
Classi�ation of upper motives of algebrai groups ofinner type AnClassi�ation des motifs supérieurs des groupes algébriquesintérieurs de type An.Charles De ClerqRésuméSoient A, A′ deux algèbres entrales simples sur un orps F et F un orps �ni dearatéristique p. Nous prouvons que les fateurs direts indéomposables supérieursdes motifs de deux variétés anisotropes de drapeaux d'idéaux à droite X(d1, ..., dk ;A)et X(d′1, ..., d
′
s;A

′) à oe�ients dans F sont isomorphes si et seulement si les val-uations p-adiques de pgcd(d1, ..., dk) et pgcd(d′1, .., d
′
s) sont égales et les lasses desomposantes p-primaires Ap et A′

p de A et A′ engendrent le même sous-groupe dansle groupe de Brauer de F . Ce résultat mène à une surprenante dihotomie entre lesmotifs supérieurs des groupes algébriques absolument simples, adjoints et intérieursde type An. AbstratLet A, A′ be two entral simple algebras over a �eld F and F be a �nite �eldof harateristi p. We prove that the upper indeomposable diret summands ofthe motives of two anisotropi varieties of �ags of right ideals X(d1, ..., dk;A) and
X(d′1, ..., d

′
s;A

′) with oe�ients in F are isomorphi if and only if the p-adi valua-tions of gcd(d1, ..., dk) and gcd(d′1, .., d
′
s) are equal and the lasses of the p-primaryomponents Ap and A′

p of A and A′ generate the same group in the Brauer group of
F . This result leads to a surprising dihotomy between upper motives of absolutelysimple adjoint algebrai groups of inner type An.1 IntrodutionThroughout this note p will be a prime and F will be a �nite �eld of hara-teristi p. Let F be a �eld, F -alg be the ategory of ommutative F -algebras and
CM(F ;F) be the ategory of Grothendiek Chow motives with oe�ients in F.Motivi properties of projetive homogeneous F -varieties and their relations withlassial disrete invariants have been intensively studied reently (see for example[7℄, [11℄, [12℄, [13℄, [14℄, [15℄). In this artile we deal with the partiular ase ofprojetive homogeneous F -varieties under the ation of an absolutely simple a�neadjoint algebrai group of inner type An. More preisely we prove the followingresult: 1



Theorem 1. Let A and A′ be two entral simple F -algebras. The upper indeom-posable diret summands of the motives of two anisotropi varieties of �ags of rightideals X(d1, ..., dk ;A) and X(d′1, ..., d
′
s;A

′) in CM(F ;F) are isomorphi if and onlyif vp(gcd(d1, ..., dk)) = vp(gcd(d
′
1, .., d

′
s)) and the p-primary omponents Ap and A′

pof A and A′ generate the same subgroup of Br(F ).In §1 we reall lassial disrete invariants and varieties assoiated to entralsimple F -algebras, while §2 is devoted to the theory of upper motives. Finally weprove theorem 1 in §3, using an index redution formula due to Merkurjev, Paninand Wadsworth and the theory of upper motives. Theorem 1 gives a purely algebrairiterion to ompare upper diret summands of varieties of �ags of ideals, and leadsto a quite unexpeted dihotomy between upper motives of absolutely simple adjointalgebrai groups of inner type An.2 Generalities on entral simple algebrasOur referene for lassial notions on entral simple F -algebras is [9℄. A �nite-dimensional F -algebra A is a entral simple F -algebra if its enter Z(A) is equal to
F and if A has no non-trivial two-sided ideals. The square root of the F -dimensionof A is the degree of A, denoted by deg(A). Two entral simple F -algebras A and
B are Brauer-equivalent if Mn(A) and Mm(B) are isomorphi for some integers nand m, and the Shur index ind(A) of a entral simple F -algebra A is the degreeof the (uniquely determined up to isomorphism) entral division F -algebra Brauer-equivalent to A. The tensor produt endows the set Br(F ) of equivalene lasses ofentral simple F -algebras under the Brauer equivalene with a struture of a torsionabelian group. The exponent of A, denoted by exp(A), is the order of the lass of
A in Br(F ) and divides ind(A).Let A be a entral simple F -algebra and 0 ≤ d1 < ... < dk ≤ deg(A) be asequene of integers. A onvenient way to de�ne the variety of �ags of right idealsof redued dimension d1,..., dk in A is to use the language of funtor of points.For any R in F -alg, the set of R-points MorF (Spec(R),X(d1, ..., dk;A)) onsistsof the sequenes (I1, ..., Ik) of right ideals of the Azumaya R-algebra A ⊗F R suhthat I1 ⊂ ... ⊂ Ik, the injetion of AR modules Is → AR splits and the rank ofthe R-module Is is equal to ds · deg(A) for any 1 ≤ s ≤ k. For any morphism
R → S of F -algebras the orresponding map from R-points to S-points is given by
(I1, ..., Ik) 7→ (I1⊗RS, ..., Ik⊗RS). Two important partiular ases of varieties of �agsof right ideals are the lassial Severi-Brauer variety X(1;A), and the generalizedSeveri Brauer varieties X(i;A). If G is an algebrai group and X a projetive G-homogeneous F -variety, we say that X is isotropi if X has a zero-yle of degreeoprime to p, and X is anisotropi if X is not isotropi. If X = X(d1, ..., dk ;A) isa variety of �ags of right ideals, X is isotropi if and only if vp(gcd(d1, ..., dk)) ≥
vp(ind(A)). Note that if the Shur index of A is a power of p, X is isotropi if andonly if X has a rational point.
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3 The theory upper motivesOur basi referenes for the de�nitions and the main properties of Chow groupswith oe�ients and the ategory CM(F ; Λ) of Grothendiek Chow motives with o-e�ients in a ommutative ring Λ are [2℄ and [5℄. In the sequel G will be a semisimplea�ne adjoint algebrai group of inner type, X a projetive G-homogeneous F -varietyand Λ will be assumed to be a �nite and onneted ring. By [3℄ (see also [8℄) themotive of X deomposes in a unique way (up to isomorphism) as a diret sumof indeomposable motives under these assumptions. Among all the indeompos-able diret summands in the omplete motivi deomposition of X, the (uniquelydetermined up to isomorphism) indeomposable diret summand M suh that the
0-odimensional Chow group of M is non-zero is the upper motive of X.Upper motives are essential : any indeomposable diret summand in the om-plete motivi deomposition of X is the upper motive of another projetive G-homogeneous F -variety by [8, Theorem 3.5℄. This strutural result implies that thestudy of the motivi deomposition of a projetive G-homogeneous F -variety X isredued to the ase Λ = Fp. Indeed by [16, Corollary 2.6℄ the omplete motivi de-omposition ofX with oe�ients in Λ remains the same when passing to the residue�eld of Λ, and is also the same as if the ring of oe�ients is Fp by [4, Theorem 2.1℄,where p is the harateristi of the residue �eld of Λ. These results motivate thestudy of the set XG of upper p-motives of the algebrai group G, whih onsists ofthe isomorphism lasses of upper motives of projetive G-homogeneous F -varietiesin CM(F ;Fp). Furthermore the dimension of the upper motive of X in CM(F ;Fp)is equal to the anonial p-dimension of X by [6, Theorem 5.1℄, hene upper motivesenode important information on the underlying varieties. Upper motives also havegood properties : the upper motives of two projetive G-homogeneous F -varieties
X and X ′ in CM(F ;F) are isomorphi if and only if both XF (X′) and X ′

F (X) areisotropi by [8, Corollary 2.15℄. The variety X is isotropi if and only if the uppermotive of X is isomorphi to the Tate motive (that is to say the motive of Spec(F ))and this is why we fous in this note on the ase of anisotropi varieties of �ags ofright ideals.If G is absolutely simple adjoint of inner type An, G is isomorphi to PGL1(A),where A is a entral simple F -algebra of degree n+1. Any projetive G-homogeneous
F -variety is then isomorphi to a variety X(d1, ..., dk ;A) of �ags of right ideals in A(see [10℄) thus theorem 1 lassi�es upper motives of absolutely simple a�ne adjointalgebrai groups of inner type An. In the partiular ase of lassial Severi-Brauervarieties theorem 1 orresponds to [1, Theorem 9.3℄, sine for any �eld extension
E/F a entral simple F -algebra split over E if and only if the Severi-Brauer variety
SB(1, AE) has a rational point.4 Main resultsLet D be a entral division F -algebra of degree pn. For any 0 ≤ k ≤ n, Mk,Dwill denote the upper indeomposable diret summand of X(pk;D) in CM(F ;F). If
D′ is another entral division F -algebra of degree pn and j satis�es 1 ≤ j ≤ pn,3



we denote the integer pk

gcd(j,pk)
· ind(D ⊗D′−j) by µD,D′

k,j . In the sequel the followingindex redution formula (see [10, p. 565℄) will be of onstant use :
ind(DF (X(pk ;D′))) = gcd

1≤j≤pn
µD,D′

k,j = min
1≤j≤pn

µD,D′

k,jProposition 2. Let D and D′ be two entral division F -algebras of degree pn.Assume that exp(D) ≥ exp(D′) and that X(pk;D)F (X(pk ;D′)) is isotropi for someinteger 0 ≤ k < n. If ind(DF (X(k;D′))) = µD,D′

k,j0
, j0 is oprime to p.Proof. Suppose that p divides j0 and ind(DF (X(k;D′))) = µD,D′

k,j0
. By assumption

X(k;D)F (X(k;D′)) has a rational point, hene the integer µD,D′

k,j0
divides pk by [9,Proposition 1.17℄ and ind(D⊗D′−j0) | gcd(j0, p

k). Sine p divides j0, exp(D′−j0) <
exp(D′), therefore exp(D′−j0) < exp(D) and exp(D) = exp(D ⊗D′−j0). It followsthat exp(D) divides j0, thus exp(D′) also divides j0. The entral simple F -algebra
D′j0 is therefore split and D⊗D′−j0 is Brauer-equivalent to D so that ind(D) divides
pk, a ontradition.Theorem 3. Let F be a �nite �eld of harateristi p and D, D′ be two entraldivision F -algebras of degree pn. The following assertions are equivalent :1) for some integer 0 ≤ l < n, Ml,D and Ml,D′ are isomorphi in CM(F ;F);2) the lasses of D and D′ generate the same subgroup of Br(F );3) for any 0 ≤ l < n, Ml,D is isomorphi to Ml,D′ in CM(F ;F).Proof. We �rst show that 1) ⇒ 2). We may replae D by D′ and thus assumethat exp(D) is greater than exp(D′). Sine Ml,D is isomorphi to Ml,D′ , there isan integer j0 oprime to p suh that the Shur index of D ⊗ D′−j0 is equal to 1by [9, Proposition 1.17℄ and proposition 2, hene D ⊗ D′−j0 is split and the lassof D is equal to the lass of D′j0 in Br(F ). Furthermore sine j0 is oprime to pthe lass of D in Br(F ) is also a generator of the subgroup of Br(F ) generated by
[D′]. Now statement 2) ⇒ 3) : if [D] and [D′] generate the same group in Br(F ),
ind(DE) = ind(D′

E) for any �eld extension E/F . Given an integer 0 ≤ l < n, sine
X(pl;D) has a rational point over F (X(pl;D)), ind(D′

F (X(pl;D))
) = ind(DF (X(pl;D)))divides pl. The variety X(pl;D′) then also has a rational point over F (X(pl;D)) by[9, Proposition 1.17℄. The same proedure replaing D by D′ shows that X(pl;D)has a rational point over F (X(pl;D′)), hene Ml,D is isomorphi to Ml,D′ . Finally

3) ⇒ 1) is obvious.Corollary 4. Let D and D′ be two entral division F -algebras of degree pn and pn
′ .The upper summands Mk,D and Ml,D′ are isomorphi for some integers 0 ≤ k < nand 0 ≤ l < n′ if and only if k = l and the lasses of D and D′ generate the samesubgroup of Br(F ).Proof. Sine by [8, Theorem 4.1℄ the generalized Severi-Brauer varieties X(pk;D)and X(pl;D′) are p-inompressible, ifMk,D and Ml,D′ are isomorphi, the dimensionofX(pk;D) (whih is pk(pn−pk)) is equal to the dimension ofX(pl;D′). The equality

pk(pn−pk) = pl(pn
′

−pl) implies that k = l, n = n′ and it remains to apply theorem3. The onverse is lear by theorem 3. 4



Proof of theorem 1. Set X = X(d1, ..., dk;A), Y = X(d1, ..., dk;A
′), and also u =

vp(gcd(d1, ..., dk)) and v = vp(gcd(d
′
1, .., d

′
s)). If D and D′ are two entral division F -algebras Brauer-equivalent to Ap and A′

p, the upper indeomposable diret summandof X (resp. of Y ) is isomorphi to Mu,D (resp. to Mv,D′) by [8, Theorem 3.8℄. Byorollary 4 these summands are isomorphi if and only if u = v (sine X and Y areanisotropi) and the lasses of Ap and A′
p generate the same subgroup of Br(F ).Theorem 5. Let G and G′ be two absolutely simple a�ne adjoint algebrai groupsof inner type An and An′ . Then either XG ∩XG′ is redued to the lass of the Tatemotive or XG = XG′ .Proof. If XPGL1(A) ∩ XPGL1(A′) is not redued to the lass of the Tate motive,there are two anisotropi varieties of �ags of right ideals X = X(d1, ..., dk ;A) and

Y = X(d′1, ..., d
′
s;A

′) whose upper motives are isomorphi. By theorem 1 this im-plies that the upper p-motive of any anisotropi PGL1(A)-homogeneous F -variety
X(d1, ..., ds;A) is isomorphi to, say, the upper p-motive of X(d1, ..., ds;A
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