2Z)[n/2] is the
subgroup generated by the commuting 2-cycles (12), (34), (56), etc., this
yields ed(Sn) ≥ [n/2]; cf. [BuR97].

Example 2.8. Recall that elements of H1(K,PGLn) are in a natural
bijective correspondence with isomorphism classes of central simple alge-
bras of degree n over K. Suppose n = ps is a prime power, and k con-
tains a primitive pth root of unity. Consider the morphism of functors
φ : H1(K,PGLn) → Formsn2,p given by sending a central simpleK-algebra
A to the degree p trace form x → TrA/K(xp).

If a1, . . . , a2s are independent variables over k, K = k(a1, . . . , a2s), and

A = (a1, a2)p ⊗K ⊗ · · · ⊗ (a2s−1, a2s)p

is a tensor product of s symbol algebras of degree p then one can write
out φ(A) explicitly and show that it is anisotropic over K; see [Rei99].
Lemma 2.2 and Example 1.2 now tell us that edk(A) ≥ edk(A) ≥ 2s. Since
tr degk(K) = 2s, we conclude that, in fact

(2.6) edk(A) = 2s and consequently, edk(PGLps) ≥ 2s.

The following alternative approach to proving (2.6) was brought to my
attention by P. Brosnan. Consider the cohomological invariant given by the
composition of the natural map H1(K,PGLn) → H2(K,µn), which sends
a central simple algebra to its Brauer class, and the divided power map
H2( ∗ ,µn) → H2s( ∗ ,µn); see [Kahn00, Appendix]. The image of A under
the resulting cohomological invariant

H1( ∗ ,PGLn) → H2s( ∗ ,µn)

is (a1) ∪ (a2) ∪ · · · ∪ (a2s) 6= 0 in H2s(K,µn). Lemma 2.3 now tells us that
edk(A) ≥ 2s, and (2.6) follows. The advantage of this approach is that it
shows that the essential dimension of the Brauer class of A is also 2s.

3. The fixed point method

The following lower bound on ed(G) was conjectured by Serre and proved
in [GR07]. Earlier versions of this theorem have appeared in [RY00] and [CS06].

Theorem 3.1. If G is connected, A is a finite abelian subgroup of G and
char(k) does not divide |A|, then edk(G) ≥ rank(A)− rank C0

G(A).
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Here rank(A) stands for the minimal number of generators of A and
rank C0

G(A) for the dimension of the maximal torus of the connected group
C0
G(A). Note that if A is contained in a torus T ⊂ G then rank(C0

G(A)) ≥
rank(T ) ≥ rank(A), and the inequality of Theorem 3.1 becomes vacuous.
Thus we are primarily interested in non-toral finite abelian subgroups A of
G. These subgroups have come up in many different contexts, starting with
the work of Borel in the 1950s. For details and further references, see [RY00].

The proof of Theorem 3.1 relies on the following two simple results.

Theorem 3.2 (Going Down Theorem). Suppose k is an algebraically closed
base field and A is an abelian group such that char(k) does not divide |A|.
Suppose A acts on k-varieties X and Y and f : X 99K Y is an A-equivariant
rational map. If X has a smooth A-fixed point and Y is complete then Y
has an A-fixed point.

A short proof of Theorem 3.2, due to J. Kollár and E. Szabó, can be found
in [RY00, Appendix].

Lemma 3.3. Let A be a finite abelian subgroup, acting faithfully on an
irreducible k-variety X. Suppose char(k) does not divide |A|. If X has a
smooth A-fixed point then dim(X) ≥ rank(A).

The lemma follows from the fact that the A-action on the tangent space
Tx(X) at the fixed point x has to be faithful; see [GR07, Lemma 4.1].

For the purpose of proving Theorem 3.1 we may assume that k is alge-
braically closed. To convey the flavor of the proof I will make the following
additional assumptions: (i) CG(A) is finite and (ii) char(k) = 0. The con-
clusion then reduces to

(3.1) ed(G) ≥ rank(A) .

This special case of Theorem 3.1 is proved in [RY00] but I will give a much
simplified argument here, based on [GR07, Section 4].

Let G → GL(V ) be a generically free representation. By (2.2) we need
to show that if V 99K Y is a G-equivariant dominant rational map and the
G-action on Y is generically free, then

(3.2) dim(Y )− dim(G) ≥ rank(A) .

To see how to proceed, let us first consider the “toy” case, where G is finite.
Here (3.1) follows from (2.5), but I will opt for a different argument below,
with the view of using a variant of it in greater generality.

After birationally modifying Y , we may assume that it is smooth and
projective. (Note that this step relies on G-equivariant resolution of sin-
gularities and thus uses the characteristic 0 assumption.) Since V has a
smooth A-fixed point (namely, the origin), the Going Down Theorem 3.2
tells us that so does Y . By Lemma 3.3, dim(Y ) ≥ rank(A), which proves
(3.2) in the case where G is finite.
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IfG is infinite, we can no longer hope to prove (3.2) by applying Lemma 3.3
to the A-action on Y . Instead, we will apply Lemma 3.3 to a suitable A-
invariant subvariety Z ⊂ Y . This subvariety Z will be a cross-section for the
G-action on Y , in the sense that a G-orbit in general position will intersect Z
in a finite number of points. Hence, dim(Z) = dim(Y )− dim(G), and (3.2)
reduces to dim(Z) ≥ rank(A). We will then proceed as in the previous
paragraph: we will use Theorem 3.2 to find an A-fixed point on a smooth
complete model of Z, then use Lemma 3.3 to show that dim(Z) ≥ rank(A).

Let me now fill in the details. By [CGR06] Y is birationally isomorphic
to G×S Z, where S is a finite subgroup of G and Z is an algebraic variety
equipped with a faithful S-action. (A priori Z does not carry an A-action;
however, we will show below that some conjugate A′ of A lies in S and con-
sequently, acts on Z. We will then replace A by A′ and argue as above.) We
also note that we are free to replace Z by an (S-equivariantly) birationally
isomorphic variety, so we may (and will) take it to be smooth and projective.

Here, as usual, if S acts on normal quasi-projective varieties X and Z then
X ×S Z denotes the geometric quotient of X ×Z by the natural (diagonal)
action of S. Since S is finite, there is no difficulty in forming the quotient
map π : X×Z → X×S Z; cf. [GR07, Lemma 3.1]. Moreover, if the S-action
on X extends to a G×S-action, then by the universal property of geometric
quotients X ×S Z inherits a G-action from X ×Z, where G acts on the first
factor. I will write [x, z] ∈ X ×S Z for the image of (x, z) under π.

We now compactify Y = G×SZ by viewing it as a G-invariant open subset
of the projective variety Y := G×SZ, where G is a so-called “wonderful” (or
“regular”) compactification of G. Recall that G × G acts on G, extending
the right and left multiplication action of G on itself, The complement GrG
is a normal crossing divisor D1 ∪ · · · ∪Dr, where each Di is irreducible, and
the intersection of any number of Di is the closure of a single G ×G-orbit
in G. The compactification G has many wonderful properties; the only one
we will need is Lemma 3.4 below. For a proof, see [Br98, Proposition A1].

Lemma 3.4. For every x ∈ G, P = pr1(StabG×G(x)) is a parabolic subgroup
of G. Here pr1 is projection to the first factor. Moreover, P = G if and
only if x ∈ G.

We are now ready to complete the proof of the inequality (3.2) (and thus
of (3.1)) by showing that S contains a conjugate A′ of A, and A′ has a fixed
point in Z. In other words, our goal is to show that some conjugate A′ of A
lies in StabS(z).

By the Going Down Theorem 3.2, Y has an A-fixed point. Denote this
point by [x, z] for some x ∈ G and z ∈ Z. That is, for every a ∈ A,
[ax, z] = [x, z] in Y . Equivalently,

(3.3)

{

ax = xs−1

sz = z
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for some s ∈ S. In other words, for every a ∈ A, there exists an s ∈ StabS(z)
such that (a−1, s) ∈ StabG×G(x). Equivalently, the image of the natural
projection pr1 : StabG×G(x) → G contains A. Since we are assuming that
C0
G(A) is finite, A cannot be contained in any proper parabolic subgroup of

G. Thus x ∈ G; see Lemma 3.4. Now the first equation in (3.3) tells us that
A′ := x−1Ax ⊂ StabS(z), as desired. �

Remark 3.5. The above argument proves Theorem 3.1 under two simpli-
fying assumptions: (i) CG(A) is finite and (ii) char(k) = 0. If assumption
(i) is removed, a variant of the same argument can still be used to prove
Theorem 3.1 in characteristic 0; see [GR07, Section 4]. Assumption (ii) is
more serious, because our argument heavily relies on resolution of singu-
larities. Consequently, the proof of Theorem 3.1 in prime characteristic is
considerably more complicated; see [GR07].

Corollary 3.6. (a) ed(SOn) ≥ n− 1 for any n ≥ 3, (b) ed(PGLps) ≥ 2s,

(c) ed(Spinn) ≥

{

[n/2] for any n ≥ 11,

[n/2] + 1 if n ≡ −1, 0 or 1 modulo 8,

(d) ed(G2) ≥ 3, (e) ed(F4) ≥ 5, (f) ed(Esc
6 ) ≥ 4.

(g) ed(Esc
7 ) ≥ 7, (h) ed(Ead

7 ) ≥ 8, (i) ed(E8) ≥ 9.

Here the superscript sc stands for “simply connected” and ad for “adjoint”.

Each of these inequalities is proved by exhibiting a non-toral abelian sub-
group A ⊂ G whose centralizer is finite. For example, in part (a) we can
take A ≃ (Z/2Z)n−1 to be the subgroup of diagonal matrices of the form

(3.4) diag(ǫ1, . . . , ǫn), where each ǫi = ±1 and ǫ1 · . . . · ǫn = 1.

The details are worked out in [RY00], with the exception of the first line in
part (c), which was first proved by V. Chernousov and J.-P. Serre [CS06], by
a different method. I later noticed that it can be deduced from Theorem 3.1
as well; the finite abelian subgroups one uses here can be found in [Woo89].

Remark 3.7. The inequalities in parts (a), (b), (d), (e) and (f) can be
recovered by applying Lemma 2.3 to suitable cohomological invariants. For
parts (b) and (d), this is done in Examples 2.8 and 2.4, respectively; for
parts (a), (e) and (f), see [Rei00, Example 12.7], [Rei00, Example 12.10]
and [Gar01, Remark 2.12].

It is not known whether or not parts (g), (h) and (i) can be proved in a
similar manner, i.e., whether or not there exist cohomological invariants of
Esc

7 , Ead
7 and E8 of dimensions 7, 8, and 9, respectively.

4. Central extensions

In this section we will discuss another more recent method of proving
lower bounds on ed(G). This method does not apply as broadly as those
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described in the previous two sections, but in some cases it leads to much
stronger bounds. Let

(4.1) 1 → C → G → G → 1

be an exact sequence of algebraic groups over k such that C is central in G
and isomorphic to µ

r
p for some r ≥ 1. Given a character χ : C → µp, we

will, following [KM07], denote by Repχ the set of irreducible representations
φ : G → GL(V ), defined over k, such that φ(c) = χ(c) IdV for every c ∈ C.

Theorem 4.1. Assume that k is a field of characteristic 6= p containing a
primitive pth root of unity. Then

(4.2) edk(G) ≥ min
〈χ1,...,χr〉=C∗

(

r
∑

i=1

gcd
ρi∈Repχi

dim(ρi)
)

− dimG .

Here gcd stands for the greatest common divisor and the minimum is taken
over all minimal generating sets χ1, . . . , χr of C∗ ≃ (Z/pZ)r.

Theorem 4.1 has two remarkable corollaries.

Corollary 4.2. (N. Karpenko – A. Merkurjev [KM07]) Let G be a finite
p-group and k be a field containing a primitive pth root of unity. Then

(4.3) edk(G) = min dim(φ) ,

where the minimum is taken over all faithful k-representations φ of G.

Proof. We apply Theorem 4.1 to the exact sequence 1 → C → G → G/C →
1, where C be the socle of G, i.e., C := {g ∈ Z(G) | gp = 1}. Since dim(ρ)
is a power of p for every irreducible representation ρ of G, we may replace
gcd by min in (4.2). Choosing a minimal set of generators χ1, . . . , χr of
C∗ so that the sum on the right hand side of (4.2) has minimal value, and
ρi ∈ Repχi of minimal dimension, we see that (4.2) reduces to edk(G) ≥
dim(ρ1) + · · · + dim(ρr). Equivalently, edk(G) ≥ dim(ρ), where ρ := ρ1 ⊕
· · · ⊕ ρr is faithful by elementary p-group theory. This shows that edk(G) ≥
min dim(φ) in (4.3). The opposite inequality follows from (2.3). �

Corollary 4.3. Let Spinn be the split spinor group over a a field k of
characteristic 0. Assume n ≥ 15. Then

(a) ed(Spinn) = 2(n−1)/2 − n(n−1)
2 , if n is odd,

(b) ed(Spinn) = 2(n−2)/2 − n(n−1)
2 , if n ≡ 2 (mod 4), and

(c) 2(n−2)/2 − n(n−1)
2 + 2m ≤ ed(Spinn) ≤ 2(n−2)/2 − n(n−1)

2 + n, if n ≡ 0
(mod 4). Here 2m is the largest power of 2 dividing n.

We remark that M. Rost and S. Garibaldi have computed the essential
dimension of Spinn for every n ≤ 14; see [Rost06] and [Gar09].

Proof outline. The lower bounds (e.g., ed(Spinn) ≥ 2(n−1)/2 − n(n−1)
2 , in

part (a)) are valid whenever char(k) 6= 2; they can be deduced either directly
from Theorem 4.1 or by applying the inequality (2.5) to the finite 2-subgroup



ESSENTIAL DIMENSION 11

H of G = Spinn, where H is the inverse image of the diagonal subgroup
µ
n−1
2 ⊂ SOn, as in (3.4), under the natural projection π : Spinn → SOn.

Here ed(H) is given by Corollary 4.2.

The upper bounds (e.g., ed(Spinn) ≤ 2(n−1)/2− n(n−1)
2 , in part (a)) follow

from the inequality (2.3), where V is spin representation Vspin in part (a), the
half-spin representation Vhalf−spin in part (b), and to Vhalf−spin ⊕ Vnatural in
part (c), where Vnatural is the natural n-dimensional representation of SOn,
viewed as a representation of Spinn via π. The delicate point here is to
check that these representations are generically free. In characteristic 0 this
is due to E. Andreev and V. Popov [AP71] for n ≥ 29 and to A. Popov [Po85]
in the remaining cases.

For details, see [BRV10a] and (for the lower bound in part (c)) [Me09,
Theorem 4.9]. �

To convey the flavor of the proof of Theorem 4.1, I will consider a special
case, where G is finite and r = 1. That is, I will start with a sequence

(4.4) 1 → µp → G → G → 1

of finite groups and will aim to show that

(4.5) edk(G) ≥ gcd
ρ∈Rep′

dim(ρ) ,

where k contains a primitive pth root and Rep′ denotes the set of irreducible
representations of G whose restriction to µp is non-trivial. The proof relies
on the following two results, which are of independent interest.

Theorem 4.4. (Karpenko’s Incompressibility Theorem; [Kar00, Theorem
2.1]) Let X be a Brauer-Severi variety of prime power index pm, over a
field K and let f : X 99K X be a rational map defined over K. Then
dimK Im(f) ≥ pm − 1.

Theorem 4.5. (Merkurjev’s Index Theorem [KM07, Theorem 4.4]; cf. also [Me96])
Let K/k be a field extension, and ∂K : H1(K,G) → H2(K,µp) be the con-
necting map induced by the short exact sequence (4.4). Then the maximal
value of the index of ∂K(a), as K ranges over all field extension of k and a
ranges over H1(K,G), equals gcdρ∈Rep′ dim(ρ).

Recall that H2(K,µp) is naturally isomorphic to the p-torsion subgroup
of the Brauer group Br(K), so that it makes sense to talk about the index.

I will now outline an argument, due to M. Florence [Fl07], which deduces
the inequality (4.5) from these two theorems. To begin with, let us choose
a faithful representation V of G, where C acts by scalar multiplication. In
particular, we can induce V from a faithful 1-dimensional representation
χ : C = µp → k∗. We remark that χ exists because we assume that k
contains a primitive pth root of unity and that we do not require V to be
irreducible.

By (2.4), there exists a non-zero G-equivariant rational map f : V 99K V
defined over k (or a rational covariant, for short) whose image has dimension
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ed(G). We will now replace f by a non-zero homogeneous rational covariant
fhom : V 99K V . Here “homogeneous” means that fhom(tv) = tdfhom(v) for
some d ≥ 1. Roughly speaking, fhom is the “leading term” of f , relative to
some basis of V , and it can be chosen so that

dim Im(fhom) ≤ dim Im(f) = ed(G) ;

see [KLS09, Lemma 2.1]. Since we no longer need the original covariant f ,
we will replace f by fhom and thus assume that f is homogeneous. Note
that G may not act faithfully on the image of f but this will not matter to
us in the sequel. Since f is homogeneous and non-zero, it descends to an
G-equivariant rational map f : P(V ) 99K P(V ) defined over k, whose image
has dimension ≤ edk(G)− 1.

Now, given a field extensionK/k and aG-torsor T → Spec(K) inH1(K,G),
we can twist P(V ) by T . The resulting K-variety T

P(V ) is defined as the
quotient of P(V ) ×K T by the natural (diagonal) G-action. One can show,
using the theory of descent, that this action is in fact free, i.e., the natural
projection map P(V ) ×K T →T P(V ) is a G-torsor; see [Fl07, Proposition
2.12 and Remark 2.13]. Note that we have encountered a variant of this

construction in the previous section, where we wrote P(V )×G T in place of
T
P(V ).
We also remark that T

P(V ) is a K-form of P(V ), i.e., is a Brauer-Severi
variety defined over K. Indeed, if a field extension L/K splits T then it is
easy to see that TP(V ) is isomorphic to P(V ) over L. One can now show
that the index of this Brauer-Severi variety equals the index of ∂K(T ) ∈
H2(K,µp); in particular, it is a power of p. By Theorem 4.5 we can choose
K and T so that

ind(TP(V )) = gcd
ρ∈Rep′

dim(ρ) .

TheG-equivariant rational map f : P(V ) 99K P(V ) induces aG-equivariant
rational map f×id : P(V )×T 99K P(V )×T , which, in turn, descends to aK-
rational map T f : T

P(V ) 99KT P(V ). Since the dimension of the image of f is
≤ edk(G)−1, the dimension of the image of f× id is ≤ edk(G)−1+dim(G),
and thus the dimension of the image of T f is ≤ edk(G)−1. By Theorem 4.4,

edk(G) − 1 ≥ dimK(Im(T f)) ≥ ind(TP(V ))− 1 = gcd
ρ∈Rep′

dim(ρ)− 1 ,

and (4.5) follows. �

Remark 4.6. Now suppose G is finite but r ≥ 1 is arbitrary. The above
argument has been modified by R. Lötscher [Lö08] to prove Theorem 4.1
in this more general setting. The proof relies on Theorem 4.5 and a gen-
eralization of Theorem 4.4 to the case where X is the direct product of
Brauer-Severi varieties X1 × · · · ×Xr, such that ind(Xi) is a power of p for
each i; see [KM07, Theorem 2.1].
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Here we choose our faithful k-representation V so that V = V1× · · · ×Vr,
where C acts on Vi by scalar multiplication via a multiplicative charac-
ter χi ∈ C∗, and χ1, . . . , χr generate C∗. Once again, there exists a G-
equivariant rational map f : V 99K V whose image has dimension ed(G). To
make the rest of the argument go through in this setting one needs to show
that f can be chosen to be multi-homogeneous, so that it will descend to a
G-equivarint rational map

f : P(V1)× . . .P(Vr) 99K : P(V1)× . . .P(Vr) .

If G is finite, this is done in [Lö08]. The rest of the argument goes through
unchanged.

In his (still unpublished) Ph. D. thesis Lötscher has extended this proof
of Theorem 4.1 to the case where G is no longer assumed to be finite. His
only requirement on G is that it should have a completely reducible faithful
k-representation. The only known proof of Theorem 4.1 in full generality
uses the notion of essential dimension for an algebraic stack, introduced
in [BRV07]; cf. also [BRV10b]. For details, see [Me09, Theorem 4.8 and
Example 3.7], in combination with [KM07, Theorem 4.4 and Remark 4.5].

5. Essential dimension at p and two types of problems

Let p be a prime integer. I will say that a field extension L/K is prime-
to-p if [L : K] is finite and not divisible by p.

This section is mostly “metamathematical”; the main point I would like
to convey is that some problems in Galois cohomology and related areas are
sensitive to prime-to-p extensions and some aren’t. Loosely speaking, I will
refer to such problems as being of “Type 2” and “Type 1”, respectively.

More precisely, suppose we are given a functor F : Fieldsk → Sets and we
would like to show that some (or every) α ∈ F(K) has a certain property.
For example, this property may be that ed(α) ≤ d for a given d. If our
functor is F(K) = H1(K,On), we may want to show that the quadratic form
representing α is isotropic over K. If our functor is F(K) = H1(K,PGLn),
we may ask if the central simple algebra representing α is a crossed product.
Note that in many interesting examples, including the three examples above,
the property in question is functorial, i.e., if α ∈ F(K) has it then so does
αL for every field extension L/K.

The problem of whether or not α ∈ F(K) has a property we are interested
in can be broken into two steps. For the first step we choose a prime p and
ask whether or not αL has the desired property for some prime-to-p extension
L/K. This is what I call a Type 1 problem. If the answer is “no” for some
p then we are done: we have solved the original problem in the negative.
If the answer is “yes” for every prime p, then the remaining problem is
to determine whether or not α itself has the desired property. I refer to
problems of this type as Type 2 problems. Let me now explain what this
means in the context of essential dimension.
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Let F : Fieldsk → Sets be a functor and a ∈ F(K) for some field K/k.
The essential dimension ed(a; p) of a at a prime integer p is defined as the
minimal value of ed(aL), as L ranges over all finite field extensions L/K
such that p does not divide the degree [L : K]. The essential dimension
ed(F ; p) is then defined as the maximal value of ed(a; p), as K ranges over
all field extensions of k and a ranges over F(K).

As usual, in the case where F(K) = H1(K,G) for some algebraic group G
defined over k, we will write ed(G; p) in place of ed(F ; p). Clearly, ed(a; p) ≤
ed(a), ed(F ; p) ≤ ed(F), and ed(G; p) ≤ ed(G) for every prime p.

In the previous three sections we proved a number of lower bounds of
the form ed(G) ≥ d, where G is an algebraic group and d is a positive
integer. A closer look reveals that in every single case the argument can be
modified to show that ed(G; p) ≥ d, for a suitable prime p. (Usually p is a
so-called “exceptional prime” for G; see, e.g., [St75] or [Me09]. Sometimes
there is more than one such prime.) In particular, the arguments we used
in Examples 2.4, 2.5, 2.6 and 2.8 show that ed(G2; 2) = 3, ed(On; 2) = n,
ed(µr

p; p) = r and ed(PGLps ; p) ≥ 2s, respectively. In Theorem 3.1 we may
replace ed(G) by ed(G; p), as long as A is a p-group; see [GR07, Theorem
1.2(b)]. Consequently, in Corollary 3.6 ed(G) can be replaced by ed(G; p),
where p = 2 in parts (a), (c), (d), (e), (g), (h), (i) and p = 3 in part (f).
Theorem 4.1 remains valid with ed(G) replaced by ed(G; p).2 Consequently,
Corollary 4.2 remains valid if ed(G) is replaced by ed(G; p) (see [KM07]),
and Corollary 4.3 remains valid if ed(Spinn) is replaced by ed(Spinn; 2)
(see [BRV10a]).

The same is true of virtually all existing methods for proving lower bounds
on ed(F) and, in particular, on ed(G): they are well suited to address Type
1 problems and poorly suited for Type 2 problems. In this context a Type
1 problem is the problem of computing ed(F ; p) for various primes p and a
Type 2 problem is the problem of computing ed(F), assuming ed(F ; p) is
known for all p.

I will now make an (admittedly vague) claim that this phenomenon can
be observed in a broader context and illustrate it with three examples not
directy related to essential dimension.

Observation 5.1. Most existing methods in Galois cohomology and related
areas apply to Type 1 problems only. On the other hand, many long-standing
open problems are of Type 2.

Example 5.2. The crossed product problem. Recall that a central
simple algebra A/K of degree n is a crossed product if it contains a com-
mutative Galois subalgebra L/K of degree n. We will restrict our attention
to the case where n = pr is a prime power; the general case reduces to

2At the moment the only known proof of this relies on the stack-theoretic approach;
see the references at the end of Remark 4.6. The more elementary “homogenization”
argument I discussed in the previous section has not (yet?) yielded a lower bound on
ed(G; p).
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this one by the primary decomposition theorem. In 1972 Amitsur [Am72]
showed that for r ≥ 3 a generic division algebra U(pr) of degree pr is not
a crossed product, solving a long-standing open problem. L. H. Rowen and
D. J. Saltman [RS92, Theorem 2.2] modified Amitsur’s argument to show
that, in fact, UD(pr)L is a non-crossed product for any prime-to-p extension
L of the center of UD(pr).

For r = 1, 2 it is not known whether or not every central smple algebra
A of degree pr is a crossed product. It is, however, known that every such
algebra becomes a crossed product after a prime-to-p extension of the center;
see [RS92, Section 1]. In other words, the Type 1 part of the crossed product
problem has been completely solved, and the remaining open questions, for
algebras of degree p and p2, are of Type 2.

Example 5.3. The torsion index. Let G be an algebraic group defined
over k and K/k be a field extension. The torsion index nα of α ∈ H1(K,G)
was defined by Grothendieck as the greatest common divisor of the degrees
[L : K], where L ranges over all finite splitting fields L/K. The torsion index
nG of G is then the least common multiple of nα taken over all K/k and all
α ∈ H1(K,G). One can show that nG = nαver

, where αver ∈ H1(Kversal, G)
is a versal G-torsor. One can also show, using a theorem of J. Tits [Se95],
that the prime divisors of nG are precisely the exceptional primes of G.

The problem of computing nG and more generally, of nα for α ∈ H1(K,G)
can thus be rephrased as follows. Given an exceptional prime p for G, find
the highest exponent dp such that pdp divides [L : K] for every splitting
extension L/K. It is easy to see that this is a Type 1 problem; d does
not change if we replace α by αK ′, where K ′/K is a prime-to-p extension.
This torsion index nG has been computed Tits and B. Totaro, for all simple
groups G that are either simply connected or adjoint; for details and further
references, see [Ti92, To05].

The remaining Type 2 problem consists of finding the possible values of
e1, . . . , er such that αver is split by a field extension L/K of degree pe11 . . . perr ,
where p1, . . . , pr are the exceptional primes for G. This problem is open
for many groups G. It is particularly natural for those G with only one
exceptional prime, e.g., G = Spinn.

Example 5.4. Canonical dimension. Let G be a connected linear alge-
braic group defined over k, K/k be a field extension, and X be a G-torsor
over K. Recall that the canonical dimension cdim(X) of X is the mini-
mal value of dimK(Im(f)), where the minimum is taken over all rational
maps f : X 99K X defined over K. In particular, X is split if and only
if cdim(X) = 0. The maximal possible value of cdim(X), as X ranges
over all G-torsors over K and K ranges over all field extensions of k, is
called the canonical dimension of G and is denoted by cdim(G). Clearly
0 ≤ cdim(G) ≤ dim(G) and cdim(G) = 0 if and only if G is special. For a
detailed discussion of the notion of canonical dimension, we refer the reader
to [BerR05], [KM06] and [Me09].
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Computing the canonical dimension cdim(G) of an algebraic group G is
a largely open Type 2 problem. The associated Type 1 problem of com-
puting the canonical p-dimension cdim(G; p) has been solved by Karpenko-
Merkurjev [KM06] and K. Zainoulline [Zai07].

6. Finite groups of low essential dimension

Suppose we would like to determine the essential dimension of a finite
group G. To keep things simple, we will assume throughout this section
that, unless otherwise specified, the base field k is algebraically closed and
of characteristic 0. Let us break up the problem of computing ed(G) into a
Type 1 part and a Type 2 part, as we did in the previous section.

The Type 1 problem is to determine ed(G; p) for a prime p. It is not
difficult to show that ed(G; p) = ed(Gp; p), where p is a prime and Gp is a
p-Sylow subgroup of G; see [MR09a, Lemma 4.1] or [Me96, Proposition 5.1].
The value of ed(Gp; p) is given by Corollary 4.2. So, to the extent that we
are able to compute the dimension of the smallest faithful representation of
Gp, our Type 1 problem has been completely solved, i.e., we know ed(G; p)
for every prime p.

Now our best hope of computing ed(G) is to obtain a strong upper bound
ed(G) ≤ n, e.g., by constructing an explicit G-equivariant dominant rational
map V 99K Y , as in (2.2), with dim(Y ) = n. If n = ed(G; p) then we
conclude that ed(G) = ed(G; p), i.e., the remaining Type 2 problem is trivial,
and we are done. In particular, this is what happens if G is a p-group.

If the best upper bound we can prove is ed(G) ≤ n, where n is strictly
greater than ed(G; p) for every p then we are entering rather murky waters.
Example 6.2 below shows that it is indeed possible for ed(G) to be strictly
greater than ed(G; p) for every prime p. On the other hand, there is no
general method for computing ed(G) in such cases. The only ray of light in
this situation is that it may be possible to prove a lower bound of the form
ed(G) > d, where d = 1 or (with more effort) 2 and sometimes even 3.

Let us start with the simplest case where d = 1.

Lemma 6.1. (cf. [BuR97, Theorem 6.2]) Let G be a finite group. Then

(a) ed(G) = 0 if and only if G = {1},

(b) ed(G) = 1 if and only if G 6= {1} is either cyclic or odd dihedral.

Proof. Let V be a faithful linear representation of G. By (2.4) there exists
a dominant G-equivariant rational map V 99K X, where G acts faithfully
on X and dim(X) = ed(G).

(a) If ed(G) = 0 then X is a point. This forces G to be trivial.

(b) If ed(G) = 1 then X is a rational curve, by a theorem of Lüroth.
We may assume that X is smooth and complete, i.e., we may assume that
X = P1. Consequently, G is isomorphic to a subgroup of PGL2. By a
theorem of Klein [Kl1884], G is cyclic, dihedral or is isomorphic to S4, A4



ESSENTIAL DIMENSION 17

or S5. If G is an even dihedral group, S4, A4 or S5 then G contains a copy
of Z/2× Z/2Z ≃ µ2 × µ2. Hence,

ed(G) ≥ ed(µ2
2) = 2 ;

see Example 2.6. This means that if ed(G) = 1 then G is cyclic or odd
dihedral.

Conversely, if G is cyclic or odd dihedral then one can easily check that,
under our assumption on k, edk(G) = 1. �

Example 6.2. Suppose q and r are odd primes and q divides r − 1. Let
G = Z/rZ ⋊ Z/qZ be a non-abelian group of order rq. Clearly all Sylow
subgroups of G are cyclic; hence, ed(G; p) ≤ 1 for every prime p. On the
other hand, since G is neither cyclic nor odd dihedral, Lemma 6.1 tells us
that ed(G) ≥ 2. �

Similar reasoning can sometimes be used to show that ed(G) > 2. Indeed,
assume that ed(G) = 2. Then there is a faithful representation V of G and
a dominant rational G-equivariant map

(6.1) V 99K X ,

where G acts faithfully on X and dim(X) = 2. By a theorem of G. Castel-
nuovo, X is a rational surface. Furthermore, we may assume that X is
smooth, complete, and is minimal with these properties (i.e., does not allow
any G-equivariant blow-downs X → X0, with X0 smooth). Such surfaces
(called minimal rational G-surfaces) have been classified by Yu. Manin and
V. Iskovskikh, following up on classical work of F. Enriques; for details
and further references, see [Du09a]. This classification is significantly more
complicated than Klein’s classification of rational curves but one can use
it to determine, at least in principle, which finite groups G can act on a
rational surface and describe all such actions; cf. [DI06]. Once all minimal
rational G-surfaces X are accounted for, one then needs to decide, for each
X, whether or not the G-action is versal, i.e., whether or not a dominant
rational G-equivariant map (6.1) can exist for some faithful linear represen-
tation G → GL(V ). Note that by the Going Down Theorem 3.2 if some
abelian subgroup A of G acts on X without fixed points then the G-action
on X cannot be versal. If every minimal rational G-surface X can be ruled
out this way (i.e., is shown to be non-versal) then one can conclude that
ed(G) > 2.

This approach was used by Serre to show that ed(A6) > 2; see [Se08,
Proposition 3.6]. Since the upper bound ed(A6) ≤ ed(S6) ≤ 3 was previously
known (cf. (7.2) and the references there) this implies ed(A6) = 3. Note that

ed(A6; p) =











2, if p = 2 or 3,

1, if p = 5, and

0, otherwise;
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see (7.1). A. Duncan [Du09a] has recently refined this approach to give the
following complete classification of groups of essential dimension ≤ 2.

Theorem 6.3. Let k be an algebraically closed field of characteristic 0 and
T = G

2
m be the 2-dimensional torus over k. A finite group G has essential

dimension ≤ 2 if and only if it is isomorphic to a subgroup of one of the
following groups:

(1) The general linear group GL2(k),

(2) PSL2(F7), the simple group of order 168,

(3) S5, the symmetric group on 5 letters,

(4) T ⋊G1, where |G ∩ T | is coprime to 2 and 3 and

G1 =

〈 (

1 −1
1 0

)

,

(

0 1
1 0

) 〉

≃ D12,

(5) T ⋊G2, where |G ∩ T | is coprime to 2 and

G2 =

〈 (

−1 0
0 1

)

,

(

0 1
1 0

) 〉

≃ D8,

(6) T ⋊G3, where |G ∩ T | is coprime to 3 and

G3 =

〈 (

0 −1
1 −1

)

,

(

0 −1
−1 0

) 〉

≃ S3,

(7) T ⋊G4, where |G ∩ T | is coprime to 3 and

G4 =

〈 (

0 −1
1 −1

)

,

(

0 1
1 0

) 〉

≃ S3 .

If one would like to go one step further and show that ed(G) > 3 by
this method, for a particular finite group G, the analysis becomes consider-
ably more complicated. First of all, while X in (6.1) is still unirational, if
dim(X) ≥ 3, we can no longer conclude that it is rational. Secondly, there is
no analogue of the Enriques-Manin-Iskovskikh classification of rational sur-
faces in higher dimensions. Nevertheless, in dimension 3 one can sometimes
use Mori theory to get a handle on X. In particular, Yu. Prokhorov [Pr09]
recently classified the finite simple groups with faithful actions on ratio-
nally connected threefolds. This classification was used by Duncan [Du09b]
to prove the following theorem, which is out of the reach of all previously
existing methods.

Theorem 6.4. Let k be a field of characteristic 0. Then edk(A7) = edk(S7) =
4.

Note that ed(A7; p) ≤ ed(S7; p) ≤ 3 for every prime p; cf. [MR09a, Corollary
4.2].
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7. Open problems

7.1. Strongly incompressible elements. Let F : Fieldsk → Sets be a co-
variant functor. We say that an object α ∈ F(K) is strongly incompressible
if α does not descend to any proper subfield of K.

Examples of strongly incompressible elements in the case where G is a
finite group, K is the function field of an algebraic curve Y over k, and
F = H1( ∗ , G), are given in [Rei04]. In these examples α is represented
by a (possibly ramified) G-Galois cover X → Y . I do not know any such
examples in higher dimensions.

Problem. Does there exist a finitely generated field extension K/k of tran-
scendence degree ≥ 2 and a finite group G (or an algebraic group G defined
over k) such that H1(K,G) has a strongly incompressible element?

For G = On Problem 7.1 is closely related to the questions of existence
of a minimal field of definition of a quadratic form posed at the beginning
of Section 1.

It is easy to see that if an element of H1(K,PGLn) represented by a non-
split central simple algebra A is strongly incompressible and tr degk(K) ≥
2 then A cannot be cyclic. In particular, if n = p is a prime then the
existence of a strongly incompressible element inH1(K,PGLn) would imply
the existence of a non-cyclic algebra of degree p over K, thus solving (in the
negative) the long-standing cyclicity conjecture of Albert.

7.2. Symmetric groups.

Problem. What is the essential dimension of the symmetric group Sn? of
the alternating group An?

Let us assume that char(k) does not divide n!. Then in the language of
Section 5, the above problem is of Type 2. The associated Type 1 problem
has been solved: ed(Sn; p) = [n/p] (see [MR09a, Corollary 4.2]) and similarly

(7.1) ed(An; p) =

{

2[n4 ], if p = 2, and

[np ], otherwise.

It is shown in [BuR97] that ed(Sn+2) ≥ ed(Sn) + 1, ed(An+4) ≥ ed(An) + 2,
and

(7.2) ed(An) ≤ ed(Sn) ≤ n− 3 .

I believe the true value of ed(Sn) is closer to n − 3 than to [n/2]; the only
piece of evidence for this is Theorem 6.4.

7.3. Cyclic groups.

Problem. What is the essential dimension edk(Z/nZ)?

Let us first consider the case where char(k) is prime to n. Under further
assumptions that n = pr is a prime power and k contains a primitive pth
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root of unity ζp, Problem 7.3 has been solved by Florence [Fl07]. It is now
a special case of Corollary 4.2:

(7.3) edk(Z/p
r
Z) = edk(Z/p

r
Z; p) = [k(ζpr) : k] ;

see [KM07, Corollary 5.2]. This also settles the (Type 1) problem of com-
puting edk(Z/nZ; p) for every integer n ≥ 1 and every prime p. Indeed,

edk(Z/nZ; p) = edk(Z/p
r
Z; p) ,

where pr is the largest power of p dividing n. Also, since [k(ζp) : k] is prime
to p, for the purpose of computing edk(Z/nZ; p) we are allowed to replace
k by k(ζp); then formula (7.3) applies.

If we do not assume that ζp ∈ k then the best currently known upper
bound on edk(Z/p

r
Z), due to A. Ledet [Led02], is edk(Z/p

r
Z) ≤ ϕ(d)pe.

Here [k(ζpr) : k] = dpe, where d divides p− 1, and ϕ is the Euler ϕ-function.
Now let us suppose char(k) = p > 0. Here it is easy to see that edk(Z/p

rZ) ≤
r; Ledet [Led04] conjectured that equality holds. This seems to be out of
reach at the moment, at least for r ≥ 5. More generally, essential dimension
of finite (but not necessarily smooth) group schemes over a field k of prime
characteristic is poorly understood; some interesting results in this direction
can be found in [TV10].

7.4. Quadratic forms. Let us assume that char(k) 6= 2. The following
question is due to J.-P. Serre (private communication, April 2003).

Problem. If q is a quadratic form over K/k, is it true that ed(q; 2) = ed(q)?

A similar question for central simple algebras A of prime power degree pr

is also open: is it true that ed(A; p) = ed(A)?
Here is another natural essential dimension question in the context of

quadratic form theory.

Problem. Assume char(k) 6= 2. If q and q′ are Witt equivalent quadratic
forms over a field K/k, is it true that edk(q) = edk(q

′)?

The analogous question for central simple algebras, with Witt equivalence
replaced by Brauer equivalence, has a negative answer. Indeed, assume
k contains a primitive 4th root of unity and D = UDk(4) is a universal
division algebra of degree 4. Then ed(D) = 5 (see [Me10a, Corollary 1.2],
cf. also [Rost00]) while ed M2(D) = 4 (see [LRRS03, Corollary 1.4]).

7.5. Canonical dimension of Brauer-Severi varieties. Let X be a
smooth complete variety defined over a field K/k. The canonical dimen-
sion cdim(X) is the minimal dimension of the image of a K-rational map
X 99K X. For a detailed discussion of this notion, see [KM06] and [Me09].

Conjecture. (Colliot-Thélène, Karpenko, Merkurjev [CKM08]) Suppose X
is a Brauer-Severi variety of index n. If n = pe11 . . . perr is the prime decom-
position of n then cdim(X) = pe11 + · · ·+ perr − r.
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This is a Type 2 problem. The associated Type 1 question is completely
answered by Theorem 4.4: cdim(X; pi) = pe1i − 1. Also, by Theorem 4.4 the
conjecture is true if r = 1. The only other case where this conjecture has
been proved is n = 6; see [CKM08]. The proof is similar in spirit to the
results of Section 6; it relies on the classification of rational surfaces over a
non-algebraically closed field. For other values of n the conjecture has not
even been checked for one particular X.

Note that the maximal value of cdim(X), as X ranges over the Brauer-
Severi varieties of index n, equals cdim(PGLn). As I mentioned in Exam-
ple 5.4, computing the canonical dimension cdim(G) of a linear algebraic
(and in particular, simple) group G is a largely open Type 2 problem. In
particular, the exact value of cdim(PGLn) is only known if n = 6 or a prime
power.

7.6. Essential dimension of PGLn.

Problem. What is ed(PGLn; p)? ed(PGLn)?

As I mentioned in Section 1, this problem originated in the work of Pro-
cesi [Pr67]; for a more detailed history, see [MR09a, MR09b]. The sec-
ond question appears to be out of reach at the moment, except for a few
small values of n. However, there has been a great deal of progress on
the first (Type 1) question in the past year. By primary decomposition
ed(PGLn; p) = ed(PGLpr ; p), where pr is the highest power of p dividing
n. Thus we may assume that n = pr. As I mentioned in Example 5.2,
every central simple algebra A of degree p becomes cyclic after a prime-to-p
extension. Hence, ed(PGLp; p) = 2; cf. [RY00, Lemma 8.5.7]. For r ≥ 2 we
have

(r − 1)pr + 1 ≤ ed(PGLpr ; p) ≤ p2r−2 + 1 .

The lower bound is due to Merkurjev [Me10b]; the upper bound is proved in a
recent preprint of A. Ruozzi [Ru10]. (A weaker upper bound, ed(PGLn; p) ≤
2p2r−2−pr+1, is proved in [MR09b].) In particular, ed(PGLp2 ; p) = p2+1;
see [Me10a].

Note that the argument in [Me10b] shows that if A is a generic (Z/pZ)r-
crossed product then ed(A; p) = (r−1)pr+1. As mentioned in Example 5.2,
for r ≥ 3 a general division algebra A/K of degree pr is not a crossed product
and neither is AL = A ⊗K L for any prime-to-p extension L/K. Thus for
r ≥ 3 it is reasonable to expect the true value of ed(PGLpr ; p) to be strictly
greater than (r − 1)pr + 1.

7.7. Spinor groups.

Problem. Does Corollary 4.3 remain valid over an algebraically closed field
of characteristic p > 2?

As I mentioned at the beginning of the proof of Corollary 4.3, the lower
bound in each part remains valid over any field of characteristic > 2. Con-
sequently, Problem 7.7 concerns only the upper bounds. It would, in fact,
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suffice to show that the spin representation Vspin and the half-spin represen-
tation Vhalf−spin of Spinn are generically free, if n is odd or n ≡ 2 (mod 4),
respectively; see [BRV10a, Lemma 3-7 and Remark 3-8].

Problem. What is edk(Spin4m; 2)? edk(Spin4m)? Here m ≥ 5 is an
integer.

Corollary 4.3 answers this question in the case where m is a power of 2.
In the other cases there is a gap between the upper and the lower bound in
that corollary, even for k = C.

7.8. Exceptional groups.

Problem. Let G be an exceptional simple group and p be an exceptional
prime for G. What is edk(G; p)? edk(G)? Here we assume that k is an
algebraically closed field of characteristic 0 (or at least, char(k) is not an
exceptional prime for G).

For the exceptional group G = G2 we know that ed(G2) = ed(G2; 2) = 3;
see Example 2.4.

For G = F4, the Type 1 problem has been completely solved: ed(F4; 2) =
5 (see [MacD08, Section 5]), ed(F4; 3) = 3 (see [GR07, Example 9.3]), and
ed(F4; p) = 0 for all other primes. It is claimed in [Ko00] that ed(F4) = 5.
However, the argument there appears to be incomplete, so the (Type 2)
problem of computing ed(F4) remains open.

The situation is similar for the simply connected group Esc
6 . The Type 1

problem has been solved,

ed(Esc
6 ; p) =











3, if p = 2 (see [GR07, Example 9.4]),

4, if p = 3 (see [RY00, Theorem 8.19.4 and Remark 8.20]),

0, if p ≥ 5.

(For the upper bound on the second line, cf. also [Gar09, 11.1].) The Type
2 problem of computing ed(Esc

6 ) remains open.
For the other exceptional groups, Ead

6 , Ead
7 Esc

7 and E8, even the Type 1
problem of computing ed(G; p) is only partially solved. It is known that
ed(Ead

6 ; 2) = 3 (see [GR07, Remark 9.7]), ed(Ead
7 ; 3) = ed(Esc

7 ; 3) = 3
(see [GR07, Example 9.6 and Remark 9.7]; cf. also [Gar09, Lemma 13.1]) and
ed(E8; 5) = 3 (see [RY00, Theorem 18.19.9] and [Gar09, Proposition 14.7]).
On the other hand, the values of ed(Ead

6 ; 3), ed(Ead
7 ; 2), ed(Esc

7 ; 2), ed(E8; 3)
and ed(E8; 2) are wide open, even for k = C. For example, the best known
lower bound on edC(E8; 2) is 9 (see Corollary 3.6(i)) but the best upper
bound I know is edC(E8; 2) ≤ 120. The essential dimension ed(G) for these
groups is largely uncharted territory, beyond the upper bounds in [Lem04].

7.9. Groups whose connected component is a torus. Let G be an
algebraic group over k and p be a prime. We say that a linear representation
φ : G → GL(V ) is p-faithful (respectively, p-generically free) if Ker(φ) is a
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finite group of order prime to p and φ descends to a faithful (respectively,
generically free) representation of G/Ker(φ).

Suppose the connected component G0 of G is a k-torus. One reason such
groups are of interest is that the normalizer G of a maximal torus in a
reductive k-group Γ is of this form and ed(G) (respectively ed(G; p)) is an
upper bound on ed(Γ) (respectively, ed(Γ; p)). The last assertion follows
from [Se02, III.4.3, Lemma 6], in combination with Lemma 2.2.

For the sake of computing ed(G; p) we may assume that G/G0 is a p-
group and k is p-closed, i.e., the degree of every finite field extension k′/k is
a power of p; see [LMMR09, Lemma 3.3]. It is shown in [LMMR09] that

(7.4) min dim ν − dim(G) ≤ ed(G; p) ≤ min dim ρ− dimG ,

where the two minima are taken over all p-faithful representations ν, and
p-generically free representations ρ, respectively. In the case where G = T is
a torus or G = F is a finite p-group or, more generally, G is a direct product
T × F , a faithful representation is automatically generically free. Thus in
these cases the lower and upper bounds of (7.4) coincide, yielding the exact
value of edk(G; p). If we only assume that G0 is a torus, I do not know how
to close the gap between the lower and the upper bound in (7.4). However,
in every example I have been able to work out the upper bound in (7.4) is,
in fact, sharp.

Conjecture. ([LMMR09]) Let G be an extension of a p-group by a torus,
defined over a p-closed field k of characteristic 6= p. Then ed(G; p) =
mindim ρ − dimG, where the minimum is taken over all p-generically free
k-representations ρ of G.
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simples, C. R. Acad. Sci. Paris, t. 315, Série I (1992), 1131–1138.
[TV10] D. Tossici, A. Vistoli, On the essential dimension of infinitesimal group schemes,

arXiv:1001.3988.
[To05] B. Totaro, The torsion index of E8 and other groups, Duke Math. J. 129 (2005),

no. 2, 219–248.
[Woo89] J. A. Wood, Spinor groups and algebraic coding theory, J. Combin. Theory Ser.

A 51 (1989), no. 2, 277–313.
[Zai07] K. Zainoulline, Canonical p-dimensions of algebraic groups and degrees of basic

polynomial invariants, Bull. Lond. Math. Soc. 39 (2007), no. 2, 301–304.

Department of Mathematics, The University of British Columbia, 1984 Math-

ematics Road, Vancouver, B.C., Canada V6T 1Z2


