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Abstract. Any two decompositions of a biquaternion algebra over a field F into a
sum of two quaternion algebras can be connected by a chain of decompositions such

that any two neighboring decompositions are (a, b)+(c, d) and (ac, b)+(c, bd) for some

a, b, c, d ∈ F ∗. A similar result is established for decompositions of a biquaternion
algebra into a sum of three quaternions if F has no cubic extension.

LetA be a biquaternion algebra (i.e. a tensor product of two quaternion algebras)
over a field F of characteristic different from 2. A decomposition of A into a tensor
product of two quaternion algebras is not unique, and there is no canonical one.
However, it turns out that any two decompositions of A can be connected by a
chain of decompositions in which neighboring ones do not differ ”too much”. In
fact in this note we prove an analogue of the chain lemma (see, for instance [L],
where it is called ”Common Slot Theorem”) for a quaternion algebra.

So let A = D1 + D′
1 = D2 + D′

2 two decompositions of A into a sum of two
quaternion algebras (the signs = and + will always mean equality and addition in
the Brauer group of F ). Dimension count shows that this means

A ≃ D1 ⊗F D′
1 ≃ D2 ⊗F D′

2.

We call these decompositions equal ifD1 = D2 andD′
1 = D′

2, and simply-equivalent
if there exist elements x, y, a, c ∈ F such that D1F (

√
a) = D′

1F (
√
c) = 0 and

D2 = D1 + (a, x2 − acy2), D′
2 = D′

1 + (c, x2 − acy2). (∗)

Notice that, since (ac, x2 − acy2) = 0, we have D1 +D′
1 = D2 +D′

2 as soon as the
equalities (∗) hold. We say that two decompositions of A are equivalent if they can
be connected by a chain of decompositions in such a way that every two neighboring
decompositions in this chain are simply-equivalent. The following result justifies
this definition.

Key words and phrases. .

Typeset by AMS-TEX

1



2 A.S. SIVATSKI

Proposition 1. Any two biquaternion decompositions of A are equivalent to one

another, and can be connected by a chain of length 3. Moreover, this bound is

strict, i.e. in general two decompositions of A cannot be connected by a chain of

length 2.

Proof. Let A = (a1, b1) + (c1, d1) = (a2, b2) + (c2, d2) be two decompositions of
A. Assume first that the algebras (a1, b1) and (a2, b2) have a common split-
ting quadratic extension. In this case we may suppose that a1 = a2. Hence
(c1, d1) + (c2, d2) = (a1, b1b2), so (c1, d1) and (c2, d2) have a common splitting qua-
dratic extension ([A]). Therefore, we may suppose that c1 = c2. This implies that
(a1, b1b2) = (c1, d1d2). Denote this algebra by Q. We have QF (

√
a
1
) = QF (

√
c
1
) = 0.

It is easy to verify that Q ≃ (a1, x
2 − a1c1y

2) for some x, y ∈ F . Hence

(a2, b2) = (a1, b1) + (a1, b1b2) = (a1, b1) + (a1, x
2 − a1c1y

2),

and
(c2, d2) = (c1, d1) + (c1, d1d2) = (c1, d1) + (a1, x

2 − a1c1y
2).

In particular, the decompositions (a1, b1)+(c1, d1) and (a2, b2)+(c2, d2) are simply-
equivalent. This implies that in the general case it suffices to find x1, y1, x2, y2 ∈ F
such that the algebras (a1, b1(x

2
1−a1c1y

2
1)) and (a2, b2(x

2
2−a2c2y

2
2)) have a common

quadratic splitting extension. This certainly will be the case if the form

〈a1, b1(x2
1 − a1c1y

2
1),−a2,−b2(x

2
2 − a2c2y

2
2)〉

is isotropic. Notice that we can modify c1 and c2 to any values of the forms
〈c1, d1,−c1d1〉 and 〈c2, d2,−c2d2〉 respectively. Thus it suffices to show that the
form

〈a1, b1〉 ⊥ −a1b1〈c1, d1,−c1d1〉 ⊥ 〈−a2,−b2〉 ⊥ a2b2〈c2, d2,−c2d2〉

is isotropic. But the last form is 10-dimensional, belongs to I2(F ) and its Clifford
invariant is equal to (a1, b1) + (c1, d1) + (a2, b2) + (c2, d2) = 0. In particular, this
form belongs to I3(F ) ([P]). Since any 10-dimensional form from I3(F ) is isotropic
([P]), we are done.

An example of two decompositions which cannot be connected by a chain of
length 2 is as follows. Let k be a field, a, b, c ∈ k∗, 〈〈a, b, c〉〉 6= 0, (a, b)k(

√
c) 6= 0,

F = k((t)), A = (a, b) + (c, t) = (c, t) + (a, b). Suppose that these decompositions
are connected by a chain of length at most 2. Then the index of (a, b) + (c, t) +
(c′, x2−a′c′y2) is at most 2 for some x, y ∈ F , a′ ∈ D(〈a, b,−ab〉), c′ ∈ D(〈c, t,−ct〉),
where, as usual, by D(ϕ) we denote the set of nonzero values of the quadratic form
ϕ. Obviously, we may assume that c′ equals either c, or t, or −ct. We will consider
these cases one by one.

i) Assume c′ = c. The condition (a, b)k(
√
c) 6= 0 is equivalent to that the form

〈a, b,−ab,−c〉 is anisotropic. Suppose x, y ∈ F , and either x 6= 0, or y 6= 0. Then
x2 − a′cy2 ∈ k∗F ∗2, hence (a, b) + (c, t) + (c, x2 − a′cy2) = (a, b) + (c, et) for some
e ∈ k∗. Since (a, b)k(

√
c) 6= 0, and c /∈ k∗2 (for 〈〈a, b, c〉〉 6= 0), we get by Prop.2.4. in

[T] that ind(a, b)⊗ (c, et) = 4, a contradiction.
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ii) Assume c′ = t. Obviously, x2 − a′ty2 ∈ F ∗2 ∪−a′tF ∗2, hence (a, b) + (c, t) +
(t, x2 − a′ty2) equals either (a, b) + (c, t), or (a, b) + (a′c, t). Since the index of
the last algebra is 2, then again by Prop. 2.4 of [T] either a′c ∈ D(〈a, b,−ab〉),
or a′c ∈ k∗2, which implies that c ∈ D(〈〈a, b〉〉), a contradiction in view of the
hypothesis 〈〈a, b, c〉〉 6= 0.

iii) The case c′ = −ct is quite similar to case ii). The algebra (a, b) + (c, t) +
(−ct, x2 + a′cty2) equals either (a, b) + (c, t), or (a, b) + (c, t) + (−ct, a′) = (a, b) +
(−c, a′) + (a′c, t). If the index of the last algebra is 2, then as in case ii) a′c ∈
D(〈a, b,−ab〉), or a′c ∈ k∗2, which is impossible. �

Remark. Notice that in the above example cd2 F ≥ 4. We do not know,
however, whether any two decompositions can be connected by a chain of length 2
if cd2 F ≤ 3.

Now we introduce another equivalence between biquaternion decompositions.
Namely, we say that two decompositions A = D1 + D′

1 = D2 + D′
2 are strongly

simply-equivalent if there exist elements x, a, c ∈ F such thatD1F (
√
a) = D′

1F (
√
c) =

0 and D2 = D1+(a, c), D′
2 = D′

1+(a, c). Clearly, if the decompositions are strongly
simply equivalent, they are simply equivalent (one can put x = 0, y = 1). As
earlier we call two decompositions strongly equivalent if they can be connected by
a chain of decompositions where any two neighboring decompositions are strongly
simply-equivalent. The following statement shows that in fact there is no difference
between equivalence and strong equivalence.

Proposition 2. Any two biquaternion decompositions of A are strongly equivalent

to one another, and can be connected by a chain of length 6.

Proof. The proof is clear in view of the chain of length 2, connecting two simply-
equivalent decompositions

(a, b)+(c, d) ∼ (ac, b)+(c, bd) = (ac, b(x2−acy2))+(c, bd) ∼ (a, b(x2−acy2))+(c, d(x2−acy2)),

where each of the two steps is a strongly simply-equivalence. �

Recall that any biquaternion decomposition of A determines the correspond-
ing Albert quadratic form, namely, the Albert form of the decomposition A ≃
(a, b) ⊗ (c, d) is 〈a, b,−ab,−c,−d, cd〉. As a consequence of Proposition 2 we ob-
tain a strengthening of a well-known theorem of Jacobson on similarity of any two
Albert forms of a biquaternion algebra ([J],[L]).

Corollary 3. Any two Albert forms of the same biquaternion algebra A are similar,

and the coefficient of similarity can be chosen as a product of some ui ∈ F ∗ (1 ≤
i ≤ 6), where F (

√
u
i
) is a quadratic subalgebra of A.

Proof. It is easy to find a similarity coefficient for two Albert forms corresponding
to strongly simply-equivalent decompositions. Namely, let A = (a, b) + (c, d) =
(a, bc) + (c, ad). Then

〈a, bc,−abc,−c,−ad, acd〉 ≃ −ac〈a, b,−ab,−c,−d, cd〉.

Since F (
√
ac) is a quadratic subalgebra of A, the corollary follows from Proposition

2. �



4 A.S. SIVATSKI

So far we have considered decompositions of biquaternion algebras into a sum
of two quaternion algebras. Now we consider a similar problem, but this time
decompositions into a sum of three quaternions. Let A be a central simple algebra
of index 1, 2 or 4 over a field F of characteristic different from 2. Let further
A = D1+D′

1+D′′
1 = D2+D′

2+D′′
2 be two decompositions of A into a sum of three

quaternion algebras. We call these decompositions equal if D1 = D2, D
′
1 = D′

2,
and D′′

1 = D′′
2 , and simply-equivalent if there are 1 ≤ i < j ≤ 3 such that the

sums of the ith and jth summands in both decompositions are simply equivalent in
the previous sense (in particular, the remaining summands are equal). As earlier
we say that these decompositions are equivalent if they can be connected by a
chain of decompositions in such a way that every two neighboring decompositions
in this chain are simply-equivalent. Unfortunately, we are not able to prove that
any two decompositions are equivalent in full generality, restricting ourselves to the
following

Proposition 4. 1) If indA ≤ 2, then any two decompositions of A into a sum of

three quaternions are equivalent.

2) If indA = 4 and F has no cubic extension, then any two decompositions of A
into a sum of three quaternions are equivalent.

Proof. 1) Let D1+D′
1+D′′

1 = Q, where Q is a quaternion algebra. Then D1+D′
1 =

Q+D′′
1 . By Proposition 1 we have D1 +D′

1 ∼ Q+D′′
1 . Hence

D1 +D′
1 +D′′

1 ∼ Q+D′′
1 +D′′

1 ∼ Q+ 0 + 0,

which shows that any two decompositions of Q are equivalent.

2) Since the elements D1 +D′
1 and A differ by a quaternion, there exists a field

extension L/F of degree 4 such that (D1 +D′
1)L = AL = 0 ([R]). Since F has no

cubic extension, there exists an intermediate quadratic extension F (
√
a) between

F and L. In particular, ind(D1 +D′
1)F (

√
a) ≤ 2 and indAF (

√
a) ≤ 2. Hence

D1 +D′
1 = (a, b) + (c, d)

for some b, c, d ∈ F ∗. Since ((c, d) + D′′
1 )F (

√
a) = AF (

√
a) is a quaternion algebra

over F (
√
a), we get (c, d) +D′′

1 = (a, u) + (v, w) for some u, v, w ∈ F ∗. Therefore,

D1 +D′
1 +D′′

1 ∼ (a, b) + (c, d) +D′′
1 ∼ (a, b) + (a, u) + (v, w) ∼ 0 + (a, bu)+ (v, w).

Since all decompositions of A into a sum of two quaternions are equivalent, we are
done. �

Open questions. Are lengths shorter than 6 generally impossible in Proposition
2 ? Can one drop the hypothesis on the absence of cubic extensions of F in part
2) of Proposition 4 ? What is the situation in the case indA = 8 ?
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