APPLICATIONS OF CONICS TO CERTAIN QUADRATIC FORMS OVER THE RATIONAL FUNCTION FIELDS

A.S. SIVATSKI

St.Petersburg Electrotechnical University 197376, St.Petersburg, Russia

ABSTRACT. A few results on quadratic forms over fields are obtained. In particular, we show that for any forms φ_1 and φ_2 over a field k of characteristic different from 2 and $a \in k^*$, the anisotropic part of the form $\varphi_1 \perp (t^2 - a)\varphi_2$ over the rational function field k(t) is of the same type, i.e. there exist forms τ_1 and τ_2 over k such that $(\varphi_1 \perp (t^2 - a)\varphi_2)_{an} \simeq (\tau_1 \perp (t^2 - a)\tau_2)$. Also we determine the structure of certain Pfister forms over k(t), and describe the behavior of quadratic forms under biquadratic extensions of k in terms of some related forms over the function field of the product of two conics over k(x), or k(x,y).

1. STRUCTURE OF CERTAIN QUADRATIC FORMS OVER THE RATIONAL FUNCTION FIELD

Let k be a field of characteristic different from 2, W(k) the Witt group of k. It is well known (see, for example, [Sch]) that the sequence of abelian groups

$$0 \to W(k) \xrightarrow{\mathrm{res}} W(k(t)) \xrightarrow{\coprod \partial_p} \coprod_{p \in \mathbb{A}^1_k} W(k_p) \to 0,$$

is split exact. We consider here a point $p \in \mathbb{A}^1_k$ as a monic irreducible polynomial over k, $k_p = k[t]/p$ is the corresponding residue field, and $\partial_p : W(k(t)) \to W(k_p)$ is the residue homomorphism well defined by the rule

$$\partial_p(\langle f \rangle) = \begin{cases} 0 & \text{if } v_p(f) = 0\\ \langle \overline{fp^{-1}} \rangle & \text{if } v_p(f) = 1 \end{cases}$$

The splitting map $W(k(t)) \to W(k)$ is defined by the rule $\langle f \rangle \to \langle l(f) \rangle$, where l(f) is the leading coefficient of the polynomial $f \in k[t]$. Let $\varphi \in W(k(t))$. Knowing the projections of φ to all direct summands of W(k(t)), it is easy to determine φ itself. However, only in some specific cases it is clear how to determine the anisotropic part φ_{an} of the form φ . One situation when it is possible is the case where the form φ has an only residue, and, moreover, at the linear polynomial t. Then, in view of the exact sequence above, $\varphi = \tau_1 + t\tau_2$ for some anisotropic forms τ_1 , τ_2 over k. It

Key words and phrases. .

is well known that the form $\tau_1 \perp t\tau_2$ is anisotropic, hence $\varphi_{an} \simeq \tau_1 \perp t\tau_2$. We start this paper by proving a similar result, where the linear polynomial t is replaced by the quadratic polynomial $t^2 - a$, a being a nonsquare element of k^* .

A few words about the notation. In the sequel all the fields are assumed to be of characteristic different from 2. The Pfister form $\langle a_1, \ldots, a_n \rangle$ is the product $\langle 1, -a_1 \rangle \otimes \cdots \otimes \langle 1, -a_n \rangle$ (take notice of the signs!). Usually, we will omit the sign \otimes in products of quadratic forms. For the field extension L/F the kernel of the restriction map $W(F) \to W(L)$ is denoted by W(L/F). The extension L/F is called excellent if for any form φ over F the anisotropic part of the form φ_L is defined over F. The basic statement used throughout the paper is that the extension F(C)/F is excellent for any field F and a conic over F ([A], [R]).

Theorem 1.1. Let k be a field, φ_1 , φ_2 quadratic forms over k, m an odd positive integer. Then there exist forms τ_1 , τ_2 over k such that over k(t)

$$(\varphi_1 \perp (t^{2m} - a)\varphi_2)_{an} \simeq \tau_1 \perp (t^{2m} - a)\tau_2.$$

Proof. First consider the case where m=1. We may assume that the form $(\varphi_1 \perp (t^2-a)\varphi_2)$ is isotropic. Let C be the affine conic associated with the quaternion algebra (a,x) over the Laurent series field F=k((x)), with the equation $t^2-a=xv^2$. Notice that $k(t) \subset F(C)$. The form

$$(\varphi_1 \perp x\varphi_2)_{F(C)} \simeq (\varphi_1 \perp (t^2 - a)\varphi_2)_{F(C)}$$

is isotropic by the hypothesis. Since the extension F(C)/F is excellent, and $W(F) = W(k) \oplus xW(k)$, we get

$$(\varphi_1 \perp x\varphi_2)_{F(C)_{an}} \simeq (\tau_1 \perp x\tau_2)_{F(C)}$$

for some forms τ_1 and τ_2 over k. It follows, since $W(F(C)/F) = \langle \langle a, x \rangle \rangle W(F)$ ([Sch], Ch.4, Th. 5.4), that

$$\varphi_1 + x\varphi_2 = \tau_1 + x\tau_2 + \langle \langle a, x \rangle \rangle q \in W(F)$$
 (*)

for some form q over F. Since $q \simeq q_1 \perp xq_2$ for some forms q_1 , q_2 over k, and $-x\langle\langle a,x\rangle\rangle \simeq \langle\langle a,x\rangle\rangle$, we may assume that q is a form over k. Therefore,

$$\varphi_1 - \tau_1 - \langle \langle a \rangle \rangle q = x(\tau_2 - \varphi_2 - \langle \langle a \rangle \rangle q) \in W(F),$$

or, in other words,

$$\varphi_1 - \tau_1 - \langle \langle a \rangle \rangle q = \tau_2 - \varphi_2 - \langle \langle a \rangle \rangle q = 0 \in W(k).$$

So we have

$$\varphi_1 - \tau_1 - \langle \langle a \rangle \rangle q = (t^2 - a)(\tau_2 - \varphi_2 - \langle \langle a \rangle \rangle q) = 0 \in W(k(t)),$$

and, consequently, we can replace x by $t^2 - a$ and k((x)) by k(t) in (*), i.e.

$$\varphi_1 + (t^2 - a)\varphi_2 = \tau_1 + (t^2 - a)\tau_2 + \langle \langle a, t^2 - a \rangle \rangle q = \tau_1 + (t^2 - a)\tau_2 \in W(k(t)),$$

since $\langle \langle a, t^2 - a \rangle \rangle = 0$. Notice that the form $\tau_1 \perp (t^2 - a)\tau_2$ is anisotropic over k(t), since $k(t) \subset F(C)$, and the form $\tau_1 \perp x\tau_2$ is anisotropic over F(C).

In the general case, where m is an arbitrary odd number, consider the odd degree field extension k(u)/k(t), where $u=t^{\frac{1}{m}}$. Assuming that the form $\varphi_1 \perp (u^{2m}-a)\varphi_2$ is isotropic over k(u), we see by the Springer theorem ([Sch], Ch.2, Th. 5.3) that the form $\varphi_1 \perp (t^2-a)\varphi_2$ is isotropic over k(t). By Theorem 1.1

$$(\varphi_1 \perp (t^2 - a)\varphi_2)_{an} \simeq \tau_1 \perp (t^2 - a)\tau_2$$

for some forms τ_1 , τ_2 over k. Replacing t by t^m , and applying the Springer theorem again, we get

$$(\varphi_1 \perp (t^{2m} - a)\varphi_2)_{an} \simeq \tau_1 \perp (t^{2m} - a)\tau_2.$$

Remark. If $\varphi_2 \simeq -\varphi_1$, then the proof of Theorem 1.1 can be substantially simplified. Indeed, suppose the form $\varphi_1 \perp -(t^2 - a)\varphi_1$ is isotropic, and φ_1 is anisotropic. Then the form $(\varphi_1 \perp -(t - \sqrt{a})(t + \sqrt{a})\varphi_1)_{k(\sqrt{a})((t - \sqrt{a}))}$ is isotropic, which implies that $\varphi_{1k(\sqrt{a})}$ is isotropic as well. Hence $\varphi_1 \simeq \langle\!\langle a \rangle\!\rangle \psi \perp \tau$ for some nonempty forms ψ and τ . We get

$$\varphi_1 \perp -(t^2 - a)\varphi_1 = \langle \langle a \rangle \rangle \psi + \tau - (t^2 - a)(\langle \langle a \rangle \rangle \psi + \tau) = (\langle \langle a \rangle \rangle \psi - (t^2 - a)\langle \langle a \rangle \rangle \psi) + (\tau - (t^2 - a)\tau) = \tau - (t^2 - a)\tau,$$

since $(t^2 - a)\langle\langle a \rangle\rangle = \langle\langle a \rangle\rangle$, so we can finish the proof by induction on dim φ_1 .

Corollary 1.2. Under the notation above the following two conditions are equivalent.

- 1) The form $\varphi_1 \perp (t^{2m} a)\varphi_2$ is isotropic.
- 2) There exist forms τ_1 and τ_2 over k such that $\varphi_1 \tau_1 = \tau_2 \varphi_2 \in W(k(\sqrt{a})/k)$, and $\dim \tau_1 + \dim \tau_2 < \dim \varphi_1 + \dim \varphi_2$.

Proof. 1) \Longrightarrow 2). By Theorem 1.1 we have

$$\varphi_1 + (t^{2m} - a)\varphi_2 = \tau_1 + (t^{2m} - a)\tau_2,$$

and dim τ_1 + dim τ_2 < dim φ_1 + dim φ_2 . Since $\varphi_1 - \tau_1 = (t^{2m} - a)(\tau_2 - \varphi_2)$, we get

$$\varphi_1 - \tau_1 = \tau_2 - \varphi_2 \in W(k(a^{\frac{1}{2m}})/k).$$

Since m is odd, by the Springer theorem we get

$$\varphi_1 - \tau_1 = \tau_2 - \varphi_2 \in W(k(\sqrt{a})/k).$$

 $(2) \Longrightarrow 1$). The same argument, but in the opposite direction.

If $\varphi_1, \ \varphi_2 \in I^n(k)$, then $(\varphi_1 \perp t\varphi_2)_{an} \simeq \tau_1 \perp \tau_2$, where $\tau_1, \ \tau_2 \in I^n(k)$, since $\tau_i \simeq \varphi_{ian} \ (i=1,2)$. The similar statement is not true even for n=2 if one replaces the polynomial t by t^2-a , as the following counterexample shows.

Proposition 1.3. Let k_0 be a field, $k = k_0(z)$, $a, b, c, u, v \in k_0^*$ are such that $\operatorname{ind}((b, u) + (c, v))_{k_0(\sqrt{a})} = 4$,

$$\psi \simeq \langle 1, -b, -u, abu \rangle \perp (t^2 - a)z\langle 1, -c, -v, acv \rangle \in W(k(t)).$$

Then $\psi \simeq (\varphi_1 \perp (t^2 - a)\varphi_2)_{an}$ for some forms $\varphi_1, \varphi_2 \in I^2(k)$, but $\psi \not\simeq \tau_1 \perp (t^2 - a)\tau_2$ for any forms $\tau_1, \tau_2 \in I^2(k)$.

Proof. Clearly, ψ is anisotropic, $\psi \in I^2(k(t))$. By [T], Prop. 2.4 we have

$$\operatorname{ind} C(\psi) = \operatorname{ind}((b, u) + (c, v) + (a, -bcuvz)) = 8.$$

Moreover, comparing the residues, it is easy to see that $\psi \simeq (\varphi_1 \perp (t^2 - a)\varphi_2)_{an}$, where $\varphi_1 \simeq \langle 1, -b, -u, abu, -zcv, zacv \rangle$, $\varphi_2 \simeq z \langle 1, -c, -v, cv \rangle$. Obviously, $\varphi_1, \varphi_2 \in I^2(k)$. Suppose $\psi \simeq \tau_1 \perp (t^2 - a)\tau_2$, where $\tau_1, \tau_2 \in I^2(k)$. Then either dim $\tau_1 = \dim \tau_2 = 4$, or dim $\tau_1 = 8$, dim $\tau_2 = 0$, or dim $\tau_1 = 0$, dim $\tau_2 = 8$. But the first case is impossible, since ind $C(\psi) = 8$. The second and the third cases are impossible, since $\partial_{t^2-a}(\psi) \neq 0$ and $\partial_{t^2-a}((t^2-a)\psi) \neq 0$.

Given an even number $2n \geq 4$, Theorem 1.1 is not true in general for irreducible polynomials in t of degree 2n. To construct corresponding counterexamples we use the following statement, which immediately follows from [Si1], Prop.11.

Proposition 1.4. Let k_0 be a field, $n > m \ge 1$, $k = k_0(x)$, $a, b \in k_0^*$, $\langle \langle a, b \rangle \rangle \ne 0$, $p(t) = at^{2n} + bt^{2m} - x$, X the affine curve over k determined by the equation $y^2 = at^{2n} + bt^{2m} - x$. Then the form $(\langle -a, -b, x, 1 \rangle_{k(X)})_{an}$ is not defined over k.

Corollary 1.5. Under the notation of Proposition 4

$$\langle -a, -b, x, p(t) \rangle_{an} \not\simeq \varphi_1 \perp p(t)\varphi_2$$

for any forms φ_1, φ_2 over k.

Proof. Suppose $\langle -a, -b, x, p(t) \rangle_{an} \simeq \varphi_1 \perp p(t)\varphi_2$. Then dim $\varphi_1 = \dim \varphi_2 = 1$, and

$$(\langle -a, -b, x, 1 \rangle_{k(X)})_{an} \simeq (\langle -a, -b, x, p(t) \rangle_{k(X)})_{an} \simeq (\varphi_1 \perp p(t)\varphi_2)_{k(X)} \simeq (\varphi_1 \perp \varphi_2)_{k(X)},$$

a contradiction to Proposition 1.4.

The condition that m is odd is essential in Theorem 1.1, as the following example shows.

Proposition 1.6. For any even positive integer $m=2n\geq 2$ Theorem 1.1 does not remain true in general if one replaces t^2-a by $t^{2m}-a$.

Proof. Let k_0 be a field, $k = k_0(x, y, z)$. Consider the form

$$\pi \simeq \langle \langle x(t^{2n} - y - zy^{-1}), (y + zy^{-1})(t^{4n} - 4z) \rangle \rangle$$

over k. Obviously, $\partial_p(\pi) = 0$ for any $p \in \mathbb{A}^1_k$ distinct from $t^{2n} - y - zy^{-1}$ and $t^{4n} - 4z$. Moreover,

$$\partial_{t^{2n}-y-zy^{-1}}(\pi) = -x\langle 1, -(y+zy^{-1})((y+zy^{-1})^2-4z)\rangle = -x\langle 1, -t^{2n}(y-zy^{-1})^2\rangle = 0,$$

APPLICATIONS OF CONICS TO CERTAIN QUADRATIC FORMS OVER THE RATIONAL FUNCTION FIE

$$\partial_{t^{4n}-4z}(\pi) = -(y+zy^{-1})\langle 1, -x(t^{2n}-y-zy^{-1})\rangle = -(y+zy^{-1})\langle 1, (t^{2n}-2y)^2(4y)^{-1}x\rangle = -(y+zy^{-1})\langle 1, xy\rangle.$$

Suppose $\pi \simeq \tau_1 \perp (t^{4n} - 4z)\tau_2$ for some forms τ_1 , τ_2 over k. Then, obviously, $\pi \simeq \langle \langle c_1, c_2(t^{4n} - 4z) \rangle \rangle$, and, consequently, $\langle \langle x, y + zy^{-1} \rangle \rangle = \langle \langle c_1, c_2 \rangle \rangle$ for some $c_1, c_2 \in k^*$. Also

$$c_1 = \operatorname{disc} \partial_{t^{4n} - 4z}(\pi) = -xy,$$

which implies that $-xyc_1 \in k_{t^{4n}-4z}^{*2}$. It is easy to see that this implies $-xyc_1 \in k^{*2} \cup zk^{*2}$, or, equivalently, $c_1 \in -xyk^{*2} \cup -xyzk^{*2}$. Since $\langle \langle x, y + zy^{-1} \rangle \rangle = \langle \langle c_1, c_2 \rangle \rangle$, we conclude that either $\langle \langle x, y + zy^{-1} \rangle \rangle_{k(\sqrt{-xy})} = 0$, or $\langle \langle x, y + zy^{-1} \rangle \rangle_{k(\sqrt{-xy})} = 0$, which is, clearly, impossible.

Summing up we see that

$$(\varphi_1 \perp (t^{4n} - 4z)\varphi_2)_{an} \simeq \pi \not\simeq \tau_1 \perp (t^{4n} - a)\tau_2,$$

where

$$\varphi_1 \simeq (y + zy^{-1})\langle 1, xy \rangle \perp \langle \langle x, y + zy^{-1} \rangle \rangle, \ \varphi_2 \simeq -(y + zy^{-1})\langle 1, xy \rangle,$$

and τ_1 , τ_2 are some forms over k.

The following theorem determines the structure of certain Pfister forms over k(t).

Theorem 1.7. Let k be a field, π an n-fold Pfister form over k(t), $a \in k^* \setminus k^{*2}$. Assume that $\partial_p(\pi) = 0$ for any $p \in \mathbb{A}^1_k$ different from $t^2 - a$, and $0 \neq \partial_{t^2 - a}(\pi) \in \operatorname{res}_{k(\sqrt{a})/k} W(k)$. Then $\pi \simeq \langle \langle c_1, \ldots, c_{n-1}, c_n(t^2 - a) \rangle \rangle$ for some $c_1, \ldots, c_n \in k^*$.

Proof. Put F = k((x)). We have $\pi = \varphi_1 + (t^2 - a)\varphi_2$ for some $\varphi_1, \varphi_2 \in W(k)$, hence

$$(\varphi_1 + x\varphi_2)_{F(C)} = (\varphi_1 + (t^2 - a)\varphi_2)_{F(C)} = \pi_{F(C)}.$$

Therefore, there exists a Pfister form ρ over F = k((x)) such that

$$(\varphi_1 + x\varphi_2)_{F(C)} = \rho_{F(C)}$$

([ELW], Prop.2.10), or, in other words, $\varphi_1 + x\varphi_2 - \rho = \langle \langle a, x \rangle \rangle q$ for some form $q \in W(k)$. Let $\rho \simeq \langle \langle c_1, \ldots, c_{n-1}, c_n x^m \rangle \rangle$, where $c_1, \ldots, c_n \in k^*$, $m \in \{0, 1\}$. Just as in the proof of Theorem 1.1 we can replace x by $t^2 - a$. Thus, we get

$$\varphi_1 + (t^2 - a)\varphi_2 - \langle \langle c_1, \dots, c_{n-1}, c_n(t^2 - a)^m \rangle \rangle = \langle \langle a, t^2 - a \rangle \rangle q = 0 \in W(k(t)),$$

or, equivalently, $\pi = \varphi_1 + (t^2 - a)\varphi_2 = \langle \langle c_1, \dots, c_{n-1}, c_n(t^2 - a) \rangle \rangle$, since $\partial_{t^2 - a}(\pi) \neq 0$.

The example in Proposition 1.6 shows that the analog of Theorem 1.7 is false in general for polynomials $t^{4n}-a$. Also it cannot be generalized to arbitrary irreducible polynomial of degree 2m, where m > 3 is odd, as the following example shows.

Proposition 1.8. Let $m \ge 3$ be an odd number, k_0 a field, $k = k_0(x, y, z)$, $p(t) = t^{2m} + xyt^2 - x$. Then

- 1) The form $\langle 1, xy, -x, -p \rangle$ over k(t) is isotropic, or, in other words, $\langle 1, xy, -x, -p \rangle_{an} \simeq q \langle 1, -yp \rangle$ for some $q \in k[t]$. Moreover, since $-yp \langle 1, -yp \rangle \simeq \langle 1, -yp \rangle$, we may assume that p does not divide q.
 - 2) If $f \in \mathbb{A}^1_k$, then

$$\partial_f(\langle\langle yp, zq \rangle\rangle) = \begin{cases} 0 & \text{if } f \neq p \\ -y\langle\langle yz \rangle\rangle & \text{if } f = p \end{cases}$$

3) $\langle\langle yp, zq \rangle\rangle \not\simeq \langle\langle c_1, c_2p \rangle\rangle$ for any $c_1, c_2 \in k^*$.

Proof. The first statement is obvious. In particular, $yq \in k_p^{*2}$, and $yp \in k_r^{*2}$, where r is any prime monic divisor of q, hence the second statement follows. Now suppose that $\langle\langle yp, zq \rangle\rangle = \langle\langle c_1, c_2p \rangle\rangle$ for some $c_1, c_2 \in k^*$. Comparing the residues at p we get that $c_1yz \in k_p^{*2} \cap k^*$.

Lemma 1.9. $k_p^{*2} \cap k^* = k^{*2}$.

Proof. Let $l = k(x, y, z)[u]/(u^m + xyu - x)$. Obviously, $k_p = l(\sqrt{u})$. Suppose there is a quadratic extension $k(\sqrt{a})$ of k containing in k_p . Then $k_p = l(\sqrt{a})$, i.e. $au \in l^{*2}$. Hence $a^m x = N_{l/k}(au) \in k^{*2}$, and so we may assume that a = x. On the other hand, we can consider k_p as the field k(u, y, z), where $ux = u^{m+1}(1 - uy)^{-1}$. Since this element is not a square in k(u, y, z), we come to a contradiction.

Returning to the proof of Proposition 1.8 we get

$$\langle\!\langle c_1, c_2 p \rangle\!\rangle = \langle\!\langle yp, zq \rangle\!\rangle = \langle 1, -yp \rangle - zq \langle 1, -yp \rangle = \langle 1, -yp \rangle - z \langle 1, -x, xy, -p \rangle = -z \langle\!\langle x, y \rangle\!\rangle - yz \langle\!\langle yp, yz \rangle\!\rangle,$$

which implies, in view of $c_1yz \in k^{*2}$, that

$$0 = \langle \langle c_1, c_2 p \rangle \rangle_{k(\sqrt{yz})} = (-z \langle \langle x, y \rangle \rangle - yz \langle \langle yp, yz \rangle \rangle)_{k(\sqrt{yz})} = -z \langle \langle x, y \rangle \rangle_{k(\sqrt{yz})},$$

which is, clearly, impossible.

The main idea in Theorem 1.1 permits to obtain a short proof of Theorem 4.1 from ([RST]), which we formulate here in a bit different way.

Theorem 1.10. Let k be a field, $a, b \in k^*$, $a \notin k^{*2}$, $ab \notin k^{*2}$. Let D be a finite-dimensional central division algebra over k. Then the following conditions are equivalent.

- 1) $D \otimes_{k(t)} (a, t^2 b)$ is a division algebra over k(t).
- 2) $D_{k(\sqrt{a})}$ and $D_{k(\sqrt{ab})}$ are division algebras.

Proof. The implication $1) \Longrightarrow 2$ follows from the fact that

$$\operatorname{ind} D \otimes_{k(t)} (a, t^2 - b)_{k(\sqrt{a})} = \operatorname{ind} D_{k(\sqrt{a})}$$

and

ind
$$D \otimes_{k(t)} (a, t^2 - b)_{k(\sqrt{ab})} = \text{ind } D_{k(\sqrt{ab})}.$$

As for the implication 2) \Longrightarrow 1) assume that $D_{k(\sqrt{ab})}$ and $D_{k(\sqrt{ab})}$ are division algebras. Then by [T], Prop. 2.4 the algebra $D\otimes(a,x)$ is a division algebra over k(x). Let C be the conic over k(x) with the equation $t^2-b=xv^2$. If the algebra $D\otimes(a,x)_{k(x)(C)}$ is a division algebra, we are done. If not, then by [M] $D\otimes(a,x)\simeq(b,x)\otimes D'$ for some division algebra D' over k(x). Hence $D\otimes(ab,x)\simeq D'\otimes M_2(k(x))$ is not a division algebra. Therefore, again by [T], Prop. 2.4 $D_{k(\sqrt{ab})}$ is not a division algebra, a contradiction to the hypothesis.

2. Behavior of quadratic forms under biquadratic extensions

Our next purpose is to study the behavior of quadratic forms under a biquadratic extension. In particular, it turns out that a nonexcellent biquadratic extension over a field k gives rise to a nonexcellent extension of the field k(x,y) (resp. k((x))((y))) determined by the function field of the product of two conics over k(x,y) (resp. k((x))((y))). More precisely, let $a, b \in k^*$, x, y indeterminates, C_a , C_b be the affine conics associated with the quaternion algebras (a,x) and (b,y) and determined by the equations $t^2 - a = xv^2$, $u^2 - b = yw^2$.

Lemma 2.1. Let φ a form over k. The following conditions are equivalent:

- 1) The form $\varphi_{k(\sqrt{a},\sqrt{b})}$ is isotropic.
- 2) The form $\varphi(\langle t^2 a, u^2 b \rangle)_{k(t,u)}$ is isotropic.
- 3) The form $\varphi(\langle x,y\rangle)_{k(x,y)(C_a\times C_b)}$ is isotropic.
- 4) The form $\varphi(\langle x,y\rangle)_{k((x))((y))(C_a\times C_b)}$ is isotropic.

Proof. 1) \Longrightarrow 2). Since $\varphi_{k(\sqrt{a},\sqrt{b})}$ is isotropic, either $\varphi_{k(\sqrt{b})}$ is isotropic, or $\varphi_{k(\sqrt{b})} \simeq \alpha \langle \langle a \rangle \rangle \perp \psi$ for some $\alpha \in k(\sqrt{b})^*$ and a form ψ over $k(\sqrt{b})$. Since $\langle \langle a, t^2 - a \rangle \rangle = 0$, in both cases the form $\varphi \langle \langle t^2 - a \rangle \rangle_{k(t)(\sqrt{b})}$ is isotropic. Hence, either $\varphi \langle \langle t^2 - a \rangle \rangle_{k(t)}$ is isotropic, or $\varphi \langle \langle t^2 - a \rangle \rangle \simeq \beta \langle \langle b \rangle \rangle \perp \tau$ for some $\beta \in k(t)^*$ and a form τ over k(t). Again, in both cases the form $\varphi \langle \langle t^2 - a, u^2 - b \rangle \rangle$ is isotropic over k(t, u).

- 2) \Longrightarrow 3). Obvious, in view of the equations $t^2 a = xv^2$, $u^2 b = yw^2$.
- $3) \Longrightarrow 4$). Obvious.
- 4) \Longrightarrow 1). Since the extension $k(\sqrt{a},\sqrt{b})((x))((y))(C_a\times C_b)/k(\sqrt{a},\sqrt{b})((x))((y))$ is purely transcendental, and the form $\varphi\langle\langle x,y\rangle\rangle_{k(\sqrt{a},\sqrt{b})((x))((y)))(C_a\times C_b)}$ is isotropic, the form $\varphi\langle\langle x,y\rangle\rangle_{k(\sqrt{a},\sqrt{b})((x))((y))}$ is isotropic as well. Hence the form $\varphi_{k(\sqrt{a},\sqrt{b})}$ is also isotropic.

Under the notation of Lemma 2.1 we have the following

Theorem 2.2. The following conditions are equivalent:

- 1) The form $\varphi_{k(\sqrt{a},\sqrt{b})_{an}}$ is defined over k.
- 2) The form $\varphi(\langle x, y \rangle)_{k(x,y)(C_a \times C_b)_{an}}$ is defined over k(x,y).
- 3) The form $\varphi(\langle x,y\rangle)_{k((x))((y))(C_a\times C_b)_{an}}$ is defined over k((x))((y)).

Moreover, if these conditions are fulfilled, and $(\varphi_{k(\sqrt{a},\sqrt{b})})_{an} \simeq \tau$, where τ is a form over k, then

$$\varphi\langle\langle x,y\rangle\rangle_{k(x,y)(C_a\times C_b)_{an}} \simeq \tau\langle\langle x,y\rangle\rangle_{k(x,y)(C_a\times C_b)}$$

and

$$\varphi(\langle x,y\rangle\rangle_{k((x))((y))(C_a\times C_b)_{an}} \simeq \tau(\langle x,y\rangle\rangle_{k((x))((y))(C_a\times C_b)}.$$

Proof. We induct on dim φ . If dim $\varphi = 0$, i.e. the form φ is empty, then all the conditions hold. 1) \Longrightarrow 2). Suppose $(\varphi_{k(\sqrt{a},\sqrt{b})})_{an} \simeq \tau_{k(\sqrt{a},\sqrt{b})}$, where τ is a form over k. Then $\varphi - \tau \in W(k(\sqrt{a},\sqrt{b})/k)$, i.e. $\varphi - \tau = \langle\!\langle a \rangle\!\rangle \psi_1 + \langle\!\langle b \rangle\!\rangle \psi_2$, where ψ_1, ψ_2 are forms over k ([ELW]). Then, obviously,

$$\varphi(\langle x, y \rangle)_{k(x,y)(C_a \times C_b)} = \tau(\langle x, y \rangle)_{k(x,y)(C_a \times C_b)}.$$

By Lemma 2.1 the form $\tau \langle \langle x, y \rangle \rangle_{k(x,y)(C_a \times C_b)}$ is anisotropic, which implies

$$\varphi(\langle x,y\rangle)_{k(x,y)(C_a\times C_b)_{an}} \simeq \tau(\langle x,y\rangle)_{k(x,y)(C_a\times C_b)}.$$

- 1) \Longrightarrow 3). The same argument with replacement of k(x,y) by k((x))((y)).
- 3) \Longrightarrow 1). We may assume that the form $\varphi_{k(\sqrt{a},\sqrt{b})}$ is isotropic. By Lemma 2.1 the form $\varphi(\langle t^2 a, u^2 b \rangle)$ is isotropic, hence the form $\varphi(\langle x, y \rangle)_{k((x))((y))(C_a \times C_b)}$ is isotropic as well. Therefore, by the hypothesis

$$\varphi(\langle x, y \rangle)_{k((x))((y))(C_a \times C_b)} = \Phi_{k((x))((y))(C_a \times C_b)},$$

where Φ is a form over k((x))((y)), dim $\Phi < 4 \dim \varphi$. Since

$$W(k((x))((y))) = W(k) \oplus xW(k) \oplus yW(k) \oplus xyW(k),$$

we have

$$\Phi \simeq \psi_1 \perp x\psi_2 \perp y\psi_3 \perp xy\psi_4,$$

where ψ_i are forms over k. On the other hand,

$$\varphi(\langle x,y\rangle) - \Phi \in W(k((x))((y))(C_a \times C_b)/k((x))((y))).$$

Therefore, in view of [ELW] we get

$$\varphi(\langle x, y \rangle) - \Phi = \langle \langle a, x \rangle \rangle \Phi_a + \langle \langle b, y \rangle \rangle \Phi_b, \quad (*)$$

where Φ_a and Φ_b are some forms over k((x))((y)). Since

$$\Phi_a \simeq \tau_1 \perp x\tau_2 \perp y\tau_3 \perp xy\tau_4$$

$$\Phi_b \simeq \rho_1 \perp x \rho_2 \perp y \rho_3 \perp x y \rho_4$$

for some forms τ_i and ρ_i over k, it is easy to see that just as in Theorem 1.1 we can replace in (*) x, y and k((x))((y)) by $t^2 - a$, $u^2 - b$ and k(t, u) respectively. It follows that

$$\varphi(\langle t^2 - a, u^2 - b \rangle) = \psi_1 \perp (t^2 - a)\psi_2 \perp (u^2 - b)\psi_3 \perp (t^2 - a)(u^2 - b)\psi_4.$$
 (**)

Notice that $\sum_{i=1}^{4} \dim \psi_i < 4 \dim \varphi$. Multiplying if needed all the parts of equality (**) by $-(t^2-a)$, or $-(u^2-b)$, or $(t^2-a)(u^2-b)$ we may assume that $\dim \psi_4 < \dim \varphi$. We have

$$\varphi_{k(\sqrt{a},\sqrt{b})} = \partial_{t^2-a,u^2-b}(\varphi(\langle t^2-a,u^2-b\rangle\rangle) = \psi_4,$$

where $\partial_{t^2-a,u^2-b}: W(k(t,u)) \to W(k(\sqrt{a},\sqrt{b}))$ is the composition of the residues maps at t^2-a and u^2-b . It follows by [ELW] that

$$\varphi - \psi_4 = \langle \langle a \rangle \rangle f_1 + \langle \langle b \rangle \rangle f_2$$

for some forms f_1, f_2 over k. Hence

$$\psi_4\langle\langle x,y\rangle\rangle_{k((x))((y))(C_a\times C_b)} = \varphi\langle\langle x,y\rangle\rangle_{k((x))((y))(C_a\times C_b)}.$$

By the induction hypothesis the form $(\psi_{4_k(\sqrt{a},\sqrt{b})})_{an}$ is defined over k. Since $(\psi_{4_k(\sqrt{a},\sqrt{b})})_{an} \simeq (\varphi_{k(\sqrt{a},\sqrt{b})})_{an}$, we are done.

2) \Longrightarrow 1). We may assume that the form $\varphi_{k(\sqrt{a},\sqrt{b})}$ is isotropic. Then by Lemma 2.1 the form $\varphi(\langle x,y\rangle\rangle_{k(x,y)(C_a\times C_b)}$ is isotropic, hence by the hypothesis of 2)

$$\varphi \langle \langle x, y \rangle \rangle_{k((x))((y))(C_a \times C_b)} = \Phi_{k((x))((y))(C_a \times C_b)}$$

for some form Φ defined over k((x))((y)), $\dim \Phi < 4\dim \varphi$. The argument in the proof of implication $3) \Longrightarrow 1$) shows that the form $(\varphi_{k(\sqrt{a},\sqrt{b})})_{an}$ is defined over k. \square

Now let φ be a 4-dimensional anisotropic form over k, $a, b \in k^*$, C_1 , C_2 the affine conics over k(x) associated with the quaternion algebras (a, x), (b, x) and determined by the equations $t^2 - a = x\alpha^{-2}$, $u^2 - b = x\beta^{-2}$.

Theorem 2.3. The following two conditions are equivalent:

- 1) The form $\varphi_{k(\sqrt{a},\sqrt{b})}$ is isotropic and $(\varphi_{k(\sqrt{a},\sqrt{b})})_{an}$ is defined over k.
- 2) The form $\varphi(\langle x \rangle)_{k(x)(C_1 \times C_2)}$ is isotropic.

Proof. 1) \Longrightarrow 2). Let $\psi_{k(\sqrt{a},\sqrt{b})} \simeq (\varphi_{k(\sqrt{a},\sqrt{b})})_{an}$ for some form ψ over k. We have $\varphi - \psi \in W(k(\sqrt{a},\sqrt{b})/k)$, hence $\varphi - \psi = \langle\!\langle a \rangle\!\rangle \varphi_1 + \langle\!\langle b \rangle\!\rangle \varphi_2$ for some forms φ_1, φ_2 over k. Thus $\varphi(\langle\!\langle x \rangle\!\rangle_{k(x)(C_1 \times C_2)} = \psi(\langle\!\langle x \rangle\!\rangle_{k(x)(C_1 \times C_2)}$, and so the form $\varphi(\langle\!\langle x \rangle\!\rangle_{k(x)(C_1 \times C_2)})$ is isotropic.

2) \Longrightarrow 1). Let F = k(t). We may assume that $\varphi \simeq \langle 1, -u, -v, uvd \rangle$. Let further C be a conic corresponding to the quaternion algebra $(b, t^2 - a)$. In view of the equations determining the conics C_1, C_2 it is easy to see that the form $\varphi \langle \langle t^2 - a \rangle \rangle_{F(C)}$ is isotropic. Since the extension F(C)/F is excellent and the Clifford algebra of $\varphi \langle \langle t^2 - a \rangle \rangle$ is similar to $(d, t^2 - a)$, we have

$$\varphi \langle \langle t^2 - a \rangle \rangle = f \langle \langle d, t^2 - a \rangle \rangle + \langle \langle b, t^2 - a \rangle \rangle \tau$$

where $f \in k(t)^*$ and τ is an even-dimensional form over k. It is easy to see that consequently

$$\langle\!\langle u, v, t^2 - a \rangle\!\rangle \equiv \langle\!\langle d, t^2 - a, Q \rangle\!\rangle + \langle\!\langle b, t^2 - a, R \rangle\!\rangle \pmod{I^4(F)} \quad (*)$$

for some squarefree nonzero polynomials $Q, R \in k[t]$. We may assume that deg Q + deg R is as small as possible. In particular, $t^2 - a$ divides neither Q, nor R. We are going to prove that there exists $c \in k^*$ such that R = cQ. Indeed, suppose that there

exists a prime monic polynomial p such that p|Q, but $p \not|R$. Put $\pi \simeq \langle\langle d, t^2 - a, p \rangle\rangle$. Then

$$\partial_p(\pi) = \partial_p(\langle\langle d, t^2 - a, Q \rangle\rangle) \in \partial_p(\langle\langle u, v, t^2 - a \rangle\rangle) + I^3(k_p) = I^3(k_p),$$

which implies $\partial_p(\pi) = 0$. Also $\partial_\infty(\pi) = 0$, where ∂_∞ is the residue map associated with the local parameter t^{-1} at the infinity point. By the Scharlau reciprocity law for W(F) ([Sch], Ch.6, Th. 3.5) we have $s_{t^2-a}(\partial_{t^2-a}(\pi)) = 0$, where s_{t^2-a} is the transfer determined by the k-linear map $k_{t^2-a} \to k$, taking 1 to 0, and t to 1. Thus, $\langle\!\langle d, p \rangle\!\rangle \in \operatorname{res}_{k_{t^2-a}/k} W(k)$. Hence $\langle\!\langle d, p \rangle\!\rangle = \langle\!\langle d, e \rangle\!\rangle \in W(k_{t^2-a})$ for some $e \in k^*$, which implies that

$$\langle\!\langle d, t^2 - a, p \rangle\!\rangle = \langle\!\langle d, t^2 - a, e \rangle\!\rangle,$$

and we can replace Q by $e^{\frac{Q}{p}}$ in (*). But this is a contradiction to minimality of $\deg Q + \deg R$. Quite similarly one can prove that the case where $p \not|Q$, but p|R is impossible as well. Therefore, we conclude that R = cQ for some $c \in k^*$. It follows that

$$\langle\langle u, v, t^2 - a \rangle\rangle \equiv \langle\langle d, t^2 - a, Q \rangle\rangle + \langle\langle b, t^2 - a, cQ \rangle\rangle = \langle\langle bd, t^2 - a, Q \rangle\rangle + \langle\langle b, c, t^2 - a \rangle\rangle \pmod{(I^4(F))}.$$

Hence $\partial_{\nu}\langle\langle bd, t^2 - a, Q\rangle\rangle = 0$ if $p \neq t^2 - a$. Comparing residues we get that

$$\langle\!\langle bd, t^2 - a, Q \rangle\!\rangle = \langle\!\langle bd, t^2 - a, e \rangle\!\rangle$$

for some $e \in k^*$. Thus

$$\langle\langle u, v, t^2 - a \rangle\rangle \equiv \langle\langle bd, e, t^2 - a \rangle\rangle + \langle\langle b, c, t^2 - a \rangle\rangle \mod(I^4(F)).$$

Taking the residue at $t^2 - a$ we get

$$\langle\langle u, v \rangle\rangle_{k(\sqrt{a})} \equiv (\langle\langle bd, e \rangle\rangle + \langle\langle b, c \rangle\rangle)_{k(\sqrt{a})} \ mod I^3 k(\sqrt{a})), \quad (**)$$

hence $\langle\langle u,v\rangle\rangle_{k(\sqrt{a},\sqrt{b})} = \langle\langle d,e\rangle\rangle_{k(\sqrt{a},\sqrt{b})}$. Finally, (**) implies

$$\begin{split} \langle 1, -u, -v, uvd \rangle_{k(\sqrt{a}, \sqrt{b})} &= \langle \langle u, v \rangle \rangle_{k(\sqrt{a}, \sqrt{b})} + \langle uvd, -uv \rangle_{k(\sqrt{a}, \sqrt{b})} \equiv (\langle \langle d, e \rangle \rangle + \langle uvd, -uv \rangle)_{k(\sqrt{a}, \sqrt{b})} \\ &= \langle \langle d \rangle \rangle \langle 1, -e, -uv \rangle_{k(\sqrt{a}, \sqrt{b})} \equiv -euv \langle \langle d \rangle \rangle_{k(\sqrt{a}, \sqrt{b})} (mod I^3(k(\sqrt{a}, \sqrt{b}))), \end{split}$$

hence
$$(\varphi_{k(\sqrt{a},\sqrt{b})})_{an} \simeq -euv\langle\langle d \rangle\rangle_{k(\sqrt{a},\sqrt{b})}$$
.

Theorem 2.3 can be reformulated without mentioning any conic at all. Namely, keeping the notation in this theorem we have the following

Corollary 2.4. Let α, β, z be indeterminates. Let further

$$p(\alpha, \beta, z) = z^4 - 2(a\alpha^2 + b\beta^2)z^2 + (a\alpha^2 - b\beta^2)^2 \in k(\alpha, \beta)[z]$$

be the minimal polynomial of $\alpha\sqrt{a} + \beta\sqrt{b}$ over the field $k(\alpha, \beta)$. The following two conditions are equivalent.

- 1) The form $\varphi_{k(\sqrt{a},\sqrt{b})}$ is isotropic and the form $\varphi_{k(\sqrt{a},\sqrt{b})_{an}}$ is defined over k.
- 2) The form $\varphi(\langle p(\alpha, \beta, z) \rangle)$ is isotropic over $k(\alpha, \beta, z)$.

Proof. We have $\alpha^2(t^2 - a) = \beta^2(u^2 - b) = x$, which implies $(\alpha t - \beta u)(\alpha t + \beta u) = a\alpha^2 - b\beta^2$. Put $z = \alpha t - \beta u$. Then it is easy to see by straightforward computation that $k(x)(C_1 \times C_2) = k(\alpha, \beta, z)$ and $4xz^2 = p(\alpha, \beta, z)$. Theorem 2.3 then yields the result.

Corollary 2.5. Suppose the form $\varphi(\langle p(\alpha, \beta, z) \rangle)$ from Corollary 2.4 is anisotropic over $k(\alpha, \beta, z)$. Let ψ be a form over k, dim $\psi \geq 5$. Then the form $\varphi(\langle p(\alpha, \beta, z) \rangle)$ remains anisotropic over the field $k(\psi)$.

Proof. Recall that we may assume that $\varphi \simeq \langle 1, -u, -v, uvd \rangle$. Suppose the form $\varphi \langle \langle p(\alpha, \beta, z) \rangle \rangle_{k(\alpha, \beta, z)(\psi)}$ is isotropic. By Corollary 2.4 the form $\varphi_{k(\psi)(\sqrt{a}, \sqrt{b})}$ is isotropic and its anisotropic part is defined over $k(\psi)$. It is easy to see that then $(u, v)_{k(\psi)} = (a, x) + (b, y) + (d, z)$ for some $x, y, z \in k(\psi)^*$. By [S2], Prop.5 (u, v) = (a, x') + (b, y') + (d, z') for some $x', y', z' \in k^*$. Then the form $\varphi_{k(\sqrt{a}, \sqrt{b})}$ is isotropic, and the form $(\varphi_{k(\sqrt{a}, \sqrt{b})})_{an}$ is defined over k. By Corollary 2.4 the form $\varphi \langle \langle p(\alpha, \beta, z) \rangle \rangle$ is isotropic.

Remark. In Corollary 2.5 the condition dim $\psi \geq 5$ is essential. For example, if $\psi \simeq \varphi$, then $\varphi \langle \langle p(\alpha, \beta, z) \rangle \rangle$ is, obviously, isotropic.

Acknowledgement. I am very grateful to Professor A.S. Merkurjev, who posed the question considered in Theorem 1.1, which, in its turn inspired the further work on this paper.

REFERENCES

- [A] Arason J. Kr., Excellence of $F(\varphi)/F$ for 2-fold Pfister forms, Appendix II in [ELW] (1977). [ELW] Elman R., Lam T.Y. and Wadsworth A.R., Amenable fields and Pfister extensions, Queen's Papers Pure Appl. Math. **46** (1977), 445-491.
- [M] Merkurjev A.S., Simple algebras and quadratic forms, Soviet Math. Docl. 38 (1992), 215-221.
- [R] Rost M., Quadratic forms isotropic over the function field of a conic, Math. Ann. 288 (1990), 511-513.
- [RST] L.H. Rowen, A.S. Sivatski, J.-P. Tignol, *Division algebras over rational function fields in one variable*, Algebra and Number Theory, Proceedings of the Silver Jubilee Conference 2003 (2005), 158-180.
- [Sch] Scharlau W., Quadratic and Hermitian forms, Springer, Berlin Heidelberg New York (1985).
- [Si1] Sivatski A.S., *Nonexcellence of certain field extensions*, Journal of Mathematical Sciences **145** (2007), no. 1, 4811-4817.
- [Si2] Sivatski A.S., On some elements of the Brauer group of a conic, Journal of Mathematical Sciences **145** (2007), no. 1, 4818-4822.
- [T] Tignol J.P., Algebres indecomposables d'exposant premier, Advances in Math. 65 (1987), no. 3, 205-228.

E-MAIL: SLAVAALEX@HOTMAIL.COM