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Abstract. We compute the exact value for the essential p-dimension of the nor-
malizer of a split maximal torus for most simple connected linear algebraic groups.
These values give new upper bounds on the essential p-dimension of some simple
groups, including some exceptional groups.

For each connected simple algebraic group, we also give an upper bound on the
essential p-dimension of any torus contained in that group. These results are achieved
by a detailed case-by-case analysis.

Introduction

Let p be a prime, k a field of characteristic not p (an assumption we make on all base
fields), and let G be a split simple algebraic group over k. For us a simple algebraic
group is connected, linear, and has no proper connected normal subgroups. Then one
can ask what is the essential p-dimension of the normalizer of a split maximal torus
in G, ed(N ; p)? This question was answered in [MR09] for G = PGLn. Their main
motivation came from the upper bound ed(G; p) ≤ ed(N ; p). In the present paper we
give exact values for ed(N ; p) for most split simple algebraic groups G. These results
are consistent with Reichstein’s conjecture (see [Re10]). In some cases we obtain new
bounds on ed(G; p). We also obtain upper bounds for the essential p-dimension of any
torus inside a given (not necessarily split) simple algebraic group (see Theorem 1.7).

The four Tables in this paper summarize our main results, which follow from a
detailed case-by-case analysis. In the remainder of this introduction, we explain how
these tables give new information about essential dimension.

0.1. Essential dimension of normalizers. The essential dimension (resp. essential
p-dimension) of an algebraic group G over a field k is a non-negative integer invariant,
denoted by edk(G) (resp. edk(G; p)). Roughly speaking, it is the number of independent
parameters needed to specify a G-torsor up to isomorphism (resp. and allowing for
prime to p field extensions). In recent years, much work has gone into computing these
numbers (see [Re10] for a recent survey).

Let T ⊂ G be a split maximal torus in a simple algebraic group over a field k. Let
N = NG(T ) be its normalizer, then N/T ∼= W = W (R) the Weyl group of the root
system R of G.

For p any prime, computing ed(N ; p) is roughly equivalent to computing the sym-
metric p-rank, SymRank(φ; p), of the Weyl group action on the characters of a split
maximal torus (see Definition 1.1). We will now explain how to find the exact value
of, or at least the best bounds for ed(N ; p).
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Every split simple algebraic group G has an entry in Table I, II, or III (with the
exception of Remark 2.3). For a prime p, the pair (G, p) occurs in the Tables iff the

representation 1T̂ has symmetric p-rank strictly bigger than the rank of T . So if the pair
(G, p) does not occur in the Tables, then by Theorem 1.9 we have ed(N ; p) = ed(W ; p).
The essential p-dimensions of the Weyl groups are evaluated in Table IV.

If the pair (G, p) has an entry in one of these Tables, and the final column of this

entry contains a “y”, then by Corollory 1.11 we have that ed(N ; p) = SymRank(1T̂ ; p)−
dim(T ). The only remaining possibility is that the final column of this entry contains
an “n”, in which case the exact value for ed(N ; p) is not always known; see Theorem
1.9 for upper and lower bounds, and the final section for a discussion of individual
cases.

This work extends the results of [MR09], where ed(N ; p) was computed for G =
PGLn, which appears in Table I as the cases 1A+1

pr−1 and 1A+1
prs−1 (using notation of

1.2).

0.2. New upper bounds for ed(G; p). By [Se02, III.4.3 Lemma 6]1 together with
[BF03, Lemma 1.3] we have

ed(G; p) ≤ ed(N ; p).

In some cases this bound is sharp, such as G = SO2n+1, p = 2, but in other cases the
inequality is known to be strict. Nevertheless, it sometimes provides the best known
upper bound for ed(G; p). In the following cases, the best bounds which had previously
been written down were also bounds for the absolute essential dimension, given in
[Le04]. For the classical groups:

ed(PSO2n; 2), ed(PSp2n; 2) ≤

{
4 · 2r(s− 1) for n = 2rs, s > 1,
n2 for n = 2r.

For n odd we already knew ed(PSp2n; 2) = n + 1, [Mac08]. Let En denote the split
adjoint group of type En, then we have:

ed(E6; 3) ≤ 21 ed(2E7; 2) ≤ 33 ed(E7; 2) ≤ 57
ed(E8; 2) ≤ 120 ed(E8; 3) ≤ 73.

1. Preliminaries

The rank of a free Z-module L is defined to be the minimal size of a generating
subset of L. If F is a finite group which acts on L (in other words φ : F → GL(L) is
an integral representation), then we can define the symmetric rank.

SymRank(φ) := min{ size of an F -invariant subset of L which is generating}.

For example, if F is the Weyl group of some irreducible root system R, and φ is the
induced action on the root lattice L, then SymRank(φ) = |R0|, the number of roots of
minimal length. This follows from a case-by-case analysis as in [Le04]. Notice that the
Weyl group acts transitively on the minimal length roots.

In the present paper we will be interested in the p-local version of this invariant, for
a prime p. We will say a subset Λ ⊂ L is p-generating if it generates a Z-submodule

1This Lemma assumes the base field is perfect, but in our case this assumption can be dropped.
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XΛ whose rank is rankL, and whose index (defined as |L/XΛ|) is prime to p. Choose
a Sylow p-subgroup Γ ⊂ F .

Definition 1.1. The symmetric p-rank of φ is defined as

SymRank(φ; p) := min{ size of a Γ-invariant subset of L which is p-generating}.

Notice that this number depends only on the integral representation φ, and the
prime p, and not on the choice of Sylow p-subgroup (since all Sylow subgroups are
conjugate). Clearly we have

rank(φ) ≤ SymRank(φ; p) ≤ SymRank(φ) ≤ |F | rank(φ).

1.2. Lattices. A lattice is often defined as a free Z-module with a positive-definite
bilinear form. In the present paper, all lattices come from some irreducible root system,
as the root lattice, the weight lattice, or as some intermediate lattice (see [Bou68],
[Hu92]). Notice that different root systems may produce isomorphic lattices.

Given an irreducible root system R, its group of automorphisms obeys A(R) =
W (R) ⋊ Aut(D), where W (R) is the Weyl group and Aut(D) is the group of graph
automorphisms of the Dynkin diagram. If L is some lattice associated to R, then A(R)
has an induced action on L.

Let Mr denote the (unique) subgroup of Aut(D) of order r. We will imitate the
notation of [Ti66] for the following integral representation, given by the restriction of
the induced A(R) action

(1.3) rL := φ : W ⋊Mr → GL(L).

1.3If L is a root lattice of type A,D, or E, then L+d will denote an intermediate lattice
in which L has index d (this is unique, except for type D, and d = 2, see Section 3).
This follows the notation of [CS88].

We find it convenient to embed our lattices L inside a real vector space, with a fixed
orthonormal basis {ǫi}.

1.4. Algebraic tori. An (algebraic) torus over a field k is an algebraic group T such
that Tsep := T×Spec(ksep) is isomorphic to some copies of the multiplicative group Gm

(see [Vo98] or [Bo92]). A torus which is isomorphic to G
n
m over k will be called split.

Any torus becomes split after a finite Galois extension K. For any torus T defined over
k, let AT := Gal(K/k), where K is a minimal Galois splitting field of T . Then AT is
well-defined, and it is called the decomposition group of T . AT naturally acts on the
character module T̂ = Hom(T (K),K∗), and we can associate the Galois representation

ψT : AT → GL(T̂ ). The main result from [LMMR10b, Cor. 5.1] is that

(1.5) ed(T ; p) = SymRank(ψT ; p)− dimT.

A torus T whose character representation obeys SymRank(ψT ) = dim(T ) is called
quasi-split. If we can choose a maximal torus T ⊂ G which is (quasi-)split, then G
is said to be (quasi-)split. We also know that ed(T ) ≤ SymRank(ψT ) − dimT , but
equality does not always hold (there are non-quasi-split tori with ed(T ) = 0).
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1.6. Tori in algebraic groups; generic tori. Let T ⊂ G be a maximal torus in a
simple algebraic group. Then any element of the decomposition group AT acts on T̂
by preserving the root system R of Gsep. In other words, AT ⊂ A(R). Notice that the

integral representation rT̂ from (1.3) is independent of whether T splits, and depends
only on Gsep and r.

Theorem 1.7. Let T0 ⊂ G be any torus in a simple algebraic group over k, and let
r = |Aut(D)| for the Dynkin diagram associated to the root system of Gsep. Choose a
maximal torus T which contains T0. Then

ed(T0; p) = SymRank(ψT0
; p)− dim(T0) ≤ SymRank(rT̂ ; p)− dim(T0).

Moreover, if char(k) = 0 then there exists a field extension K/k and a “generic”
maximal torus T0 ⊂ GK which achieves this upper bound.

Proof. We can choose a Sylow p-subgroup Γ0 ⊂ AT0
contained in a Sylow p-subgroup

Γ ⊂ A(R). Then a Γ-invariant p-generating subset of T̂ induces a Γ0-invariant p-

generating subset of T̂0, as required.
Now we will show that the upper bound is achieved for generic tori. Given a quasi-

split maximal torus T ⊂ G, with N its normalizer, then the variety G/N may be
thought of as the variety of maximal tori in G, and we can construct the tautological
fibration S → G/N . The fibre over a point x ∈ G/N is a maximal torus Sx ⊂ Gk(x). The
fibre over the generic point is called the generic torus, and we will denote it Tgen ⊂
Gk(G/N). Voskresenskii showed that, for char(k) = 0, we have ATgen

∼= W (R) ⋊ AT

[Vo88, Theorem 2].
We can choose a quasi-split maximal torus T ⊂ Gk′ for some field extension k′/k,

such that r := |AT | = |Aut(D)|. By (1.5) we have edK(Tgen; p) = SymRank(rT̂ ; p) −
dim(T ) for K = k′(G/N). Hence the upper bound is achieved for T0 = Tgen. �

Theorem 1.7 gives us motivation to compute the symmetric p-rank of the A(R)-
action on the character lattices; the results can be found in Tables I, II, and III.

1.8. Normalizers of split tori. A representation φ : N → GL(V ) is said to be p-
faithful (resp. p-generically free), if ker(φ) is finite of order prime to p, and φ descends
to a faithful (resp. generically free) representation of N/ ker(φ).

For the remainder of this section we will assume T ⊂ G is a split maximal torus in
a simple algebraic group over k, and N = NG(T ), and W =W (R) ∼= N/T , where R is
the root system of G. Also, H will denote a Sylow p-subgroup of W .

Theorem 1.9. Let T ⊂ G be a maximal and split torus over k, let N be its normalizer,
and 1T̂ the representation of the Weyl group from (1.3). Then we have the lower bounds:

max{SymRank(1T̂ ; p)− dim(T ), ed(W ; p)} ≤ ed(N ; p)

We also have the upper bound:

ed(N ; p) ≤ SymRank(1T̂ ; p)− dim(T ) + ed(W ; p).

In particular, if SymRank(1T̂ ; p) = dim(T ) then ed(N ; p) = ed(W ; p).
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For the values of SymRank(1T̂ ; p) see Tables I,II, and III, and for ed(W ; p) see Table
IV. Notice that ed(N ; p) > 0 iff p divides the order of W .

Proof of lower bounds in Theorem 1.9. Firstly, notice that ed(W ; p) ≤ ed(N ; p) fol-
lows from the surjection H1(k,N) → H1(k,W ) for quasi-split groups (see [Gi04, Thm.
5.1] or [Ra04]).

For a Sylow p-subgroup H ⊂ W , let NH denote the preimage of H in N . Then
by [MR09, Lemma 4.1] we have that ed(NH ; p) = ed(N ; p). From [LMMR10a, Thm.
1.3(a)] we know there is a p-faithful (NH)alg-representation V , defined of over an al-
gebraic closure, such that dim(V ) − dim(T ) ≤ edk(NH ; p). Such a representation is
also a p-faithful Talg-representation. Decompose V = ⊕λ∈ΛVλ into weight spaces of

Talg, where Λ ⊂ T̂ is the set of non-trivial weights. Now Λ is p-generating (since V is

p-faithful), and it is invariant under H. Therefore SymRank(1T̂ ; p) ≤ |Λ| ≤ dim(V ),
as required. �

We will prove the upper bound of Theorem 1.9 by constructing a generically free
representation from a subset of T̂ . Let φ : F → GL(L) be a representation of a finite
group, and let Λ ⊂ L be an F -invariant subset. The following condition on Λ will
ensure generic freeness in Lemma 1.10(iii).

(KF ): The kernel of the F -map Z[Λ] → L is faithful as an F -module.

Fix a Sylow p-subgroupH ⊂W , and let NH ⊂ N be its preimage under π : N →W .
The following construction slightly generalizes [MR09, Section 3], where only the case
when NH is a semi-direct product was considered.

Lemma 1.10. Let T be a split torus over k, and let Λ ⊂ T̂ be a finite H-invariant
subset. Then there is an NH-representation, VΛ, obeying the following properties.

(i) VΛ has a basis {vλ}λ∈Λ, on which T acts by tvλ = λ(t)vλ,
(ii) Λ is p-generating iff VΛ is p-faithful,
(iii) Λ is p-generating and satisfies (KH) iff VΛ is p-generically free.

Proof. Choose a set of representatives {λi} ⊂ Λ, one for each H-orbit; let Hi :=
StabH(λi), and let Ni be the preimage of Hi in NH . Now consider the irreducible G-
representation L(λi) of highest weight λi [Ja87, II 2.4]. Since elements of N permute
the weight spaces of any representation, we can define Vi := L(λi)λi

, a one-dimensional
Ni-representation (see [Ja87, II 2.4 Prop. (b)]). This is defined over k because λi is
(since T is split). Then define

VΛ := ⊕i ind
NH

Ni
(Vi).

For each i, the corresponding summand has a basis {vλ}λ∈H·λi
, where T acts as in (i).

For (ii), let M be the kernel of the representation NH → GL(VΛ) defined above;
notice thatM ⊂ T . Also, T → GL(VΛ) factors through Diag(XΛ), which acts faithfully

on VΛ. So by the anti-equivalence Diag, we see that M ∼= Diag(T̂ /XΛ). Therefore M
is order prime to p iff Λ is p-generating.
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To show (iii), first assume that Λ is generating. In this case, we know from [MR09,
Lemma 3.3]2 that Λ satisfies (KH) iff VΛ is generically free. By (ii), the general case
now follows. �

Proof of Thm. 1.9. All that remains is the upper bound; we want to construct a p-
generically free representation of NH of the right dimension (by [LMMR10a, Section
1]). Given a Sylow p-subgroup H ⊂ W , we can choose an H-invariant p-generating

subset of minimal size |Λ| = SymRank(1T̂ ; p). By Lemma 1.10 this gives us a p-faithful
NH -representation, VΛ. Let V be a faithful H-representation of dimension ed(W ; p)
(which is possible by [KM08], extending the base field if necessary). Then, as in [MR09,
Lemma 3.2], VΛ × V is a p-generically free NH -representation, and thus we have the
required upper bound on ed(N ; p) = ed(NH ; p). �

Corollary 1.11. Let T ⊂ G be a split maximal torus, N its normalizer, and H ⊂W a
Sylow p-subgroup. If a minimal H-invariant p-generating subset of T̂ satisfies condition
(KH), then we have ed(N ; p) = SymRank(1T̂ ; p)− dim(T ).

Proof. By Lemma 1.10 we have an NH -representation of dimension SymRank(1T̂ ; p)
which is p-generically free. The result now follows from the lower bound of Theorem
1.9 and [LMMR10a, Section 1]. �

For F ⊂ A(R), we will now give a useful condition on an F -invariant subset Λ ⊂ T̂
which will imply the condition (KF ). We will say that λ0 ∈ Λ is Λ-independent if for

any λ0 6= λ1 ∈ Λ we can choose coefficients aλ ∈ Z such that
∑

λ∈Λ aλλ = 0 ∈ T̂ with
aλ0

6= 0 and aλ1
= 0.

Lemma 1.12. Let Λ ⊂ T̂ be an F -invariant subset, such that rank(XΛ) = rank T̂ . If
λ is Λ-independent, and h ∈ F , then h · λ is also Λ-independent. If every λ ∈ Λ is
Λ-independent, then Λ satisfies (KF ).

Proof. The first statement is clear.
Assume every λ ∈ Λ is Λ-independent. Take an h ∈ F which acts trivially on the

kernel of Z[Λ] → T̂ . For every linear dependency
∑

λ∈Λ aλλ = 0 ∈ T̂ , F permutes the
elements {λ|aλ 6= 0}. By assumption, this implies h fixes every λ ∈ Λ. The span of Λ

is full rank, and T̂ is a faithful F -module, so Z[Λ] is a faithful F -module, hence h = 1.
�

Lemma 1.13. Let φ : F → GL(L) be an integral representation of a finite group, and
let L′ ⊂ L be an index prime to p sublattice (of equal rank). Then SymRank(φ; p) =
SymRank(φ|L′ ; p). Also, if Γ ⊂ F is a Sylow p-subgroup, then a minimal Γ-invariant
p-generating subset of L satisfies (KΓ) iff such a subset of L′ satisfies (KΓ).

Proof. Firstly notice that if Λ is a minimal Γ-invariant p-generating subset of L′, then
Λ is also p-generating for L; so SymRank(φ; p) ≤ SymRank(φ|L′ ; p). Now let Λ be
a minimal Γ-invariant p-generating subset of L. If we multiply every element in Λ
by the index c = |L/L′|, then cΛ is Γ-invariant p-generating subset of L′. The final
sentence of the Lemma now follows because ker(Z[Λ] → L) is a faithful Γ-module iff
ker(Z[cΛ] → L′) is. �

2They assume NH is a semi-direct product of T and H , but an identical proof works in general.
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2. Type An

We will view the lattice An as the Z-submodule of SpanZ({ǫi}
n+1
i=1 ) of elements whose

coordinates sum to zero. TheWeyl groupW (An) is the symmetric group on n+1 letters,
which acts by permuting the coordinates ǫi. Negation is an outer automorphism of order
2.

This An is the character lattice of a maximal torus in PGLn+1. To obtain the weight
lattice, and the other intermediate lattices, let m|n+ 1, and then adjoin the following
vector:

(2.1) vm :=
1

m
(1, · · · , 1)− (0, · · · , 0, 1, · · · 1).

Here the last n+1
m coordinates in the second summand are 1’s, so that the sum of

the coordinates of vm is zero. Define A+m
n to be the span of An together with vm. In

particular A+1
n is the root lattice, and A

+(n+1)
n is the weight lattice.

We may define an isomorphism A+m
n /A+1

n
∼= Z/mZ by sending vm to 1 ∈ Z/mZ.

Then, for any λ ∈ A+m
n , we will denote by g(λ) ∈ Z/mZ its projection to the quotient

module, and we sometimes call this the glue part. Now one may check the following.

Lemma 2.2. For λ ∈ A+m
n , we have

λ =
g(λ)

m
(1, · · · , 1) + (a1, · · · , an+1),

such that ai ∈ Z and
∑
ai = −g(λ)n+1

m .

For the rest of this section we will write n = prs − 1, for s not divisible by p (and
possibly equal to 1). Table I summarizes our computations of SymRank(φ; p) for An-
type representations (using the notation as in 1.2). In this table we assume s 6= 1, and
that it is not divisible by p. The (K) column states whether the choice of minimal p-
generating Γ-invariant subset satisfies (KΓ). Also, SUn+1 denotes the quasi-split (and
not split) simply connected simple group of type An (see [Ti66, p. 55]).

Remark 2.3. For t|s and k ≤ r, we have that A+pkt
prs−1 ⊂ A+pk

prs−1 is a sublattice of index
t, and hence prime to p. By Lemma 1.13, we have reduced to considering lattices with

t = 1, because SymRank(1A+pk

prs−1; p) = SymRank(1A+pkt
prs−1; p).

The Sylow p-subgroup Hr := W (Apr−1)
(p) is given by an iterated wreath product

of cyclic p-groups, as in [MR09]. The Hr-action on R
pr naturally partitions the pr

coordinates into blocks of size pi, for 0 ≤ i ≤ r. We will call these pi-blocks, and we

may consider them as elements of Rpi; for each i the number of pi-blocks is pr−i.
TheHr-action restricted to a single pi-block is given by theHi :=W (Api−1)

(p)-action

on R
pi . Two pi-blocks are equivalent if there is an element of Hi that maps one into

the other. We will say a pi-block is j-stable if every pj-block (0 ≤ j ≤ i) is equivalent
to each other. We will call such a block scalar if it is 0-stable. If the coordinates are
all integers, then we can consider the related terms mod p; for example, scalar mod p
means all the coordinates are congruent mod p.

For s ≥ 1 not divisible by p, we may partition the coordinates of Rprs into s different
pr-blocks. We choose a Sylow p-subgroup H := W (Aprs−1)

(p), such that H restricted
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φ G p Conditions SymRank(φ; p) (K)

1A+pk

pr−1

SLpr

µ
pr−k

6= 2

1 ≤ k = r pr n
1 ≤ k ≤ r − 1 p2r−1 + pk y
k = 0, r ≥ 2 p2r−1 y
k = 0, r = 1 p2r−1 = p n

1A+2k

2r−1

SL2r

µ
2r−k

2

1 ≤ k = r 2r n
2 ≤ k = r − 1 22r−2 + 2k y
1 = k = r − 1 22r−2 + 2k = 6 n
1 ≤ k ≤ r − 2 22r−1 + 2k y
k = 0, r ≥ 2 22r−1 y
k = 0, r = 1 22r−1 = 2 n

2A+2k

2r−1

SU2r

µ
2r−k

2

2 ≤ k = r 2r+1 y
2 ≤ k ≤ r − 1 22r−1 + 2k+1 y
1 = k ≤ r − 2 22r−1 + 2 y
1 = k = r − 1 22r−2 + 2k = 6 n
k = 0, r ≥ 2 22r−1 y

1A+pk

prs−1

SLprs

µ
pr−ks

any
1 ≤ k = r prs n
1 ≤ k ≤ r − 1 p2r(s− 1) + pk y
k = 0, r ≥ 1 p2r(s− 1) y

2A+2k

2rs−1

SU2rs

µ
2r−ks

2

1 ≤ k = r 2r+1s y
1 ≤ k ≤ r − 1 22r+1(s− 1) + 2k+1 y
k = 0, r ≥ 1 22r+1(s− 1) y
k = 0 = r 22r+1(s− 1) = 2(s − 1) n

Table I. An lattices

to any pr-block is given by Hr (see [MR09]); so that (Hr)
s ⊂ H. For s = 1, we have

(Hr)
s = H.

We will consider a map Σ : Rprs → R
pr−1s, whose ith coordinate is given by the

sum of the coordinates of the ith p-block. We will abuse notation slightly and write

compositions of such maps as Σi : Rprs → R
pr−is. In particular, if s = 1, then Σr is

simply the sum of all coordinates.

Lemma 2.4. Let λ ∈ R
prs, where s is not divisible by p. For any 0 ≤ i ≤ r, we have

|(Hr)
sλ| ≥ |Σi((Hr)

sλ)| · |(Hi)
pr−isλ|.

Proof. Notice that (Hi)
pr−is stabilizes the fibers of Σi. The result follows. �

Lemma 2.5. Let λ ∈ R
prs, where s is not divisible by p. If λ contains a non-scalar

pk-block (k ≤ r), then |(Hr)
sλ| ≥ pr−k+1.

Proof. First we prove the lemma for k = 1. Assume there is a non-scalar p-block, say
B1. For all 1 ≤ i ≤ r, let Bi be the unique pi-block which contains B1.

To get a lower bound on the number of non-scalar p-blocks, start with the block
B1, which is non-scalar. If B2 is 1-stable, then we know there are at least p non-scalar
p-blocks, since the other p-blocks in B2 must also be non-scalar. Similarly, for each i
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such that Bi is not (i− 1)-stable, we get another factor of p. Let m be the number of
indices 1 ≤ i ≤ r for which Bi is (i − 1)-stable. Then there are at least pm non-scalar
p-blocks in λ.

Now we also have r −m − 1 indices i ≥ 2 for which the pi−1-blocks in Bi are not
equivalent. For such an i, the p inequivalent blocks in Bi are cyclically permuted by
Z/p ⊂ (Hr)

s, and have different images under Σ1. Now we can apply Lemma 2.4 to
get

|(Hr)
sλ| ≥ |Σ1((Hr)

sλ)| · |(H1)
pr−1sλ| ≥ pr−m−1pp

m

≥ pr−m−1pm+1 = pr.

Here we have used the inequality pm ≥ m + 1, which is valid for m ≥ 0 and p ≥ 2.
This proves the k = 1 case.

Now assume λ contains a non-scalar pk-block. If k = 1, then we have already
shown the result, so assume every p-block is scalar. Then |(Hr)

sλ| = |Σ1((Hr)
sλ)| =

|(Hr−1)
sΣ1(λ)|, and Σ(λ) contains a non-scalar pk−1-block. So, by induction, |(Hr)

sλ| ≥

p(r−1)−(k−1)−1 = pr−k−1. �

Lemma 2.6. Let p = 2 and k ≥ 2. For then any λ ∈ A+2k

2rs−1 such that s and g(λ)
are both odd, we have −λ 6∈ H · λ. In other words, the (H × Z/2)-orbit of λ is strictly
bigger than the H-orbit.

Proof. This is simply because g(hλ) ≡ g(λ) mod 2k, but g(−λ) ≡ −g(λ) 6≡ g(λ) mod
2k. �

Lemma 2.7. Let λ ∈ A+pk

prs−1, with s not divisible by p, and g(λ) 6≡ 0 mod p.

(i) Then |Hλ| ≥ pk.
(ii) If p = 2, and either k ≥ 2 or s > 1 then |(H × Z/2)λ| ≥ 2k+1.

Proof. By Lemma 2.2, we have λ = g(λ)
pk

(1, · · · , 1) + (a1, · · · , aprs), such that
∑
ai =

−g(λ)pr−ks, and ai ∈ Z. Here
∑
ai is not divisible by p

r−k+1, so there is a pr−k+1-block

which is non-scalar, and hence by Lemma 2.5 we have |Hλ| ≥ pr−(r−k+1)+1 = pk.
The p = 2, k ≥ 2 case now follows, because the (H × Z/2)-orbit has order a power

of 2, and is strictly bigger than the H-orbit, by Lemma 2.6.
For p = 2, s > 1, we have the Hr-orbit of some 2r-block is at least 2k. For any

other 2r-block, this copy of Hr acts trivially, but since g(λ) 6≡ 0 mod 2, negation acts
non-trivially, hence increasing the (H × Z/2)-orbit size by a factor of 2. �

Lemma 2.8. Assume λ ∈ Apms−1.

(i) If s = 1 and Σm−1(λ) 6≡ 0 mod p, then |Hλ| ≥ p2m−1.
(ii) If s > 1 not divisible by p, and Σm(λ) 6≡ 0 mod p, then |(Hm)sλ| ≥ p2m. If

also p = 2, then |((Hm)s × Z/2)λ| ≥ 22m+1.

Proof. For (i) notice that Σm−1(λ) is non-scalar, and therefore |Σm−1(Hλ)| = p.
Since the sum of the coordinates is zero, there are two pm−1-blocks whose coordinates

sums are not divisible by p, and hence each contain a non-scalar p-block. Now combine
Lemma 2.4 and Lemma 2.5 to see

|Hλ| ≥ |Σm−1(Hλ)| · |(Hm−1)
pλ| ≥ p(pm−1)(pm−1) = p2m−1.
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For (ii), similar to case (i), there must be two pm-blocks each containing a non-scalar
p-block. So by Lemma 2.5, we have |(Hm)sλ| ≥ (pm)(pm) = p2m.

For p = 2, notice (Hm)s acts trivially on Σm(λ), but negation acts non-trivially,
hence increasing the orbit size by a factor of two. �

Remark 2.9. Part (i) is also proved in [MR09].

Given a set of elements S in Z
N , and a number x ∈ Z, the notation S = x (resp.

S ≡ x mod p) will mean that every coordinate of every element in S is equal to (resp.
congruent mod p to) the number x.

Lemma 2.10. Let λ ∈ A+pk

prs−1, with s not divisible by p, and 1 ≤ k ≤ r − 1.

(i) Assume s = 1. If Σr−1(λ) 6≡ 0 mod p and Σk(λ) 6≡ g(λ) mod p, then |Hλ| ≥
p2r−1.

(ii) Assume s > 1. If Σr(λ) 6≡ 0 mod p, then |(Hr)
sλ| ≥ p2r. If also p = 2, then

|((Hr)
s)× Z/2)λ| ≥ 22r+1.

Proof. From Lemma 2.2 we can write any pk-block as B = g(λ)
pk

(1, · · · , 1)+(b1, · · · , bpk),

where bi ∈ Z. By our assumptions, there must be at least two pk-blocks B1, B2 in λ
that are not sent to g(λ) mod p, under Σk. In other words, g(λ) +

∑
bi 6≡ g(λ) mod p.

In particular, the p-blocks inside Bi are not all scalar. Therefore we can apply Lemma
2.5 to see |HkBi| ≥ pk.

For (i), since Σk(λ) ∈ Apr−k−1, from Lemma 2.8(i), we see |Σk(Hλ)| ≥ p2(r−k)−1.
Now apply Lemma 2.4:

|Hλ| ≥ |Σk(Hλ)| · |(Hk)
pr−k

λ| ≥ p2(r−k)−1(pk)(pk) = p2r−1.

For (ii), similarly by Lemma 2.8(ii), we see |Σk((Hr)
sλ)| ≥ p2(r−k). Therefore, by

Lemma 2.4:

|(Hr)
sλ| ≥ |Σk((Hr)

sλ)| · |(Hk)
pr−ksλ| ≥ p2(r−k)(pk)(pk) = p2r.

Finally, for p = 2, notice (Hr)
s acts trivially on Σr(λ), but negation acts non-trivially,

hence increasing the orbit size by a factor of two. �

2.11. Case 1A+pk

pr−1, p 6= 2 or p = 2. The arguments for p = 2 and p 6= 2 are mostly
the same, so we consider them simultaneously. We use the Sylow subgroup H = Hr,
as defined above.

Lemma 2.12. Let Λ ⊂ A+pk

pr−1 be H-invariant and p-generating, with 1 ≤ k ≤ r − 1.

Then there are distinct H-orbits, ∆0,∆1 ⊂ Λ such that Σr−1(∆0) 6≡ 0 mod p and
g(∆1) 6≡ 0 mod p, such that one of the two orbits obeys Σr−1(∆i) 6≡ g(∆i) mod p.

Proof. Consider the map

π : (
1

pr
Z)p

r

→ (Z/p)p × Z/p

λ 7→ (Σr−1(λ), g(λ)) mod p.
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Then π(A+pk

pr−1) is a rank p abelian group. Therefore, if Λ is p-generating, π(Λ) is also a
rank p abelian group. But any H-orbit has image under π either rank p− 1 or rank 1.
H-orbits whose image have rank 1 come from elements whose image under Σr−1 have
equal coordinates mod p.

So we can choose two orbits in Λ such that the two together generate a rank p image
under the map π. Therefore one of the two orbits obeys Σr−1(∆i) 6≡ g(∆i) mod p.

At least one of these two orbits has non-trivial glue part, g(∆i); choose one and call
it ∆1, and the other one ∆0. At least one of the two orbits must obey Σr−1(∆i) 6≡ 0
mod p. If ∆0 obeys this condition, then we are done.

Otherwise, ∆0 has image rank 1, and therefore it has non-trivial glue part. Now by
swapping the names of ∆0 and ∆1, we have found the required pair of orbits. �

We will say that a pair of orbits ∆0, ∆1 from Lemma 2.12 can be swapped if
Σr−1(∆1) 6≡ 0 mod p, and g(∆0) 6≡ 0 mod p. In this case we may relabel ∆0 as
∆1, and vice versa.

Lemma 2.13. Given a pair of H-orbits, ∆0 and ∆1 from Lemma 2.12, one of the
following two conditions is satisfied (possibly after swapping ∆0 and ∆1):

(a) Σk(∆0) 6≡ g(∆0) mod p.
(b) Σk(∆0) ≡ g(∆0) mod p, k = r − 1, and Σr−1(∆1) = 0.

Proof. Assume that such a pair doesn’t obey (a), even after swapping the roles of ∆0

and ∆1, if possible. We must show the pair obeys (b).
So we have that Σk(∆0) ≡ g(∆0) mod p. Notice that if k < r − 1, then this would

imply Σr−1(∆0) ≡ 0 mod p, a contradiction. So we have k = r − 1, and therefore
g(∆0) 6≡ 0 mod p.

Now we know by Lemma 2.12 that Σr−1(∆1) 6≡ g(∆1), and so (by assumption),
∆0 and ∆1 can’t be swapped. Therefore Σr−1(∆1) ≡ 0 mod p. Now this implies
Σr−1(∆1) = 0, and so we are done. �

Lemma 2.14. Let λ ∈ A+pk

pr−1 with k = r− 1 6= 0, such that Σr−1(λ) = 0 and g(λ) 6≡ 0

mod p. Then |Hλ| ≥ pp(r−1).

Proof. Write λ = g(λ)
pr−1 (1, · · · , 1) + (a1, · · · , apr), as in Lemma 2.2. Consider the pr−1-

blocks of λ. Since Σr−1(∆1) = 0, we sum the coordinates of the first pr−1-block to
get

∑
ai = −g 6≡ 0 mod p. In particular, each pr−1-block contains a p-block which is

not scalar. So by Lemma 2.5, the Hr−1-orbit of each pr−1-block is at least pr−1, and
therefore by Lemma 2.4, we have |Hλ| ≥ |(Hr−1)

pλ| ≥ (pr−1)p, as required. �

Corollary 2.15. Let Λ ⊂ A+pk

pr−1 be H-invariant and p-generating, with 1 ≤ k ≤ r− 1.

Then |Λ| ≥ min{p2r−1 + pk, pp(r−1) + pk}.

Proof. By Lemma 2.12 we can find two orbits ∆0 and ∆1, which obey either case (a) or
(b) from Lemma 2.13. In case (a), we have |∆0| ≥ p2r−1 by Lemma 2.10, and |∆1| ≥ pk

by Lemma 2.7. In case (b) we have |∆0| ≥ pk by Lemma 2.7, and |∆1| ≥ pp(r−1) by
Lemma 2.14. �
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Theorem 2.16. Let Λ ⊂ A+pk

pr−1 be H-invariant and p-generating. Then

|Λ| ≥







pr 1 ≤ k = r
p2r−2 + pk 1 ≤ k = r − 1, p = 2
p2r−1 k = 0
p2r−1 + pk otherwise

Moreover, there exist Λ such that these bounds are achieved.

Proof. For 1 ≤ k = r, we must have an element λ such that g(λ) 6≡ 0 mod p, so the
lower bound follows from Lemma 2.7. Let Λ = H · vpr , where vpr is defined in (2.1).
This set is p-generating and H-invariant, and has size pr; so the bound is achieved.

For p = 2 and k = r− 1, notice this is the only case where the quantity pp(r−1) + pk

is less than the quantity p2r−1+pk, from Corollory 2.15. To see this bound is achieved,
take ∆0 = H · v2k , where vpk is defined in (2.1); then ∆0 has size 2r−1. Also let

∆1 = H · (
∑2r

i=1
1

2r−1 ǫi − ǫ1− ǫ1+2r−1), where the two 2k-blocks are equivalent; this

orbit has size 2r−12r−1. One checks that Λ = ∆0
∐

∆1 generates the lattice, so the
lower bound is achieved.

The k = 0 bound follows from Lemma 2.8. The bound is achieved by choosing
Λ = H · λ for

(2.17) λ := (1, 0, · · · , 0,
︸ ︷︷ ︸

pr−1-block

−1, 0, · · · , 0,
︸ ︷︷ ︸

pr−1-block

0, · · · , 0) = ǫ1− ǫ1+pr−1 .

This is the same choice as in [MR09, 6 and 7].
For all other cases, by Corollory 2.15 we have |Λ| ≥ p2r−1 + pk. To see this bound

is achieved, take λ as in (2.17). Then ∆0 = H · λ has size p2r−1, as in the k = 0 case.
Now take ∆1 = H · vpk , which has size pk. One checks that Λ = ∆0

∐
∆1 generates

the lattice. �

Now we show when the choices from the proof of Theorem 2.16 satisfy (KH). Firstly,
the choice for 1 ≤ k = r does not satisfy (KH), since the only linear relation among
the elements of Λ is that they all sum to zero.

For the p = 2, 1 ≤ k = r− 1 case, let σ := 1
2r−1

∑2r

i=1 ǫi, and assume r ≥ 3. Then we
have the following equations among elements of Λ:

(σ − ǫ1− ǫ1+2r−1) + (σ − ǫi− ǫi+2r−1)− (σ − ǫi − ǫ1+2r−1)− (σ − ǫ1 − ǫi+2r−1) = 0

(σ − ǫ1− ǫ2) + (σ − ǫj+2r−1 − ǫj+1+2r−1)− (σ − ǫ1 − ǫj+2r−1)− (σ − ǫ2 − ǫj+1+2r−1) = 0.

These equations are valid for i = 2, 3 and j = 1, 3 (here we have used that r ≥ 3). They
show that (σ− ǫ1− ǫ1+2r−1) is Λ-independent, and that (σ− ǫ1 − ǫ2) is Λ-independent.
So by Lemma 1.12 we see that (KH) is satisfied. For r = 2, one checks that (KH) is
not satisfied.

For k = 0, let γ ∈ H be the order p permutation given by sending ǫi 7→ ǫi+pr−1 ,
where ǫi+pr = ǫi. Assume r ≥ 2, and consider the following relations among elements
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of Λ:

(ǫ1 − ǫj) + (ǫ2− ǫj+1)− (ǫ2 − ǫj)− (ǫ1 − ǫj+1) = 0(2.18)

(ǫ1 − ǫj) + γ(ǫ1− ǫj) + · · ·+ γp−1(ǫ1− ǫj) = 0.(2.19)

Here j = 1+ pr−1. This shows (ǫ1 − ǫj) is Λ-independent, and hence by Lemma 1.12 it
satisfies (KH). For r = 1, (KH) is not satisfied.

In all other cases, we can argue as follows. Let σ = 1
pk

∑pr

i=1 ǫi, and let γ be as in

the k = 0 case. Then consider the following equations:

(σ −

pr−k
∑

i=1

ǫi)− (σ −

pr−k
∑

i=1

γj ǫi) +

pr−k
∑

i=1

(ǫi−γ
j ǫi) = 0(2.20)

(σ −

pr−k
∑

i=1

ǫi)− (σ −

pr−k
∑

i=1

ǫi+pr−k) +

pr−k
∑

i=1

(ǫi−γ ǫ1)−

pr−k
∑

i=1

(ǫi+pr−k −γ ǫ1) = 0.(2.21)

If p ≥ 3 then we can use j = 1, 2 in the first equation. The second equation is only
valid if k ≥ 2, in which case it is different from the first. So for p ≥ 3 or k ≥ 2 we

have show that (σ−
∑pr−k

i=1 ǫi) is Λ-independent. In the only remaining case, p = 2 and
k = 1 we also have the following equation, which shows Λ-independence:

(σ −

2r−1
∑

i=1

ǫi) + (σ −

2r−1
∑

i=1

ǫi+2r−1) = 0.(2.22)

We already know (ǫ1− ǫ1+pr−1) is Λ-independent from the k = 0 case (notice that
r = 1 doesn’t occur in the present case). So our choice of Λ satisfies (KH), by Lemma
1.12.

2.23. Case 2A+2k

2r−1, p = 2. As above we will use the notation H := Hr =W (A2r−1)
(2),

and let Γ = H × Z/2, where the generator for Z/2 is the outer automorphism on the
lattice given by negation.

For k = 0 or 1, one checks that (for each value of r) the Λ from Theorem 2.16 is

invariant under negation, so the value SymRank(φ; 2) is unchanged from the 1A+2k

2r−1

case. Furthermore, the condition (KΓ) is equivalent the condition (KH), by Lemma
1.12.

For k ≥ 2, by Lemma 2.7 any λ in the lattice with g(λ) odd has Γ-orbit size at
least 2k+1. Now we can modify the proof of Theorem 2.16 to obtain the desired lower
bounds. Furthermore, these bounds are achieved by taking the Γ-orbits of the same
elements as in Theorem 2.16 (instead of just the H-orbits). Also (KH) implies (KΓ)
by Lemma 1.12. Now Λ contains negatives of elements, so we get relations of the form
λ+ (−λ) = 0, which ensures that in the case k = r condition (KΓ) is satisfied.

2.24. Case 1A+pk

prs−1, with s > 1 not divisible by p. We will use H :=W (Aprs−1)
(p)

as described near the start of this section. We will also denote σ := 1
pk

∑prs
i=1 ǫi.
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Lemma 2.25. Let Λ ⊂ A+pk

prs−1 be p-generating, with 1 ≤ k ≤ r, and s > 1 not divisible

by p. Then either Σr(Λ) contains at least s elements whose reduction mod p is not the
scalar zero, or Σr(Λ) contains s − 1 such elements, as well as one whose glue part is
not zero mod p.

Proof. Consider the the map

π : (
1

pr
Z)p

rs → (Z/p)s × Z/p

λ→ (Σr(λ), g(λ)) mod p.

The image π(A+pk

prs−1) is a rank s abelian group, so for Λ to be p-generating, π(Λ)
must generate a rank s group, and in particular the image contains s generators. At
most one of these generators is zero mod p on the (Z/p)s component. This proves the
lemma. �

Theorem 2.26. Let Λ ∈ A+pk

prs−1 be H-invariant and p-generating, where s > 1 is not
divisible by p. Then

|Λ| ≥







prs 1 ≤ k = r
p2r(s− 1) + pk 1 ≤ k ≤ r − 1
p2r(s− 1) k = 0

Moreover, in each case there exists a Λ such that these bounds are achieved.

Proof. For k = r, assume Λ is p-generating. We can apply Lemma 2.25 and get s
elements of Λ which obey either Σr(λ) 6≡ 0 mod 2 or g(λ) 6≡ 0 mod 2. If the latter,

then by Lemma 2.7 we have |(Hr)
sλ| ≥ pr. If g(λ) = 0 mod 2, then λ ∈ A+2k−1

2rs−1 , and

we can apply Lemma 2.10 we see |(Hr)
sλ| ≥ p2r > pr. Since (Hr)

s acts trivially on

Σr(Λ), we get that |Λ| ≥ prs. To see this value is achieved, choose Λ = {σ − s ǫi}
prs
i=1.

For 1 ≤ k ≤ r− 1, we combine Lemma 2.25 and Lemma 2.7 and Lemma 2.10 to get
|Λ| ≥ min{p2rs, p2r(s− 1) + pk} = p2r(s− 1) + pk.

To show this is achieved, consider the set:

(2.27) Λ0 =
⋃

1≤i≤pr<j≤prs

{ǫi− ǫj}.

This set is H-invariant, and has p2r(s − 1) elements. All that remains is to find an
element with g(λ1) 6≡ 0 mod p whose orbit is pk. Since we have assumed the first

pr-block is a big block, then λ1 = σ − s
∑pr−k

i=1 ǫi is such an element. So Λ = Λ0 ∪Hλ1
will do.

For k = 0, as in Lemma 2.25, we can find s− 1 distinct non-zero elements in Σr(Λ),
and by Lemma 2.10 each has (Hr)

s-orbit size at least p2r. Since (Hr)
s acts trivially

on Σr(Λ), we have shown the lower bound. To see is achieved, use Λ = Λ0 from (2.27)
above. �

Remark 2.28. The k = 0 case was also covered in [MR09, 8].

Now we will determine when these choices satisfy (KH). For 1 ≤ k = r, the condition
is not satisfied.
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For k = 0, similar to the k = 0 case when s = 1, we define γ ∈ H by sending
ǫi 7→ ǫi+pr−1 , unless i is divisible by pr, in which case ǫi 7→ ǫi+pr−1−pr . This γ has order
p. Now for r ≥ 1, the equation (2.18) is valid if we instead use j = 1 + ipr, for any
1 ≤ i ≤ s− 1. If s ≥ 3 then we get at least two equations, which show that (ǫ1 − ǫj) is
Λ-independent for each of these j; furthermore Λ is the union of the H-orbits of these
elements. If s = 2, then p ≥ 3, so we can modify equation (2.18) to get our second
equation. In either case, by Lemma 1.12, we have shown (KH) is satisfied. Notice that
for r = 0 we have SymRank(φ; p) = s− 1 = rank(φ).

Finally, for 1 ≤ k ≤ r − 1, by using the argument from the k = 0 case we see that
every element of Λ0 is Λ-independent. Similar to the s = 1 case, if we insert a factor
of s to all of the summation signs in equations (2.20),(2.21),(2.22), then an identical
argument goes through. So (KH) is satisfied.

2.29. Case 2A+2k

2rs−1, with s > 1 odd, and p = 2. Let Γ = (H × Z/2). The lower
bounds for the size of Γ-invariant 2-generating subsets of the lattice are the same as
Theorem 2.26, except that negation adds another factor of two by Lemma 2.7 and
Lemma 2.10.

To see they are achieved, simply take the Λ used in Theorem 2.26 together with their
negatives. Notice that (KH) implies (KΓ). Furthermore, when 1 ≤ k = r, by consider-
ing the equations (λ)+(−λ) = 0, we see that every element of Λ is Λ-independent, and
hence that (KΓ) is satisfied by Lemma 1.12. For 0 = k = r, we have that Λ consists of
s − 1 linearly independent elements together with their negatives, and hence (KΓ) is
not satisfied.

3. Type Dn

Let us describe the lattices of type Dn, following the notation of [CS93]. Denote by
In the Z-module with (orthonormal) basis ǫ1, · · · , ǫn. It has an index 2 submodule,
Dn = {

∑
ci ǫi |

∑
ci is even. }. We construct the module D+4

n by taking the span of
In together with 1

2

∑
ǫi. Finally, for n even, D+2

n ⊂ D+4
n is the index 2 submodule of

elements whose coefficients sum to an even integer.
The action of the Weyl group W (Dn) = (Z/2)n−1

⋊ Sn on Dn is given by Sn
permuting the vectors ǫi, and (Z/2)n−1 making an even number of sign changes on
{ǫi}. We have an outer automorphism given by negating only ǫ1. When n = 4 there
is also an outer automorphism of order 3, which is a phenomenon known as triality.
The following table summarizes the possible situations. The column φ uses notation
as from 1.2, and G is a corresponding split group. For the rest of this section, n = 2rs
where s is odd.

Unless the lattice is D4, the primes p 6= 2 do not appear in the table. This is because
in these cases the size n set Λ = {ǫi} is Sylow invariant, and generates a sublattice of
index a power of 2, so SymRank(φ; p) is the rank of the lattice.

We have n = 2rs where s is odd, and we use the notation (Hr)
s ⊂ H ⊂ S2rs as

defined near the start of Section 2. Then for p = 2, our Sylow subgroup Γ is either
(Z/2)n−1

⋊H or (Z/2)n ⋊H.
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φ G p Conditions SymRank(φ; p) (K)

1Dn PSO2n 2
n = 2rs, s > 1 22r+2(s − 1) y
n = 2r ≥ 4 22r y

2Dn PSp2n 2
n = 2rs, s > 1 22r+2(s − 1) y
n = 2r ≥ 4 22r y

1D+2
n HSpin2n 2 n ≥ 6 2n−1 y

1In SO2n 2 n ≥ 4 2n n
2In Sp2n, SO2n+1 2 n ≥ 2 2n n

1D+4
n Spin2n 2

n ≥ 5 odd 2n−1 y
n ≥ 4 even 2n−1 + 2r+1 y

2D+4
n Spin2n+1 2 n ≥ 2 2n y

3D4 F4 3 9 y

Table II. Dn lattices (which includes groups of types Bn and Cn)

3.1. Case 1D2rs or 2D2rs, with s > 1 odd. We consider both the cases simulta-
neously. Consider the map π : D2rs → (Z/2)s given by π(λ) = Σr(λ) mod 2. For
Λ ⊂ D2rs to be 2-generating, we need π(Λ) to be of rank s− 1. Let λ ∈ Λ be such that
π(λ) is one of the s − 1 generators. Since π(λ) is non-trivial, Σr(λ) must contain at
least two non-trivial coordinates, and hence λ contains at least two 2r-blocks both of
which contain a non-scalar 2-block. Now by Lemma 2.5, the Hr-orbits of each of these
2r-blocks is at least 2r. Also, Σr((Z/2)n−1λ) is at least size 4, since we can change the
signs of either of these blocks (even in the case r = 0). Finally, (Z/2)n ⋊ (Hr)

s acts
trivially on π(D2rs), and so we have |Λ| ≥ 4(2r)(2r)(s − 1) = 2r+2(s − 1).

To see this bound is achieved, notice the following set is ((Z/2)n ⋊H)-invariant and
generating:

Λ =
⋃

1≤i≤2r<j≤n

{± ǫi± ǫj}.

To see this satisfies condition (KΓ), we use Lemma 1.12. Let us consider ǫ1 + ǫ2r+1 ∈
Λ. Then we have

(ǫ1 + ǫ2r+1)+(− ǫ1 + ǫ2r+1) + (ǫ1 − ǫ2r+2) + (− ǫ1 − ǫ2r+2) = 0

(ǫ1 + ǫ2r+1) + (− ǫ1 − ǫ2r+1) = 0

So ǫ1+ ǫ2r+1 is Λ-independent. A similar argument can be used on the other elements
of Λ.

3.2. Case 1D2r or 2D2r , with r ≥ 2. We consider both the cases simultaneously.
Consider the map π : D2r → (Z/2)2 given by π(λ) = Σr−1(λ) mod 2. For Λ ⊂ D2r

to be 2-generating, we need π(Λ) to contain a non-trivial element. Let λ ∈ Λ be such
that π(λ) is non-trivial. Therefore both 2r−1-blocks in λ contain a non-scalar 2-block.
Now by Lemma 2.5, the Hr−1-orbits of each of these 2r−1-blocks is at least 2r−1. Also,
Σr−1((Z/2)2

r−1λ) is at least size 4, since we can change the signs of either of these
blocks (even in the case r = 0). Finally, (Z/2)2

r−1
⋊Hr−1 acts trivially on π(D2r ), and

so we have |Λ| ≥ 4(2r−1)(2r−1) = 22r.
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This lower bound is achieved by choosing:

Λ =
⋃

1≤i≤2r−1<j≤2r

{± ǫi ± ǫj}.

This Λ satisfies (KΓ), which can be seen by using a similar argument to the s > 1
case to show ǫ1+ ǫ2r−1+1 is Λ-independent.

3.3. Case 1D+2
n , and n ≥ 6 even. For Λ ⊂ D+2

n to be 2-generating, there must be a
λ ∈ Λ, all of whose coefficients of ǫi are half-integers. In other words, ci ∈

1
2Z\Z; and

in particular are non-zero. By considering how the coefficients change sign, the Γ-orbit
of such an element is at least of size 2n−1.

To ease notation, define σ := 1
2

∑n
i=1 ǫi. For n ≡ 0 mod 4, this bound is achieved by

choosing Λ = Γ ·σ; for n ≡ 2 mod 4, this bound is achieved by choosing Λ = Γ ·(σ−ǫ1).
These both satisfy (KΓ); we will only consider the n ≡ 0 mod 4 case, because the

other case is similar. We have the following two equations.

σ + (σ − ǫ1− ǫ2 − ǫ3− ǫ4)− (σ − ǫ1 − ǫ2)− (σ − ǫ3 − ǫ4) = 0

σ + (−σ) = 0.

Therefore, for n ≥ 5, we have that σ is Λ-independent, and thus Λ satisfies (KΓ), by
Lemma 1.12.

3.4. Case 1In, and n ≥ 4. Λ must contain n linearly independent elements of In, and
for even n, Γ sends these to their negatives, so |Λ| ≥ 2n. For odd n, if every element
of Λ has at least one coordinate zero, then they are also all sent to their negatives.
Otherwise, there is an element of Λ whose coordinates are all non-zero. The Γ-orbit
of such an element is at least 2n−1. For n ≥ 4, we have |Λ| ≥ 2n−1 ≥ 2n. This lower
bound is achieved by choosing Λ = {± ǫi}. The condition (KΓ) is not satisfied; the sign

changes act trivially on the kernel of Z[Λ] → T̂ .

3.5. Case 2In, and n ≥ 2. Λ must have n linearly independent elements of In, together
with their negatives, and therefore |Λ| ≥ 2n. This lower bound is achieved by choosing
Λ = {± ǫi}. As in the case 1In, the condition (KΓ) is not satisfied;

3.6. Case 1D+4
n , and n ≥ 5 odd. To be 2-generating, Λ must contain an element all

of whose coefficients are half-integers, and in particular are non-zero. The Γ-orbit of
such an element is at least of size 2n−1.

Let σ := 1
2

∑n
i=1 ǫi. Since n is odd, this bound is achieved by Λ = Γ·σ = {1

2 (± ǫ1 · · ·±
ǫn)}, where each element has an even number of minus signs. Notice that the generated
lattice, XΛ, contains ǫ1, something which is not true for n even. To see that (KΓ) is
satisfied, we can use the first equation in the 1D+2

n case, but not the second, since the
negatives are not in Λ. Since n ≥ 5, we can also use the following equation:

σ + (σ − ǫ1 − ǫ2− ǫ3 − ǫ5)− (σ − ǫ2− ǫ5)− (σ − ǫ1− ǫ3) = 0.

Then we see σ is Λ-independent, and by Lemma 1.12 we are done.
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3.7. Case 1D+4
n , and n ≥ 4 even. Consider the map π : D+4

n → Z/2× Z/2 given by
sending λ to its coordinate sum mod 2, and its projection D+4

n /In ∼= Z/2. Then π is
surjective, and Γ acts trivially on the image, so for any 2-generating subset Λ we have
that π(Λ) generates (Z/2)2.

Notice that for any λ whose projection to D+4
n /In is non-trivial, in other words its

coordinates consist of half-integers, then all of its coefficients are non-zero. In particular,
|Γλ| ≥ 2n−1.

Now assume λ is such that its coordinates sum to an odd number. If its coordinates
are half-integers, then we know |Γλ| ≥ 2n−1 ≥ 2r+1, so assume they are integers. We
know one of its 2r-blocks sum to an odd number (where n = 2rs, for s odd), and
hence this 2r-block contains a non-scalar 2-block. By Lemma 2.5, we know |Hλ| ≥ 2r.
Finally, notice that the number of positive odd coefficients does not equal the number
of negative odd coefficients (since there are an odd number of them), so −λ 6∈ Hλ, and
therefore |Γλ| ≥ 2r+1.

This shows that |Λ| ≥ 2n−1 + 2r+1.
Finally, this bound is achieved by Λ = (Γ ·σ)∪{± ǫi |1 ≤ i ≤ 2r}. To see this satisfies

(KΓ), consider the equations

(ǫ1) + (ǫ2) + · · ·+ (ǫn) + 2(σ) = 0

(ǫ1) + (− ǫ1) = 0, σ + (−σ) = 0.

This shows σ and ǫi are Λ-independent. By Lemma 1.12 we are done.

3.8. Case 2D+4
n , and n ≥ 2. For Λ ⊂ D+4

n to be 2-generating, it must contain an
element all of whose coefficients of ǫi are half-integers, and hence non-zero. The (Z/2)n-
orbit of such an element is of size at least 2n, and therefore |Λ| ≥ 2n.

This lower bound is achieved by Λ = Γ · σ = {1
2 (± ǫ1 · · · ± ǫn)}. Let us check that it

satisfies (KΓ). Let σ = 1
2

∑n
i=1 ǫi; then we have the two equations

σ + (σ − ǫ1− ǫ2) + (−σ + ǫ1) + (−σ + ǫ2) = 0

σ + (−σ) = 0.

Therefore σ is Λ-independent, and thus Λ satisfies (KΓ), by Lemma 1.12.

3.9. Case 3D4, and p = 3. Since |W (D4)
(3)| · 3 = |W (F4)

(3)|, and the root system of
D4 is contained in that of F4, we may work with the root lattice of F4, together with
its Weyl group action. Let α̃ = 2α1 +4α2 +3α3 +2α2 be the highest root in F4. Then
we have a subroot system A2 × A2 ⊂ F4 generated by {α1, α2} and {α4,−α̃}. These
copies of A2 each have a copy of Z/3 is their Weyl groups, so we will use this choice
for our Sylow 3-subgroup Γ := (Z/3)2 ⊂W (F4).

Notice that any 3-generating subset must contain an element λ whose coefficient of
α3 (written in root coordinates) is not a multiple of 3; in particular such an element
is in neither copy of A2, and hence |Γ · λ| = 9.

Indeed, take Λ = Γ · α3. We can choose generators {a, b} for each copy of Z/3 such
that aα3 = α3 + 2α2 and bα3 = α3 + α4. Then notice the equations

α3 + aibiα3 − aiα3 − biα3 = 0, for i = 1, 2.
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This shows that α3 is Λ-independent, and hence by Lemma 1.12 we see Λ satisfies
(KΓ).

4. Exceptional Type

We will use En to denote both the root lattice of En as well as the split adjoint group
of type En. We consider the exceptional groups at every prime which divides the order
of the Weyl group, but we only include in the table the cases where SymRank(φ; p) >
dim(φ).

φ G p SymRank(φ; p) (K)
2A2 G2 2 4 n
1A2 G2 3 3 n
2D4 F4 2 16 y
3D4 F4 3 9 y
1E6 E6 2 16 y
2E6

2E6 2 32 y
1E7 E7 2 64 y
1E+2

7 2E7 2 40 y
1E8 E8 2 128 y
1E6 E6 3 27 y
1E+3

6 3E6 3 27 y
1E7 E7 3 27 y
1E8 E8 3 81 y
1E8 E8 5 25 y

Table III. Exceptional lattices

We can find the G2 and F4 cases in the An and Dn tables.
For the p = 2 cases, we will use the description of the E6, E7 and E8 root lattices

given in [Bou68, p.213-220] or [Hu92], and often write them in these coordinates.

4.1. Case 1E8 and p = 2. We have E8 = D+2
8 , and W (D8) ⊂ W (E8). Let H

′ be the
usual Sylow 2-subgroup ofW (D8), and choose a Sylow 2-subgroup H ′ ⊂ H ′′ ⊂W (E8),
so that |H ′′| = 214. Notice that the 248 roots of E8 decompose into H ′-orbits of size
128, 64, 32, and 16. Since the H ′′-orbits must have sizes which are powers of 2, these
are also H ′′-orbits.

Explicitly, using the usual coordinates for D+2
8 , we can choose Λ = {1

2(±1, · · · ,±1)}
with an even number of minus signs. Here Γ = H ′′, so Λ is a Γ-invariant subset which
generates the lattice. Therefore 128 ≥ SymRank(E8; 2) ≥ SymRank(D+2

8 ; 2) = 128.

This Λ satisfies (KΓ) for the same reason as the 1D+2
8 case, above.

4.2. Case 1E7 and p = 2. Defining H ′′ ⊂ W (E8) as above, consider the H ′′-orbit
of α = (0, 0, 0, 0, 0, 0, 1, 1) of size 16. By defining the E7 lattice as elements of E8

which are orthogonal to α, we have W (E7) = W (E8)α, the elements fixing α ([Hu92,
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Thm. 1.12(d)]). Furthermore, we can choose Γ = H ′′
α as a Sylow 2-subgroup of W (E7),

because it has order 214/16 = |W (E7)
(2)|.

Consider the H ′
α ⊂ Γ action on the 126 roots of E7. They decompose into H ′

α-
orbits of size 64, 32, 16, 8, 4 and 2. Since the 126 roots are preserved by the Γ, these
must also be Γ-orbits. In particular, the 64 element set Λ = Γ · 12(1,−1, 1, 1, 1, 1, 1,−1)
generates the E7 lattice, so SymRank(E7; 2) ≥ 64. Indeed this is minimal, because any
2-generating subset must contain an element whose coefficients are all in 1

2Z\Z, and

(Z/2)6 ⊂ Γ has trivial stabilizer of such an element.
This Λ satisfies (KΓ) by using a similar argument to the 1D+2

8 case, above.

4.3. Case 1E+2
7 at p = 2. E+2

7 is the span of the root lattice E7 together with
1
2(1, 1, 1, 1, 1, 1, 0, 0), and the Γ action is the same as the E7 case. The 56 elements in

E+2
7 of length 3/2 decompose into H ′

α-orbits of size 36, 16, and 8. Therefore these are
also Γ = H ′′

α-orbits. We take the union of two of these orbits, Λ = Γ·12(1, 1, 1, 1, 1, 1, 0, 0)∪

Γ · 12(0, 0, 0, 0, 0, 2, 1,−1) which is of size 40 = 32+8. One checks that this generates the
lattice. To see it is minimal, notice Λ must contain an element whose first 6 coordinates
are half-integers (which has Γ-orbit at least size 32) and an element whose last two
coordinates are half integers (which has Γ-orbit at least size 8). Alternatively, notice
that as lattices E+2

7 = A+4
7 , and we can embed W (A7) ⋊ Z/2 ⊂ W (E7). This implies

40 = SymRank(2A+4
7 ; 2) ≤ SymRank(1E+2

7 ; 2) ≤ 40.
To see our choice of Λ satisfies (KΓ), notice that

1
2(1, 1, 1, 1, 1, 1, 0, 0) is Λ-independent

by a similar argument to the 1D+2
n case. We have the following relations of elements

in Λ:
1

2
(0, 0, 0, 0, 0, 2, 1,−1) +

1

2
(0, 0, 0, 0, 0,−2, 1,−1)

+
1

2
(0, 0, 0, 0, 2, 0,−1, 1) +

1

2
(0, 0, 0, 0,−2, 0,−1, 1) = 0

1

2
(0, 0, 0, 0, 0, 2, 1,−1) +

1

2
(0, 0, 0, 0, 0,−2,−1, 1) = 0.

Therefore 1
2(0, 0, 0, 0, 0, 2, 1,−1) is Λ independent, and by Lemma 1.12, we are done.

4.4. Case 1E6 at p = 2. Using the labellings as in [Bou68, p.218], the E6 simple roots

α2, · · · , α6 form a root system of type D5, so W (D5) ⊂ W (E6). In fact, |W (E6)
(2)| =

|W (D5)
(2)| = 27, so we get a description of the Sylow action of E6. In coordinates, we

have α1 = 1
2 (1,−1,−1,−1,−1,−1,−1, 1), and Γ only changes the first 5 coordinates,

so the Γ-orbit of α1 is of size 16. Furthermore, this orbit generates the E6 lattice.
It is minimal, because any 2-generating subset of E6 must contain an element whose
coefficients are all in 1

2Z\Z, and such an element has orbit size at least 16.

Λ = Γ · α1 is the set {1
2 (±1,±1,±1,±1,±1,−1,−1, 1)}, where each element has an

even number of minus signs. Therefore (KΓ) is satisfied, by using a similar argument
to the 1D+4

5 case.

4.5. Case 2E6, and p = 2. The Γ-action here is that same as the 1E6 case, together
with the outer automorphism given by negation. As in that case, there must be an
element in Λ with half-integer coordinates, and the orbit of such an element is at least
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size 32. This is achieved by considering the Γ-orbit of α1, which is size 32, and this
orbit spans E6.

One sees Λ = Γ · α1 satisfies (KΓ) by a similar argument to the 2D+4
5 case.

4.6. Cases 1E6,
1E7, and 1E8, at p = 3. We recall the description of the Sylow

3-subgroups W (E6)
(3) = W (E7)

(3) and W (E8)
(3) from [Ch06, 4]. We have a sub-

root system A2 × (A2)
3 ⊂ A2 × E6 ⊂ E8, and there are 5 order three generators

{a, b, c, d, e} ⊂ W (E8)
(3). We will now describe the action of these generators on the

roots α1, · · · , α8.
The extended Dynkin diagram of E6, with highest root αE6

, has a symmetry of
order 3; d acts on these roots via this rotation, by sending α6 to −αE6

to α1 to α6,
etc. a, b, c each cyclically permute the roots in their own copy of A2; so a cyclically
permutes {α3, α1,−α1 − α3}; and then b = dad−1, c = dbd−1.

Now a, b, c, d act trivially on α8, and e acts trivially on α1, · · · , α6. e cyclically
permutes {α8,−α0, α0−α8}, where α0 is the highest root of E8. So all that remains is
to describe the action of a, b, c, d, e on α7. One checks that: aα7 = α7, bα7 = α7+α6+α5,
cα7 = α7 + αE6

− α2, dα7 = αE7
− α1, eα7 = α7 + α8. Here αE7

is the highest root of
E7 with respect to the simple roots α1, · · · , α7.

With this complete description, one may check the following

Lemma 4.7. Let λ =
∑

i λiαi ∈ R
8 be a vector in the vector space spanned by the

roots of E8, so λi ∈ R. Then

(i) aλ = λ iff λ4 = 3λ1 and λ3 = 2λ1.
(ii) bλ = λ iff 3λ5 = 2λ4 + 3λ7 and 3λ6 = λ4 + 2λ7.
(iii) cλ = λ iff λ7 = λ2 and λ4 = 2λ2.
(iv) dλ = λ iff λ1 = λ6 = 0 and λ2 = λ3 = λ5.
(v) eλ = λ iff λ7 = λ8 = 0.

Corollary 4.8. Let λ =
∑

i λiαi be an element of the E8 lattice, so λi ∈ Z. Then

(i) If λ4 6≡ 0 mod 3, then |〈a, b〉λ| = 9.
(ii) If λ7 6≡ 0 mod 3, then |W (E7)

(3)λ| ≥ 27 and |W (E8)
(3)λ| ≥ 81.

(iii) If λ4 6≡ 0 mod 3 and λ7 = λ8 = 0, then |W (E6)
(3)λ| ≥ 27.

Proof. Part (i) follows from 4.7. For Part (ii), assume λ7 6≡ 0 mod 3. Notice that the
coefficient of α4 in dλ is λ4+λ7 mod 3. So we can act on λ with d until its α4 coefficient
is not divisible by 3. Then we can apply Part (i) to see |〈a, b, d〉λ| ≥ 27. Also e must
increase the orbit size further, so |〈a, b, d, e〉λ| ≥ 81.

Finally, for Part (iii), we can rewrite such a λ in the basis {α1, α3, α5, α6, α2,−β},
we see all 6 coefficients must be in 1

3Z\Z, and in particular are non-zero. So 4.7 implies

|W (E6)
(3)λ| ≥ 27 as required. �

This corollory immediately gives the desired lower bounds for SymRank(φ; 3). To

see these bounds are achieved, take ΛE6
:= W (E6)

(3)α4, ΛE7
:= W (E7)

(3)α7, and

ΛE8
:= W (E8)

(3)α7. Then |ΛE6
| = 27, |ΛE7

| = 27 and |ΛE8
| = 81, where each of these

sets generate the E6, E7, and E8 lattices respectively.
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Finally we will check these sets satisfy (KΓ). Consider the following relations among
elements of ΛE6

:

α4 + (α4 + α3 + α5)− (α4 + α3)− (α4 + α5) = 0

α4 + (α4 + α3 + α1 + α2)− (α4 + α3 + α1)− (α4 + α2) = 0.

This shows α4 is ΛE6
-independent, and hence by Lemma 1.12, we are done the E6 case.

Consider the following relations among elements of ΛE7
:

α7 + (α7 + α6 + β − α2)− (α7 + α6)− (α7 + β − α2) = 0

α7 + (α7 + α6 + α5 + αE6
)− (α7 + α6 + α5)− (α7 + αE6

) = 0.

This shows α7 is ΛE7
-independent, and also ΛE8

-independent. So by Lemma 1.12, we
are done.

4.9. Case 1E+3
6 , at p = 3. We will write elements of the lattice E+3

6 in coordinates of
{α1, α3;α6, α5;−αE6

, α2}, corresponding to the three “arms” of the extended Dynkin
diagram of E6. Then the lattice E6 is additively generated by these 6 linearly indepen-
dent vectors together with α4 = 1

3(−1,−2;−1,−2;−1,−2), and E+3
6 is generated by

E6 together with v := 1
3(1, 2; 0, 0;−1,−2).

Observe that for any element, written in coordinates as above, λ = (λ1, λ2;λ3, λ4;λ5, λ6) ∈
E+3

6 we must have: λ1 + λ2, λ3 + λ4, λ5 + λ6 are all integers, and also λ1 + λ3 + λ5,
λ2 + λ4 + λ6 are both integers. These observations imply that if λ has a non-integral
first coordinate, then the second coordinate is also non-integral and different from the
first. Furthermore, either both λ3, λ4 are non-intergral or both λ5, λ6 are non-integral.
Such a λ must exist in a 3-generating subset, and one checks that its W (E6)

(3)-orbit
is at least size 27. This shows the lower bound. To see this bound is achieved, notice
that Λ =W (E6)

(3) · v is size 27 and generates the lattice.
Let us check Λ satisfies (KΓ). Notice the following relations in Λ:

v + acv + a2c2v = 0,

v + dv + d2v = 0.

This shows v is Λ-independent, so by Lemma 1.12, we are done.

4.10. Cases 1E6,
1E7, and

1E8, at p = 5. ChooseA4 ⊂ E6 generated by {α3, α4, α5, α6}.

We can choose a Sylow 5-subgroup Γ := W (A4)
(5) =W (E6)

(5). Then Γ fixes the high-
est root αE6

, and sends α1 to α1 + αi for i ∈ {3, 4, 5, 6}. So Λ := Γ · α1 ∪ {−αE6
} is

Sylow invariant, and generates an index 2 sublattice in E6 (since the α2 coefficient of
the highest root is 2). Thus SymRank(φ; 5) = dim(E6).

For E7, similarly we can choose A4 ⊂ E7 generated by the simple roots {α4, α5, α6, α7},

and then we have the Sylow 5-subgroup Γ := W (A4)
(5) ∼= W (E7)

(5), which fixes α1

and the highest root αE7
. Furthermore, Γ sends α3 to α3 +αi for i ∈ {4, 5, 6, 7}. Then

Λ := Γ ·α3∪{α1, αE7
} is Sylow invariant, and it generates an index 2 sublattice in E7.

Thus SymRank(φ; 5) = dim(E7).
For E8 we choose a sublattice A4 ×A4 ⊂ E8 generated by {α1, α3, α4, α2} together

with {α6, α7, α8, α0}, where α0 is the highest root of E8. We have Γ := W (A4)
(5) ×

W (A4)
(5) ∼= W (E8)

(5), but the sublattice is index 5. Indeed, any 5-generating subset
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Λ ⊂ E8 must contain an element whose coefficient of α5 (when written in the basis of
simple roots) is not divisible by 5. One checks that such an element has Γ-orbit size
25. This bound is achieved with Λ := Γ · α5.

Let us check that Λ satisfies (KΓ). We can choose generates σ1, σ2 of the two copies

of W (A4)
(5) ∼= Z/5 such that σ1α5 = α5 + α2 + α4, and σ2α5 = α5 + α6. With the

choices we have:

α5 + σ1σ2α5 − σ1α5 − σ2α5 = 0,

α5 + σ21σ
2
2α5 − σ21α5 − σ22α5 = 0.

So α5 is Λ-independent, and hence by Lemma 1.12 we are done.

4.11. Cases 1E7 and
1E8, at p = 7. Take A6 ⊂ E7 ⊂ E8 generated by {α1, α3, α4, α5, α6, α7},

and then take Γ := W (A6)
(7) = W (E7)

(7) =W (E8)
(7). Then Γ sends the highest root

αE7
to αE7

+αi, and sends α8 to α8 +αi for any i ∈ {1, 3, 4, 5, 6, 7}. So ΛE7
:= Γ ·αE7

generates an index 2 sublattice in E7, and ΛE8
:= Γ ·α8 generates an index 2 sublattice

in E8. So in both cases the symmetric 7-rank is equal to the rank.

5. Loose ends

Given a pair (G, p) of a split simple algebraic group and a prime p, which does
not appear in Tables I, II, or III, we have ed(N ; p) = ed(W ; p), by Theorem 1.9. For
completeness, we will compute ed(W ; p) for all Weyl groups of irreducible root systems
at all primes p. Then we will consider the individual cases of pairs (G, p) which have
an entry in the Tables, but the (K) column contains an “n”; in other words the cases
not covered by Corollory 1.11.

5.1. Essential p-dimension of the Weyl groups. In Table IV we list all values
ed(W (R); p) for primes p. Though not directly related to this paper, we also we list
value of ed(W (R)) = ed(W (R); 0) when it is known, assuming char k 6= 2 (see Remark
5.2 for further discussion).

R p = 0 p = 2 p = 3 p = 5 p = 7 p ≥ 11

An ?? ⌊n+1
2 ⌋ ⌊(n + 1)/p⌋

Bn n n ⌊n/p⌋
Cn n n ⌊n/p⌋
Dn (n odd) n− 1 n− 1 ⌊n/p⌋
Dn (n even) n n ⌊n/p⌋
E6 ?? 4 3 1 0 0
E7 7 7 3 1 1 0
E8 8 8 4 2 1 0
F4 4 4 2 0 0 0
G2 2 2 1 0 0 0

Table IV. Essential dimensions of Weyl groups, ed(W ; p)
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We know ed(Sn; p) is the floor of n/p, by [MR09, Cor. 4.2]. So for p 6= 2, this gives
values in the An, Bn, Cn, and Dn cases. For p = 2, notice W (Bn) = W (Cn) contains
(Z/2)n, and hence has essential 2-dimension at least n (and therefore equal to n).
For W (Dn), we have ed((Z/2)n−1

⋊ Sn; 2) is n − 1 for n odd (has a faithful n − 1
dimensional representation, and contains (Z/2)n−1, which has essential 2-dimension
n− 1), and ed(W (Dn); 2) = n for n even (see [MR10, Prop. 5.2]).

For the exceptional groups, only the primes 2 and 3 require explanation, and we
leave the F4 and G2 cases to the reader. At p = 2, we have that W (D8) ⊂ W (E8),
and there is a faithful 8-dimensional representation of W (E8), so ed(W (E8); 2) = 8.
We have W (D5)

(2) ∼=W (E6)
(2), and so ed(W (E6); 2) = 4.

The hardest case is E7. We have thatW (E7) containsW (D6), so 6 ≤ ed(W (E7); 2) ≤

7. Let Γ = W (E7)
(2), and one can check (for example, with a computer algebra pro-

gram), that the centre of Γ is isomorphic to (Z/2)3, and that the intersection of the
centre with [Γ,Γ] is the group (Z/2)2. So we can apply [MR10, Theorem 1.2] to see
that ed(Γ; 2) is odd. Therefore, it is ed(W (E7); 2) = 7.

For p = 3, one sees thatW (E6)
(3) ∼= S

(3)
9 , and hence ed(W (E7); 3) = ed(W (E6); 3) =

⌊9/3⌋ = 3. And W (E8)
(3) ∼= Z/3×W (E6)

(3), so ed(W (E8); 3) = 4.
For the absolute essential dimension, that is ed(W ; 0) := ed(W ), notice that for

Dn for n even, Bn, Cn, E8, E7, F4, and G2, we have that ed(W (R); 2) ≤ ed(W ) ≤
rank(R) = ed(W (R); 2). We also know that, for n odd, ed(W (Dn)) = n− 1, by [FF08,
Theorem 5.4].

For the standard representation of W (E6), negation is not in the Weyl group, so
ed(W (E6)) ≤ 6− 1 ([BF03, Cor. 6.18]). But the best lower bound we have is given by
ed(W (E6); 2), and hence 4 ≤ ed(W (E6)) ≤ 5.

Remark 5.2. Computing ed(W (An)) is a well-known open problem, and was one of
the motivations behind the definition of essential dimension in [BR97]. The values
ed(W (An)) have only been computed for small values of n. For n = 1, 2, 3, 4, and 5
the values are 1,1,2,2, and 3, respectively (assuming char k = 0; see [BR97]). Recently
Duncan has shown ed(W (A6)) = 4 (see [Du10], which also contains the most recent
bounds for larger n). The only other case where ed(W (R)) is unknown for an irreducible
root system is ed(W (E6)), which could be 4 or 5.

5.3. Cases when (KΓ) is not satisfied. The following are the split simple algebraic
groups which appear in Table I, II, or III, and have an “n” in the (K) column. In these
cases, the best known upper bound for ed(N ; p) comes from Theorem 1.9. The best
lower bound comes from either Theorem 1.9, or ed(G; p) ≤ ed(N ; p). In some cases
the upper and lower bounds do not match, and hence the essential p-dimension of the
normalizer is still not known exactly.

5.4. Case SLn. Here Theorem 1.9 gives us ⌊n/p⌋ ≤ ed(N ; p) ≤ 1 + ⌊n/p⌋.

5.5. Case PGLp. The upper bound from Theorem 1.9 is ed(N ; p) ≤ 2, and we also
know that ed(PGLp; p) = 2 (see [RY00, Lemma 8.5.7]), which gives a lower bound.
Hence ed(N ; p) = 2 in this case.
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5.6. Case SL4/µ2. The upper bound from Theorem 1.9 gives ed(N ; 2) ≤ 6−3+2 = 5.
We also know that ed(SL4/µ2; 2) = 4, where the lower bound follows from the non-
triviality of a cohomological invariant defined on SL4/µ2-torsors (see [RST06]). So
4 ≤ ed(N ; p) ≤ 5.

5.7. Case SO2n. For n odd, the upper bound from Theorem 1.9 gives ed(N ; 2) ≤
2n−n+(n−1) = 2n−1, and we know that ed(SO2n; 2) = 2n−1. So ed(N ; 2) = 2n−1.
But for n even, ed(W ; 2) = n, so we only know that 2n− 1 ≤ ed(N ; 2) ≤ 2n.

5.8. Case SO2n+1. The upper bound of Theorem 1.9 gives ed(N ; 2) ≤ 2n−n+n = 2n,
and we know that ed(SO2n+1; 2) = 2n, and hence ed(N ; 2) = 2n.

5.9. Case Sp2n. From Theorem 1.9 we have that n ≤ ed(N ; 2) ≤ 2n− n+ n = 2n.

5.10. Case G2. For p = 2, the upper bound from Theorem 1.9 gives ed(N ; 2) ≤
4 − 2 + 2 = 4, and we know that ed(G2; 2) = 3. So 3 ≤ ed(N ; 2) ≤ 4. For p = 3,
Theorem 1.9 gives us 1 ≤ ed(N ; 3) ≤ 3− 2 + 1 = 2.

Remark 5.11. The only case where the upper and lower bounds differ by more than 1
is G = Sp2n. The only cases where ed(G; p) ≤ ed(N ; p) is not an improvement to the
lower bound given in Theorem 1.9, are G = SLn and G = Sp2n, both of which have
trivial essential dimension.

Remark 5.12. One can now check that for the cases considered in this section, even
if we chose a different minimal p-generating Γ-invariant Λ ⊂ T̂ , it could never satisfy
(KΓ). This isn’t obvious a priori; for example, in Section 3 we chose a subset Λ ⊂ A+3

8

which generates the lattice, is W (A8)
(3)-invariant, is size 30 (and hence minimal), and

then we verified that Λ satisfied (KΓ). Yet there exists another subset Λ
′ ⊂ A+3

8 which
is generating, Γ-invariant, and size 30, which does not satsify (KΓ).
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Ch. 4-6, Hermann, Paris (1968).

[BF03] G. Berhuy, G. Favi, Essential dimension: a functorial point of view (after A. Merkurjev).
Doc. Math. 8 (2003), 279-330.

[Bo92] A. Borel, Linear algebraic groups. Second edition. Graduate Texts in Mathematics, 126.
Springer-Verlag, New York, (1991).

[BR97] J. Buhler, Z. Reichstein, On the essential dimension of a finite group. Compositio Math. 106
(1997), no. 2, 159-179.

[Ch06] V. Chernousov, Another proof of Totaro’s theorem on E8-torsors. Canad. Math. Bull. 49 (2006),
no. 2, 196-202.

[CS93] J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, New York
(1993).



26 MARK L. MACDONALD

[CS88] J.H. Conway, N.J.A. Sloane, Low-dimensional lattices. I. Quadratic forms of small determinant,
Proc. Roy. Soc. London Ser. A 418 (1988), no. 1854, 17-41.

[Du10] A. Duncan, Essential dimensions of A7 and S7. Math. Res. Lett. 17 (2010), no. 2, 263-266.
[FF08] G. Favi, M. Florence, Tori and essential dimension. J. Algebra 319 (2008), no. 9, 3885-3900.
[Gi04] P. Gille, Type des tores maximaux des groupes semi-simples, J. Ramanujan Math. Soc. 19 (2004),

no. 3, 213-230.
[Hu92] J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Math-

ematics, 29. Cambridge University Press, Cambridge (1992).
[Ja87] J.C. Jantzen, Representations of algebraic groups. Pure and Applied Mathematics, 131. Aca-

demic Press, Inc., Boston, MA (1987).
[KM08] N.A. Karpenko, A.S. Merkurjev, Essential dimension of finite p-groups. Invent. Math. 172

(2008), no. 3, 491-508.
[Le04] N. Lemire, Essential dimension of algebraic groups and integral representations of Weyl groups.,

Transform. Groups 9 (2004), no. 4, 337-379.
[LMMR10a] R. Lötscher, M.L. MacDonald, A. Meyer, Z. Reichstein, Essential p-dimension of algebraic

tori, Preprint http://www.math.uni-bielefeld.de/LAG/man/363.html
[LMMR10b] R. Lötscher, M.L. MacDonald, A. Meyer, Z. Reichstein, Essential dimension of algebraic

tori, Preprint: http://www.math.uni-bielefeld.de/LAG/man/399.html
[Mac08] M.L. MacDonald, Cohomological invariants of odd degree Jordan algebras, Math. Proc. Cam-

bridge Philos. Soc. 145 (2008), no. 2, 295-303.
[MR09] A. Meyer, Z. Reichstein, The essential dimension of the normalizer of a maximal torus in the

projective linear group, Algebra Number Theory 3 (2009), no. 4, 467-487.
[MR10] A. Meyer, Z. Reichstein, Some Consequences of the Karpenko-Merkurjev Theorem. Documenta

Math. Extra Volume: Andrei A. Suslin’s Sixtieth Birthday (2010) 445-457.
[Ra04] M.S. Raghunathan, Tori in quasi-split-groups, J. Ramanujan Math. Soc. 19 (2004), no. 4,

281-287.
[Re10] Z. Reichstein. Essential dimension, ICM proceedings, (2010), to appear. Preprint:

http://www.mathematik.uni-bielefeld.de/LAG/man/393.html
[RY00] Z. Reichstein, B. Youssin, Essential dimensions of algebraic groups and a resolution theorem

for G-varieties. With an appendix by János Kollár and Endre Szabó. Canad. J. Math. 52 (2000),
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C. R. Math. Acad. Sci. Paris 342 (2006), no. 2, 83-87.

[Se02] J.-P. Serre. Galois cohomology. Translated from the French by Patrick Ion and revised by the
author. Corrected reprint of the 1997 English edition. Springer Monographs in Mathematics.
Springer-Verlag, Berlin, (2002).

[Ti66] J. Tits, Classification of algebraic semisimple groups. 1966 Algebraic Groups and Discontinu-
ous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) pp. 33-62 Amer. Math. Soc.,
Providence, R.I., (1966)

[Vo88] V.E. Vosrekenskii, Maximal tori without effect in semisimple algebraic groups, Mat. Zametki
44 (1988), no. 3, 309-318, 410; English translation in Math. Notes 44 (1988), no. 3-4, 651-655
(1989)

[Vo98] V.E. Voskresenskii, Algebraic groups and their birational invariants. Translated from the Rus-
sian manuscript by Boris Kunyavskii. Translations of Mathematical Monographs, 179. American
Mathematical Society, Providence, RI (1998).


