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Abstract. We show that a pythagorean field (more generally, a reduced ab-
stract Witt ring) has finite stability index if and only if it has finite 2-symbol
length. We give explicit bounds for the two invariants in terms of one another.
To approach the question whether those bounds are optimal we consider ex-
amples of pythagorean fields.
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1. Introduction

The aim of this article is to study the relation between two field invariants
appearing in the theory of quadratic forms over fields, with a special focus on real
pythagorean fields. We shall first recall some facts from the theory of quadratic
forms over fields, Milnor K-Theory, Galois cohomology, and real algebra, refering
to [8], [11], and [12] for details, and shall then formulate our main results in the
context of fields. From Section 2 on, we will mainly work in the abstract theory of
quadratic forms, where the field is replaced by an abstract Witt ring, and prove
the results in this more general setting.

Let F always denote a field of characteristic different from 2. Let WF de-
note the Witt ring of quadratic forms over F and IF its fundamental ideal. For
n ∈ N let InF = (IF )n, I

n
F = InF/In+1F , Hn(F ) = Hn(ΓF , µ2), the nth

cohomology group for the trivial action of the absolute Galois group ΓF of F
on µ2 = {+1,−1}, and knF the nth group of Milnor K-theory modulo 2 of
F defined in [14]. The group I

n
F is generated by the classes of n-fold Pfister

forms 〈〈a1, . . . , an〉〉 = 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉, and similarly knF is generated
by ‘symbols’ {a1, . . . , an}, while Hn(F ) contains ‘cup products’ (a1) ∪ · · · ∪ (an),
where a1, . . . , an ∈ F×. Milnor [14] asked whether for any n ∈ N there are
natural isomorphisms between the groups I

n
F , HnF and knF making those el-

ements correspond with one another for fixed a1, . . . , an ∈ F×. We have k0F =

I
0
F = H0F = Z/2Z, by convention, and k1F ∼= I

1
F ∼= H1F ∼= F×/F×2, via

{a} 7→ 〈〈a〉〉+I2F 7→ (a) 7→ aF×2. Moreover, H2F can be identified with Br2(F ),
the 2-torsion part of the Brauer group of F , by interpreting (a1)∪(a2) as the class
of the quaternion algebra (a1, a2)F . For any n ∈ N, Milnor [14] defined a natural
homomorphism sn : knF −→ I

n
F with sn({a1, . . . , an}) = 〈〈a1, . . . , an〉〉+In+1F ,
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which is trivially surjective, and he showed that s2 : k2F −→ I
2
F is an isomor-

phism. It was proven in [15] that Milnor’s aforementioned question has a positive
answer in general and, in particular, that sn is an isomorphism for any n ∈ N.

As in [1] we denote by λn(F ) the supremum in N∪{∞} over the numbers r such
that there exists an element of knF that can not be expressed as a sum of less than
r symbols, and we call λn(F ) the n-symbol length of F . While λ0(F ) = λ1(F ) = 1
independently of F , the 2-symbol length λ2(F ) is of particular interest and was
studied (with slightly different notation) in [9] and in [10] relative to quadratic
forms and the u-invariant of F .

Let
∑

F 2 denote the subgroup of F× consisting of the nonzero sums of squares
in F . We say that F is pythagorean if

∑

F 2 = F×2. We say that F is real if
−1 /∈ ∑

F 2, and nonreal if −1 ∈ ∑

F 2. A preordering of F is a subset T ⊆ F
that contains all squares in F and is closed under addition and multiplication
and such that −1 /∈ T ; if in addition T ∪−T = F , then T is called an ordering of

F . For a preordering T of F we write T× = T \ {0}, which is a subgroup of F×.
We denote by XF the set of all orderings of F and by XT the set of all orderings
containing the preordering T . For any preordering T of F we have T =

⋂

XT .
Any P ∈ XF yields a map signP : WF −→ Z called the signature at P . If F is
real, then P 7−→ ker(signP ) gives a one-to-one correspondence between XF and
the set of non-maximal prime ideals of WF .

We recall the definition of fans introduced in [3]. Let T be a preordering of F
and n ∈ N such that [F× : T×] = 2n+1. Then by [3] we have n ≤ |XT | ≤ 2n,
and equality |XT | = 2n holds if and only if the image of the homomorphism
signT : WF −→ ZXT , ϕ 7−→ (signP (ϕ))P∈XT

is isomorphic to Z[(Z/2Z)n]; in this
case T is called a fan of degree n. A fan of degree 0 is the same as an ordering.
A fan of degree 1 is the same as the intersection of two different orderings.

The (reduced) stability index of a field was introduced in [5]. In [6] this field
invariant was characterized in terms of fans. By this characterization the stability
index of F is given as

st(F ) = sup {deg(T ) | T fan of F} ∈ N ∪ {∞},
with the convention that sup ∅ = 0. Hence, st(F ) = 0 if and only if |XF | ≤ 1.

Our aim is to relate the stability index to the symbol lengths, in particular to
the 2-symbol length. This will be done in the more general context of abstract
Witt rings, introduced in Section 2. For fields (2.3) reads as follows:

If λi(F ) <∞, for some i ≥ 2, then st(F ) <∞. In particular, for

i = 2 we have st(F ) ≤ 2λ2(F )− 1.

In Section 3 we focus on reduced Witt rings. For fields (3.7) reads as follows:

If F is pythagorean, then λ2(F ) <∞ if and only if st(F ) <∞.

In order to prove the right-to-left implication, we actually show in (3.6):

Let F be pythagorean and s = st(F ). If 1 ≤ s ≤ 2, then λ2(F ) = s.
If 3 ≤ s ≤ ∞, then [ s

2
] + 1 ≤ λ2(F ) ≤ 2s−1(2s−2 − 1) .
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Here and the sequel, we use the notation [x] = max {z ∈ Z | z ≤ x} for
x ∈ R. We do not know whether the upper bound on λ2 in the pythagorean
case is optimal. To approach this question, we construct in (3.8) for any r ∈ N

a pythagorean field F with λ2(F ) = st(F ) = r. As for the lower bound, for any
s ∈ N we have st(F ) = s and λ2(F ) = [ s

2
] + 1 for the field F = R((t1)) . . . ((ts)).

2. Abstract Witt rings

We recall the notion of (abstract) Witt rings from [13]. A Witt ring is a triple
(W,G, I) where W is a commutative ring, I is the unique ideal of index 2 of W ,
called the fundamental ideal, and G ⊆ W× is a group that additively generates
W and such that G −→ I/I2, a 7−→ (1− a) + I2 is a group isomorphism.

Let n ∈ N. The nth power of the fundamental ideal In is additively generated
by the products (1 + a1) · · · (1 + an) where a1, . . . , an ∈ G. We set I

n
= In/In+1.

For ϕ ∈ W the least number of summands needed to write ϕ as a sum of
elements of G is called the anisotropic dimension of ϕ and denoted by diman(ϕ).
For α ∈ I

n
let l(α) denote the least number of summands needed to write α as a

sum of classes of elements of the shape (1 + a1) · · · (1 + an) with a1, . . . , an ∈ G.

2.1. Lemma. Let α ∈ I
2
and m ≥ 1. Then l(α) ≤ m if and only if α = ϕ + I3

for some ϕ ∈ I2 with diman(ϕ) ≤ 2m+ 2.

Proof: The proof is easy, and basically the same as in [1, (3.2)] �

We define the nth symbol length of W as

λn(W ) = sup {l(α) | α ∈ I
n} ∈ N ∪ {∞} .

It is easy to see that λ0(W ) = λ1(W ) = 1. For the Witt ringW = WF of the field
F we then have λn(F ) = λn(W ) in view of the isomorphism sn : knF −→ I

n
F .

For i ∈ N we define

Λi : N −→ N, n 7−→ λi(Z [(Z/2Z)n]) .

Note that Z [(Z/2Z)n] is the Witt ring of the pythagorean field R((t1)) . . . ((tn)).
So Λi yields the values of the ith symbol length for a particular sequence of fields.
By [1] we have Λ2(n) = [n

2
] + 1, but no formula is known for Λi when i > 2.

Let XW be the set of non-maximal prime ideals in W . By [13, Corollary
4.18], elements ofXW are in one-to-one correspondence with ring homomorphisms
W −→ Z, called signatures of W . The signature corresponding to P ∈ XW is
denoted by signP . We say that W is real if XW 6= ∅, and nonreal otherwise.

For d ∈ N, a subset F ⊆ XW is called a fan of degree d on W if |F| = 2d and
W/

⋂F ∼= Z [(Z/2Z)d]. The stability index of W is then defined as

st(W ) = sup {n ∈ N | there exists a fan of degree n on W} ∈ N ∪ {∞} .
Given the Witt ring W =WF of a field F , associating to a preordering T of F

the set of prime ideals {ker(signP ) | P ∈ XT} gives a degree preserving one-to-one
correspondence between the two concepts of fans, so that st(F ) = st(W ).
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2.2. Theorem. For n ≤ st(W ) we have λi(W ) ≥ Λi(n) for any i ∈ N.

Proof: As Z [(Z/2Z)n] is a quotient of W , this is obvious. �

2.3. Corollary. We have st(W ) ≤ 2λ2(W ) − 1. Moreover, if λi(W ) < ∞ for

some i ≥ 2, then st(W ) <∞.

Proof: For any n ≤ st(W ) one has λ2(W ) ≥ Λ2(n) = [n
2
] + 1 ≥ n+1

2
, which

shows the first statement. For fixed i, one has Λi(n) −→ ∞ for n −→ ∞, and
the second statement thus follows using (2.2). �

3. Reduced Witt rings

A commutative ring is reduced if it contains no nonzero nilpotent elements. By
[13, Corollary 4.22], if the Witt ring W is reduced, then G = W×.

3.1. Question. Assume that W is reduced. If st(W ) < ∞, does it follow that

λi(W ) <∞ for every i ∈ N?

We are going to give a positive answer to this question for i = 2.

3.2. Lemma. Let r ≥ st(W ). For every ϕ ∈ W , there exists ϕ′ ∈ W such that

ϕ ≡ ϕ′ mod Ir and 0 ≤ signP (ϕ
′) < 2r for all P ∈ XW ; if W is reduced, then ϕ′

is uniquely determined by ϕ.

Proof: The proof is essentially given in [2, (2.2)]. �

Given ϕ ∈ W we put

∆(ϕ) = max{| signP (ϕ)| | P ∈ XW}
and call this number the amplitude of ϕ. In the reduced case, the anisotropic
dimension is bounded in terms of the amplitude and the stability index.

3.3. Theorem (Bonnard). Assume that W is reduced of stability index s ≥ 1.
Then diman(ϕ) ≤ 2s−1∆(ϕ) for any ϕ ∈ W .

Proof: See [4, Proposition 4] or [16, Theorem 1]. �

3.4. Theorem. Assume that W is reduced with st(W ) ≥ 2. Let s = st(W ) and

r = max {s, 3}. Any element of I
2
is of the shape (ψ + 2) + I3 with some ψ ∈ I

of discriminant −1 and with diman(ψ) ≤ 2s(2r−2 − 1).

Proof: Let α ∈ I
2
. By (3.2), there exists ϕ ∈ I2 such that α = ϕ + I3

and 0 ≤ signP (ϕ) ≤ 2r − 4 for all P ∈ XW . Put ψ = ϕ − 2 if s ≤ 3 and
ψ = 2(2r−2 − 1) − ϕ if s > 3. Then α = ψ + 2 + I3 and ∆(ψ) ≤ 2(2r−2 − 1).
Hence, diman(ψ) ≤ 2s(2r−2 − 1) by (3.3). �

The Witt ring W is said to be linked if λ2(W ) ≤ 1; in this case λn(W ) ≤ 1 for
all n ≥ 1. If W is real, then λn(W ) ≥ 1 for any n ∈ N, so that W is linked if and
only if λn(W ) = 1 for all n ≥ 1.
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3.5. Proposition. Assume that W is reduced. Then W is linked if and only if

I2 = 2I, if and only if st(W ) ≤ 1.

Proof: If st(W ) ≥ 2, then we have λ2(W ) ≥ Λ2(2) = 2 by (2.2). Assume
now that st(W ) ≤ 1. Then to any a, b ∈ W× there exists c ∈ W× such that
(1 + a) · (1 + b) − 2(1 + c) ∈ ⋂

p∈XW
p = 0. This shows that I2 = 2I, which in

turn implies that W is linked. �

3.6. Theorem. Assume that W is reduced with s = st(W ) <∞.

(a) If s ≤ 1 then λ2(W ) = 1.
(b) If s = 2 then λ2(W ) = 2.
(c) If s ≥ 3, then [ s

2
] + 1 ≤ λ2(W ) ≤ 2s−1(2s−2 − 1) .

Proof: Part (a) follows from (3.5). If s ≥ 2, then (2.2) and (3.4) yield that
[ s
2
]+ 1 ≤ λ2(W ) ≤ 2s−1(2r−2−1) with r = max {s, 3}. This shows (b) and (c). �

3.7. Corollary. If W is reduced, then s(W ) <∞ if and only if λ2(W ) <∞ .

Proof: This is clear from (2.3) and (3.6). �

3.8. Example. Let r be a positive integer and let K be a pythagorean SAP -field
having exactly r different orderings. For example, such a field K is obtained
as the intersection of any r different real closures of Q. It follows from the
assumption on K that |K×/K×2| = 2r. Let P be an ordering of K. There
exist a1, . . . , ar−1 ∈ P× such that the square classes a1K

×2, . . . , ar−1K
×2 form

an F2-basis of P×/K×2. Let F = K((t1)) . . . ((tr−1)). Then F is pythagorean,
st(F ) = r, and |F×/F×2| = 22r−1. By [1, (1.1)] the latter implies that λ2(F ) ≤
r. As the ordering P extends to K(

√
a1, . . . ,

√

ar−1), the quaternion algebra
(−1,−1)K(

√
a1,...,

√
ar−1) is not split. Using the results in [17, Sect. 2], it follows

that the product of quaternion algebras

(−1,−1)F ⊗
F
(a1, t1)F ⊗

F
. . .⊗

F
(ar−1, tr−1)F

is a division algebra and thus not Brauer equivalent to a product of less than r
quaternion algebras, whence λ2(F ) ≥ r. Therefore λ2(F ) = r = st(F ). Hence,
W = WF is a reduced Witt ring with λ2(W ) = r = st(W ).

If W is reduced with st(W ) = 3, then we have 2 ≤ λ2(W ) ≤ 4 by (3.4) and
(3.5). The Witt ring of R((t1))((t2))((t3)) and the one obtained for r = 4 in (3.8)
show that the values 2 and 3 are both possible for λ2(W ) in this situation, but this
is open for the value 4. More generally, we are left with the following question.

3.9. Question. Is there a reduced Witt ring W with λ2(W ) > st(W )?
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[3] E. Becker, E. Köpping. Reduzierte quadratische Formen und Semiordnungen reeller
Körper. Abh. Math. Sem. Univ. Hamburg 46 (1977): 143–177.
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