
WITT GROUPS OF ALGEBRAIC GROUPS

NOBUAKI YAGITA

Abstract. Let Gk be a split reductive group over a field k of ch(k) = 0
corresponding to a simply connected Lie group G. Let T be a maximal torus
of G. When k is an algebraically closed, the Balmer’s Witt group W ∗(Gk) is
isomorphic to KO2∗−1(G/T ) but not to KO2∗−1(G).

1. Introduction

Let X be a (quasi projective) smooth variety over a field k with k ⊂ C. The
Witt group W (X) is the quotient of the Grothendieck group of vector bundles
with quadratic forms over X , by the subgroup generated by bundles V with qua-
dratic forms which admit Lagrangian subbundles E. The generalized Witt group
W ∗(X ;L) is defined by Balmer [Ba] for ∗ ∈ Z/4 and for a line bundle L on X so
that W 0(X ;OX) = W 0(X) = W (X). (Moreover if L = L′ in Pic(X)/2, there is
an isomorphism W ∗(X ;L) ∼= W ∗(W ;L′).) We can define a natural map [Ya3], [Zi]

q∗ : W ∗(X)→ KO2∗(X(C))/KU2∗(X(C))
×η
→ KO2∗−1(X(C))

where KO∗(−) and KU∗(−) are (toplogical) real and complex K-theories, and
0 6= η ∈ KO−1(pt.) ∼= Z/2.

Let G be a compact connected Lie group and T a maximal torus of G and
B be the Borel subroup with T ⊂ B. Let us denote by Gk (resp. Tk, Bk) the
split reductive group (resp. its maximal torus, the Borel subgroup) over k which
corresponds G (resp. T , B). Let T 1

k ⊂ ... ⊂ T ℓ
k = Tk be a sequence of tori

of Gk where T i
k
∼= (A1 − {0})×i. Recently Calmès and Fasel [Ca-Fa] proved that

W ∗(Gk/Bk;L) = 0 whenever 0 6= L ∈ Pic(Gk/Tk)/2. (Note that W
∗(Gk/Bk;L) ∼=

W ∗(Gk/Tk;L) for all L.) There is a localization exact sequence in the Witt theory

δ
→W ∗−1(Gk/T

i
k; ti)

j∗
→W ∗(Gk/T

i
k)→W ∗(Gk/T

i−1
k )

δ
→ ...

where (t1, ..., tn) is a basis of Pic(G/T )/2. Here we see W ∗−1(Gk/T
i
k; ti) = 0 from

the result by Calmès and Fasel. By induction on i, we easily prove

Theorem 1.1. If rank2Pic(Gk/Tk)/2 = rank(Tk) = ℓ (e.g., G is a simply con-
nected and k is algebraically closed), then W ∗(Gk) ∼= W ∗(Gk/Tk).

Now let k be algebraically closed with ch(k) = 0. Also recently, Zibrowius
showed [Zi] that the above map q∗ is always an isomorphism for each cellular
variety X when k = C, and it can be generalized to any algebraically closed field.
Of course, the flag variety Gk/Bk is cellular. Hence we have the isomorphism

q∗ : W ∗(Gk) ∼= KO2∗(G/T )/KU2∗(G/T ) ∼= KO2∗−1(G/T ).
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Let us consider the Atiyah-Hirzebruch spectral sequence converges toKO∗(G/T ).
It is known that the differential d2 is the Steenrod squareing Sq2 mod(2). Kishi-
moto, Kono and Ohsita [Ki-Ko-Oh], [Ki-Oh], [Oh] computed this Atiyah-Hirzebruch

spectral sequence and showed that it collapses from the E∗,∗′

3 -term for simply con-
nected simple groups except for E7 and E8. Moreover the above KO2∗−1(G/T ) is
isomorphic to

H∗(G/T ;Sq2) = H∗(H2∗(G/T ;Z/2);Sq2)

for these groups.
On the other hand, there are spectral sequences E(P )∗,∗

′

r ( by Gille and Par-

don [Gi], [Pa]) and E(BW )∗,∗
′

r (by Balmer-Walter [Ba-Wa]) such that E(P )∗,∗
′

r

converges to grE(BW )∗,∗
′

2 and E(BW )∗,∗
′

r converges to W ∗(Gk).
By the Borel theorem, the cohomolgy H∗(G;Z/2) is isomorphic to a tensor

algebra of a polynomial algebra generated by even dimensional elements yi and
an exterior algebra generated by xj of odd dimensional. We consider the graded
algebra grH∗(G;Z/2) defined by the filtration w(yi) = 0 and w(xj) = 1. Then Sq2

acts on grH∗(G;Z/2) as a differential. Let us write its homology by

H∗(G;Sq2) = H∗(grH∗(G;Z/2);Sq2).

Then we can prove that E(P )∗,∗
′

3
∼= H∗(G;Sq2) with

deg(yi) = (1/2|yi|, 1/2|yi|) and deg(xj) = (1/2(|xj | − 1), 1/2(|xj|+ 1)).

In fact, by Totaro [To], it is known that d2 = Sq2 on E(P )∗,∗
′

2 when ∗ = ∗′.
Moreover we will see

Theorem 1.2. Let k be an algebraically closed field in C. For each simply con-
nected simple Lie group G, we have isomorphisms

W ∗(Gk) ∼= H∗(G/T ;Sq2) ∼= Λ(z1, ..., zs) deg(zi) = odd,

which is also isomorphic to
{

E(P )∗,∗
′

4
∼= H∗(H∗(G;Sq2); d3) for G = E6, E7, E8,

E(P )∗,∗
′

3
∼= H∗(G;Sq2) otherwise.

The explicit value of deg(zi) is given in §7 below.
I would like to thank Burt Totaro and Marcus Zibrouius who corrected many

errors in the first version of this paper.

2. the total Witt group

We can consider the generalized Witt group W i(X ;L) for i ∈ Z/4 and for a line
bundle L on X such that the usual Witt group W i(X) = W i(X ;OX) (see [Ba],
[Ba-Ca2], [Zi] for example). We also note if L = L′ mod(2), then we have a (non
canonical) isomorphism W ∗(X ;L) ∼= W ∗(X ;L′). Let us write the total Witt group

W total(X) = ⊕i∈Z/4, L∈Pic(X)/2W
i(X ;L).

The Gysin and the boundary maps are defined as the maps for W total(−). (Gysin
maps are constructed by Calmès and Hornbostel in [Ca-Ho], also see §4.1 in [Ne].)
Let g : Z ⊂ X be a regular embedding of codim = c, and U = X − Z. Let ωg be
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the relative canonical bundle (for the definition see [Ba-Ca1]). Then we have the
natural exact sequence ((11) in [Ba-Ca1])

→ W ∗−c(Z, ωg ⊗ L|Z)
g∗
→W ∗(X,L)

f∗

→ W ∗(U,L|U )
δ
→ ...

Here we note that the Witt group with the coefficient L is written by using Thom
space Th(L) of the bundle L ([Ne], [Zi]), namely, W ∗+1(X ;L) ∼= W̃ ∗(Th(L)) where

W̃ ∗(−) is the reduced theory. Then we also have for a vector bundle V on X

W ∗+c(X ; det(V )) ∼= W̃ ∗(Th(V )) for dim(V ) = c.

Let Gk be a split reductive group over a field k of ch(k) = 0 corresponding to a
compact Lie group G. Let Tk be a maximal (split) torus of Gk. We consider the
sequence of tori

T 1
k ⊂ T 2

k ⊂ ... ⊂ T ℓ
k = Tk where T i

k
∼= (A1 − {0})×i ∼= (Gm)×i.

Here we assume that rankZ/2(Pic(Gk/Tk)/2) = rank(T ) = ℓ and

Z/2{t1, ..., tℓ} ∼= Pic(Gk/Tk)/2.

We consider the Gm-bundle

Gm → G/T i−1
k → G/T i

k

where we take the base ti corresponding the above Gm-bundle. Let E(Gk/T
i
k) be

the line bundle corresponding to the above Gm-bundle so that G/T i−1
k is an open

subset of E(Gk/T
i
k). Then we have maps

Z = Gk/T
i
k

g
⊂ X = E(Gk/T

i
k)

f
⊃ U = X − Z = Gk/T

i−1
k .

Thus we have its localization exact sequence

→W ∗−1(Gk/T
i
k; ti + L)

g∗
→ W ∗(Gk/T

i
k;L)

f∗

→W ∗(Gk/T
i−1
k , L)

δ
→ ...

Let Bk be the Borel subgroup of Gk. Then we have the fibering

Uk → Gk/Tk → Gk/Bk

for the unipotent group Uk. Hence we have an isomorphism W ∗(Gk/Tk;L) ∼=
W ∗(Gk/Bk;L). We recall the result Calmès and Fasel

Lemma 2.1. ([Ca-Fa]) If L 6= 0 ∈ Pic(Gk/Tk)/2, then

W ∗(Gk/Tk;L) ∼= W ∗(Gk/Bk;L) = 0.

For an algebraically closed field k, we will give a topological proof of this fact in
§4 below.

Lemma 2.2. Let Li = e1t1 + ...+ eiti 6= 0 ∈ Pic(Gk/Tk)/2, ei = 0 or 1. Then we
have W ∗(Gk/T

i
k;Li) = 0 for 1 ≤ i ≤ ℓ.

Proof. Consider the localization exact sequence

→W ∗−1(Gk/T
ℓ
k ; tℓ + Lℓ−1)

g∗
→W ∗(Gk/T

ℓ
k;Lℓ−1)

f∗

→W ∗(Gk/T
ℓ−1
k , Lℓ−1)

δ
→ ...

Since the first and the second term are zero from the result by Calmès and Fasel,
the third term W ∗(Gk/T

ℓ−1
k , Lℓ−1) = 0.

Next consider the localization exact sequence

→W ∗−1(Gk/T
i
k; ti + Li−1)

g∗
→W ∗(Gk/T

i
k;Li−1)

f∗

→W ∗(Gk/T
i−1
k , Li−1)

δ
→ ...
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By induction, we assume the first and the second term are zero. Then we have
W ∗(Gk/T

i−1
k , Li−1) = 0. �

Theorem 2.3. If rank2Pic(Gk/Tk)/2 = rank(T ) = ℓ (e.g., G is a simply con-
nected and k is algebraically closed), then W ∗(Gk) ∼= W ∗(Gk/Tk).

Proof. We consider the localization exact sequence

→W ∗−1(Gk/T
i
k; ti)

g∗
→W ∗(Gk/T

i
k)

f∗

→W ∗(Gk/T
i−1
k )

δ
→ ...

Since the first term is zero from the preceding lemma, we have an isomorphism

W ∗(Gk/T
i
k)
∼= W ∗(Gk/T

i−1
k ).

When rank2(Pic(G/T )/2) = ℓ, then the above isomorphism holds for i = 1 also.
�

Next consider the case rank2(Pic(Gk/Tk)/2) + 1 = ℓ and Z/2{t2, ..., tℓ} ∼=
Pic(Gk/Tk)/2. Letting Li = e2t2 + ... + eiti, the arguments above also work
and we have

Corollary 2.4. If rank2(Pic(Gk/Tk)/2) + 1 = ℓ, then we have an isomorphism

W ∗(Gk) ∼= W ∗(Gk/Tk)⊗ Λ(x0), |x0| = 0.

Proof. We consider the localization exact sequence

→W ∗−1(Gk/T
1
k ; t1)

g∗
→W ∗(Gk/T

1
k )

f∗

→ W ∗(Gk)
δ
→ ...

where t1 ∈ Lℓ. But Pic(Gk/T
1
k ) = 0 (compare the results in §3 e.g. Theorem 3.4).

So the normal bundle for Gk/T
1
k ⊂ E(Gk/T

1
k ) is trivial. Hence the Gysin map

g∗ = 0. So we have

W ∗(Gk/T
1
k ; t1)

∼= W ∗(Gk/T
1
k )
∼= W ∗(Gk/Tk).

Hence we get the desired result. �

3. cohomology theories of compact Lie group G

Let G be a compact connected Lie group. By the Borel theorem, we have the
ring isomorphism

grH∗(G;Z/2) ∼= P (y)⊗ Λ(x1, ..., xl) with P (2) = ⊗iZ/2[yi]/(y
2ri
i )

where |yi| = even and |xj | = odd. Moreover for each yi, there is xj with x2
j = yi.

(In fact, H∗(G;Z/2) is multiplicatively generated by odd dimensional elements,
e.g., see [Ka].)

Let T be a maximal torus of G and BT the classifying space of T . We consider

the fibering G
π
→ G/T

i
→ BT and the induced spectral sequence

E∗,∗′

2 = H∗(BT ;H∗′

(G;Z/2)) =⇒ H∗(G/T ;Z/2).

The cohomology of the classifying space of the torus is given by

H∗(BT ;Z/2) ∼= S(t) = Z/2[t1, ..., tℓ] with |ti| = 2,

where ℓ is also the number of the odd degree generators xi in H∗(G;Z/2). It is
known that yi are permanent cycles and that there is a regular sequence ([Tod],[Mi-
Ni]) (b1, ..., bℓ) in H∗(BT ;Z/2) such that d|xi|+1(xi) = bi. Thus we get

E∗,∗′

∞
∼= grH∗(G/T ;Z/2) ∼= P (y)⊗ S(t)/(b1, ..., bℓ).



WITT GROUPS OF SPLIT GROUPS 5

Since H∗(G/T ;Z) is no torsion, we get the isomorphism

H∗(G/T ;Z) ∼= Z[y1, ..., yk, t1, ..., tℓ]/(f1, ..., fk, b̄1, ..., b̄ℓ)

where fi = y2
ri

i mod(Ideal(t1, ..., tℓ)) and b̄j = bj mod(2).
In particular, if |y| > 2 and |b1| > 2, then Pic(Gk/Tk) ∼= Z/2{t1, ..., tℓ} and

dim2(Pic(Gk/Tk)/2) = ℓ = dim(T ).

Let T 1 ⊂ ... ⊂ T ℓ = T be a sequence of tori of G where T i ∼= (S1)×i. The
fibering S1 → G/T i−1 → G/T i induces the Gysin exact sequence

δ
→ H∗−2(G/T i;Z/2)

j∗=×ti→ H∗(G/T i;Z/2)→ H∗(G/T i−1;Z/2)
δ
→ ...

From this arguments, we can compute H∗(G/T i;Z/2) from H∗(G/T ;Z/2).

Lemma 3.1. We can take tori T i such that b1, ..., bi is regular in S(t)/(ti+1, ..., tℓ),
and that bi = tigi in S(t)/(b1, ..., bi−1, ti+1, ..., tℓ) for some gi ∈ S(t).

Proof. In §4 in [Ya2], we see that the above assumption holds for each simply
connected simple Lie group G (when p = 2 in Lemma 2.1 in [Ya2]) except for
G = Sp(n), E8. (Note H∗(Spin(n)/T ;Z/2) ∼= H∗(SO(n)/T ;Z/2) see §3 in [Tod].)
The case G = Sp(n) is almost immediate since

H∗(G/T ;Z/2) ∼= Z/2[t1, ..., tn]/(c
2
1, ..., c

2
n).

where ci is the i-th elementary symmetric function on t1, ..., tn. In fact c21, ..., c
2
n is

regular and c2i = giti mod(ti+1, ..., tn).
For the case G = E8, we use the result by Kono-Ishitoya, Ohsita [Ko-Is], [Oh].

It is known that grH∗(G/T ;Z/2)/(P (y)) is isomorphic to

S(t)/(b1, ..., bℓ=8) ∼= S(t)/(c2, c3, c
′
5, c

′
9, I8, I12, I14, I15)

in the notation in [Ko-Is] (see [Ko-Is] for details). Here c′9 = c1(c8 + c7c1 + c0c
2
1)

and we think bℓ = c′9 and tℓ = c1. Next we see I15 = c8c7 mod(c1), and think
tℓ−1 = t8. We see that

I14 = c27, I12 = c26, c′5 = c5, I8 = c24 mod(c1, c8).

This shows the lemma for G = E8. �

Using this lemma, we can prove the following Corollary 3.2, Theorem 3.4 and
Corollary 3.5 (see also [Ya2]).

Corollary 3.2. (Lemma 2.1 in[Ya2]) We have an isomorphism

grH∗(G/T i;Z/2) ∼= H∗(G/T )/(ti+1, ..., tℓ)⊗ Λ(xi+1, ..., xℓ).

Examples. When G = U(n), we still know that P (y) ∼= Z/2 and

H∗(G;Z/2) ∼= Λ(x1, x3, x5, ..., x2n−1) with |xj | = j,

H∗(G/T ;Z/2) ∼= Z/2[t1, ..., tn]/(c1, c2, ..., cn).

Of course bi = ci is regular and satisfies (by gi = t1...ti−1) the lemma above

H∗(G/T i;Z/2) ∼= Z/2[t1, ..., ti]/(c1, ..., ci)⊗ Λ(x2i−1, ..., x2n−1).

Let X be an algebraic variety over k. Let H∗,∗′

(X ;Z/2) be the mod(2) motivic
cohomology constructed by Suslin and Voevodsky [Vo1]. For nonzero element x ∈
Hm,n(X ;Z/2), we define the weight degree and the different degree by

w(x) = 2n−m, d(x) = m− n.
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When X is smooth, it is known that w(x) ≥ 0, d(x) ≤ dim(X) for 0 6= x. (For
example see Corollary 2.3 in [Vo1].) Moreover from the affirmative answer by Vo-
evodsky to the Milnor conjecture (and hence the Beilinson-Lichtenbaum conjecture)
implies

H∗,∗′

(pt.;Z/2) ∼= Z/2[τ ]⊗KM
∗ (k)

where 0 6= τ ∈ H0,1(pt.;Z/2) ∼= Z/2 and the mod (2) Milnor K-theory isKM
∗ (k)/2 ∼=

H∗,∗(pt.;Z/2).
Let us denote by Gk the split reductive group over k corresponding to the com-

pact Lie groupG and T i
k the spit torus. SinceGk/Bk is cellular andH∗,∗′

(Gk/Bk;Z/2) ∼=
H∗,∗′

(Gk/Tk;Z/2), we have the isomorphism

H∗,∗′

(Gk/Tk;Z/2) ∼= KM
∗ (k)/2⊗H∗,∗′

(GC/TC;Z/2)

∼= H∗,∗′

(pt.;Z/2)⊗H∗(G/T ;Z/2) with w(H∗(G/T ;Z/2)) = 0.

In particular, we note that the realization map tC : Gk/Tk → GC/TC induces an
isomorphism Pic(Gk/Tk)/2 ∼= Pic(GC/TC)/2.

For the motivic theory, we have also the Thom isomorphism and hence the Gysin
exact sequence

δ
→ H∗−2,∗′−1(Gk/T

i
k;Z/2)

×ti→ H∗,∗′

(Gk/T
i
k;Z/2)→ H∗,∗′

(Gk/T
i−1
k ;Z/2)

δ
→ ...

Since H2∗+1,∗(Gk/T
i
k;Z/2) = 0 (the weight degree< 0), we have

H2∗−2,∗−1(Gk/T
i
k;Z/2)

×ti→ H2∗,∗(Gk/T
i
k;Z/2)→ H2∗,∗(Gk/T

i−1
k ;Z/2)

δ
→ 0.

By descending induction on i, we easily show

H2∗,∗(Gk/T
i;Z/2) ∼= H2∗(G/T ;Z/2)/(ti+1, ..., tℓ)

and there is xi ∈ H2∗−1,∗(Gk/T
i−1;Z/2) with δ(xi) = bi. Moreover, we have the

following theorems

Theorem 3.3. (Theorem 3.1 in [Ya2]) There is an H∗(pt.;Z/2)-module isomor-
phism

H∗,∗′

(Gk/T
i
k;Z/2)

∼= H∗(G/T i;Z/2)⊗H∗,∗′

(pt.;Z/2)

where the bidegree in H∗(G/T i;Z/2) is given for nonzero element u ∈ H∗(G/T ;Z/2)
by w(u) = 0 and w(xi) = 1.

Corollary 3.4. (Corollary 3.2 in [Ya2]) Define a filtration F ′
i to be the H∗(pt.;Z/2)-

module generated by elements x with w(x) ≤ i. Then we have

grH∗,∗′

(Gk;Z/2) = ⊕F
′
i/F

′
i−1
∼= H∗,∗′

(pt.;Z/2)⊗ P (y)⊗ Λ(x1, ..., xℓ)

where w(P (y)) = 0 and w(xi) = 1.

Proof. Since tC : H2∗,∗(Gk;Z/2)→ H2∗(G;Z/2) is an isomorphism, we have y2
ri

i =
0 ∈ H2∗,∗(Gk;Z/2). Let x2

i = yj. Since w(x2
i ) = 2 and tC(τ) = 1 and KM

+ (k) ⊂
Ker(tC), we see

x2
i = τyj mod(Ideal(KM

+ (k)/2)).

�

Theorem 3.5. (Theorem 3.3 in [Ya2]) Suppose that H∗,∗′

(X ;Z/2) is Z/2[τ ]-free.
Then

H∗,∗′

(X ×Gk/T
i
k;Z/2)

∼= H∗,∗′

(X ;Z/2)⊗H∗.∗′(pt.;Z/2) H
∗,∗′

(Gk/T
i
k;Z/2).
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Corollary 3.6. (Corollary 3.4 in [Ya2]) By the assumption in the preceding theo-

rem, the Künneth formula holds for H∗,∗′

(Gk;Z/2). Hence it is a Hopf algebra.

4. KO-theory

We explain the KO-theory of flag manifolds G/T according to Hara, Kishi-
moto, Kono and Ohsita [Ha], [Ki-Ko-Oh]. Recall that the coefficient rings of the
(topological) KO∗-theory and KU∗-theory are ( e.g., see §1 in [Ha])

KO∗ ∼= Z[µ, µ−1, η, w]/(2η, η3, w2 − 4µ, ηw),

KU∗ ∼= Z[β, β−1]

with |µ| = −8, |w| = −4, |η| = −1 and |β| = −2. To compute KO∗(G/T ), we
consider the Atiyah-Hirzebruch spectral sequence

E∗,∗′

2
∼= H∗(G/T ;KO∗′

) =⇒ KO∗+∗′

(G/T ).

It is well known that the first differential is ((3.1) in [Ha], [Fuj])

d2(λ⊗ x) = λη ⊗ Sq2(x̄), λ ∈ KO∗

where x̄ ∈ H∗(G/T ;Z/2) is the mod 2 reduction of x.
Note Sq2Sq2 = Sq3Sq1 from the Adem relation. So Sq2Sq2(x) = 0 inH∗(G/T ;Z/2)

(in fact Hodd(G/T ;Z/2) = 0). Let us write

H∗G/T ;Sq2) = H(H2∗(G/T ;Z/2);Sq2)

the homology with the differential Sq2. To compatible with W ∗(−), we define de-
gree of element x ∈ H∗(G/T ;Sq2) by half of that in H∗(G/T ;Z/2), i.e., deg(x) =
1/2|x|. Hence we have

E2∗,odd
3

∼= E2∗,8∗′−1
3

∼= Z/2{η}[µ, µ−1]⊗H∗(G/T ;Sq2).

Hence E2∗,odd
∞ is isomorphic to a subquotient of H∗(G/T ;Sq2).

Kishimoto, Kono and Ohsita [Ki-Ko-Oh], [Ki-Oh] get this homology for G =
U(n), Sp(n), O(n), G2, F4, E6. For example

H∗(U(2m+ 1)/T ;Sq2) ∼= Λ(z3, z7, ..., z4m−1)

where z4s−1 =
∑

i1<...<is
ti1t

2
i2
...t2is in H∗(G/T ;Z/2), (in fact Sq2(z4s−1) = 0).

Since deg(dr) = (r + 1,−r), we see the Atiyah-Hirzebruch spectral sequence

collapses form the E∗,∗′

3 -term for the case G = U(2m + 1). The same fact hap-
pens for other groups, e.g., Kishimoto, Kono and Ohsita proved that the following
assumption is satisfied for all above groups G.

Assumption 4.1. The Atiyah-Hirzebruch spectral sequence for KO∗(G/T ) col-

lapses from the E∗,∗′

3 -term.

Let Y be a topological space (e.g., a finite dimensional CW -complex). We have
the following well known (Bott) exact sequence ((1.1) in [Ha], (3.4) in [At])

(1) → KO∗+1(Y )
×η
→ KO∗(Y )

c
→ KU∗(Y )

r·β−1

→ KO∗+2(Y )→ ...

where c is the complexification map and r is the real restriction map. The map
β−1 : KU∗(Y )→ KU∗+2(Y ) is an isomorphism. Let us write

KO∗(Y )/KU∗(Y ) = KO∗(Y )/(rKU∗(Y )) = KO∗(Y )/(rβ−1KU∗(Y )).
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Then we have

KO∗(Y )/KU∗(Y ) ∼= KO∗(Y )/(Kerη) ∼= Im(η)(KO∗(Y ))

(which is 2-torsion since so is η), e.g., KO∗/KU∗ ∼= Z/2{1, η}[µ, µ−1].
Hereafter, in this paper, let us write

KO2∗(Y )/KU2∗(Y ) = ⊕r∈Z/4KO2r(Y )/KU2r(Y ),

(while KO∗(Y ) means usually ⊕r∈ZKOr(Y )). Taking the degree modulo 4 in
H∗(G/T ;Sq2), we have a ring isomorphism ;

Corollary 4.2. The graded ring KO2∗(G/T )/KU2∗(G/T ) is isomorphic to a sub-
quotient of H∗(G/T ;Sq2). Moreover if Assumption 4.1 is satisfied, then

KO2∗(G/T )/KU2∗(G/T ) ∼= H∗(G/T ;Sq2).

By Künneth theorem, we have

H∗(X × Y ;Sq2) ∼= H∗(X ;Sq2)⊗H∗(Y ;Sq2).

Hereafter this section, we assume that k is algebraically closed. When X is cel-
lular variety over C, Zibrouwius shows that W ∗(X) ∼= KO2∗(X(C))/KU2∗(X(C)).
(For the another proof, see §5 below.) This fact is easily extended to any alge-
braically closed field k ∈ C. Hence we get

Corollary 4.3. If Assumption 4.1 holds, then KO∗(G/T )/KU∗(G/T ) has the
Künneth formula and (from Lemma 2.5)

W ∗(Gk) ∼= H∗(G/T ;Sq2)

is a Hopf algebra (for an algebraically closed field k).

Example. Let G = SU(3). Then H∗(G;Z/2) ∼= Λ(x3, x5) and

H∗(G/T ;Z/2) ∼= Z/2[t1, t2, t3]/(c
′
1, c

′
2, c

′
3)
∼= Z/2[t1, t2]/(c

2
1 + c2, c1c2)

where c′i (resp. ci) is the i-th elementary symmetric function of 3-variables (resp.
2-variables). Hence we see

W ∗(Gk/Tk) ∼= KO2∗(G/T )/KU2∗(G/T ) ∼= H∗(G/T ;Sq2) ∼= Λ(z3)

where z3 = t1t
2
2. (SQ

2(z3) = t21t
2
2 = c22 = 0.) Then we have W ∗(Gk) ∼= W ∗(Gk/Tk)

and it is a primitive Hopf algebra Λ(z3). On the other hand, we consider the
Atiyah-Hirzebruch spectral sequence converging to KO∗(G). Since Sq2(x3) = x5,
we see

E∗′,−1
3

∼= E2∗,−1
3

∼= H∗(H∗(G;Z/2);Sq2) ∼= Λ(v4)

where v4 = x3x5. We easily see E∗,∗′

3
∼= E∗,∗′

∞ from dimensional reason. Thus the
map

q∗ : W ∗(Gk) ∼= Λ(z3)→ KO2∗(G)/KU2∗(G) ∼= Λ(v4)

is not injective nor surjective since deg(v4) = 4 but deg(z3) = 3.
We will prove the Camlès and Fasel result for an algebraically closed field k. Let

L be a line bundle over X and Th(L) be its Thom class. Recall W ∗−1(X ;L) ∼=
W̃ ∗(Th(L)).

Lemma 4.4. (Zibrowius (2.4) in [Zi])

H∗(H̃∗(Th(L);Z/2);Sq2) ∼= H∗(H∗(X ;Z/2);Sq2 + c1(L)).
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Proof. We recall the Steenrod algebra A2-strucure of the Thom space

H̃∗(Th(L);Z/2) ∼= H∗(X ;Z/2){c1} ⊂ H∗(X ;Z/2){1, c1} ∼= H∗(P (L);Z/2)

where P (L) is the associated projective bundle and c1 is the first Chern class so
that c21 = c1(L)c1. Hence for x ∈ H∗(X);Z/2), we have (by Cartan formula)

Sq2(xc1) = Sq2(x)c1 + xc1(L)c1 = (Sq2 + c1(L))xc1.

Each element in H̃∗(Th(L);Z/2) is expressed as xc1, and we have the result. �

Recall that grH∗(G/T ;Z/2) ∼= P (y)⊗ S(t)/(b1, ..., bℓ) and S(t) = Z/2[t1, ..., tℓ].

Lemma 4.5. For each 0 6= t ∈ Z/2{t1, ..., tℓ}, we get

H∗(H∗(Th(t);Z/2);Sq2) ∼= H∗(H∗(G/T ;Z/2);Sq2 + t) = 0.

Proof. Let t = t1 and d = Sq2 + t. Give a weight by w(t1) = 1 and w(ti) = 0
for i ≥ 2 and consider the graded ring grS(t). Then d = Sq2 + t acts on Z/2[ti]
as Sq2 + 0 for i ≥ 2. Decompose grS(t) = Z/2[t1] ⊗ B as a d-module with
B = ⊗i≥2Z/2[ti] . Then

H∗(grS(t); d) ∼= H∗(B; d) ⊗H∗(Z/2[t]; d) ∼= Z/2⊗ 0 = 0

since H∗(Z/2[t], d) = 0, (d = Sq2 + t : teven 7→ teven+1) while H∗(Z/2[t];Sq2) ∼=
Z/2, (Sq2 : todd 7→ todd+1). Hence H∗(S(t); d) itself is also zero.

We use the induction on i with |xi| ≤ |xi+1|. The Sq2-action on H∗(G;Z/2) is
a derivative (mod(Sq1)). Hence Sq2 acts on the ring generators to ring generators
or zero, i.e., we can take generators xi so that Sq2(xi) = xi+1 or Sq2(xi) = 0.
(Moreover if |xi| + 2 = |xj |, then Sq2xi = xj for simply connected simple Lie
groups.) Let Sq2(x1) = x2. Write dr(x1) = b1 and dr+2(x2) = b2. Then the
Cartan-Serre transgression theorem implies that

Sq2(b1) = Sq2(dr(x1)) = dr+2(Sq
2(x1)) = dr+2(x2) = b2.

Similarly if Sq2(x1) = 0, then Sq2(b1) = 0.
Suppose that Sq2(b1) = 0 (i.e., Sq2(x1) = 0 by the arguments above). Then

S(t)/(b1) is a d-module because

(Sq2 + t)(xb1) = Sq2(x)b1 + txb1 ∈ Ideal(b1)

by the Cartan formula. We consider the short exact sequence

0→ S(t)
b1→ S(t)→ S(t)/(b1)→ 0

of d-modules, and consider the induced long exact sequence

→ H∗(S(t); d)→ H∗(S(t); d)→ H∗(S(t)/(b1); d)→ ...

The first and the second terms in the above sequence are zero, and so is the third,
namely H∗(S(t)/(b1); d) = 0.

Suppose that Sq2(b1) 6= 0. Then take b2 with Sq2(b1) = b2 (i.e., Sq2(x1) = x2).
Then S(t)/(b2) is a d-module and H∗(S(t)/(b2); d) = 0 by the arguments above.
Next consider a short exact sequence of d-modules

0→ S(t)/(b2)
b1→ S(t)/(b2)→ S(t)/(b1, b2)→ 0.

Considering the induced long exact sequence of d-homology, we getH∗(S(t)/(b1, b2); d) =
0. Similarly, we have H∗(S(t)/(b1, ..., bℓ); d) = 0.
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Thus we see

H∗(grH∗(G/T ;Z/2); d) ∼= H∗(P (y); d) ⊗H∗(S(t)/(b1, ..., bℓ); d) ∼= 0.

�

Theorem 4.6. (Calmès and Fasel theorem for algebraically closed field) Let k be
an algebraically closed and 0 6= L ∈ Pic(Gk/Tk)/2. Then W ∗(Gk/Tk;L) = 0.

Proof. We have

W ∗−1(Gk/Tk;L) ∼= W̃ ∗(Th(L)) ∼= K̃O2∗(Th(L))/K̃O2∗(Th(L)).

The last term is isomorphic to a subquotient of H∗(H̃∗(Th(L);Z/2);Sq2), which is
isomorphic to H∗(H∗(G/T ;Z/2);Sq+ c1(L)) = 0 from the preceding lemma. �

5. hermitian K-theory

The Balmer Witt group can be extended as a generalized cohomology theory
for the stable A1-homotopy category as follows. By Hornbostel, Schlichting, Panin
and Walter [Ho], [Sch], [Pa-Wa], there is a spectrum KO in the stable A1-category
such that the hermitian K-theory is written as

KO∗,∗′

(X) ∼= HomA1(X,S∗,∗′

∧KO)

where S∗,∗′

is the sphere of deg = (∗, ∗′), e.g., S2,1 ∼= P1. Moreover the Witt group
is written as

W i(X) ∼= KOi+∗,∗(X) for i− ∗ > 0

(namely, W d(∗,∗′)(X) ∼= KO∗,∗′

(X) for w(∗, ∗′) < 0).

Since KO∗,∗′

(−) theory has a good product [Pa-Wa], so does W ∗(X), namely,
W ∗(X) is a graded ring.

Let tC : KO∗,∗′

(X) → KO∗(X(C)) be the realization map (§3.4 in [Vo1]). So
we have a natural map

W ∗(X) ∼= KO2∗−1,∗−1(X)→ KO2∗−1(X).

Zibrowius proves (Theorem 2.5 in [Zi]) that the above map is an isomorphism when
X is cellular and k = C.

We give its (a bit different) proof here for an algebraically closed k. Let X
be cellular (of dimX = n). Then by the definition, X has a filtration by closed
subvarieties

∅ = Z−1 ⊂ Z0 ⊂ ... ⊂ Zn = X

such that the open complement of Zk−1 in Zk is isomorphic to
∐

Ak. In general,
Zk are not smooth. Let us write Xi = X − Zi. So we have Zn − Zn−1 = Xn−1 ⊂
X2 ⊂ ... ⊂ X−1 = X. Since Zi − Zi−1 ⊂ Xi−1 is smooth, we have the long exact
sequences

→W ∗(Th(Zn−1 − Zn−2))
i∗→W ∗(Xn−2)

j∗

→W ∗(Xn−1 = Zn − Zn−1)
δ
→ ...,

→W ∗(Th(Zi − Zi−1))
i∗→W ∗(Xi−1)

j∗

→W ∗(Xi)
δ
→ ...,

→W ∗(Th(Z0 − Z−1))
i∗→W ∗(X−1 = X)

j∗

→W ∗(X0)
δ
→ ...

By induction, we easily show the Zibrowius theorem from the following lemma.
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Lemma 5.1. Let k be an algebraically closed field. Let U → X → T be a cofiber
sequence in the stable A1-homotopy category. For both Y = T, U , if the following
(1),(2) are satisfied

(1) KUodd(tC(Y )) = 0,

(2) tC : W ∗(Y ) ∼= KO2∗(tC(Y ))/KU2∗(tC(Y )) ∼= KO2∗−1(tC(Y )),

then so are for Y = X.

Proof. Let us write KO∗(tC(−)) by KO∗(−) simply. We consider the following
diagram for long exact sequences

W ∗−1(U)
δ

−−−−→ W ∗(T )
g∗

−−−−→ W ∗(X)
f∗

−−−−→ W ∗(U)
δ

−−−−→ W ∗+1(T )

t1





y

∼=





y

t2 t3





y

∼=





y

t4 t5





y

KO2∗−2(U)
δ

−−−−→ KO2∗−1(T )
g∗

−−−−→ KO2∗−1(X)
f∗

−−−−→ KO2∗−1(U)
δ

−−−−→ KO2∗(T ).

First we see that the map t5 is injective from the following diagram

W ∗+1(T ) ∼= KO2∗+1,∗(T )
η

−−−−→
∼=

W ∗+1(T ) ∼= KO2∗,∗−1(T )

∼=





y

t5





y

KO2∗+1(T )
η

−−−−→ KO2∗(T ).

Indeed, η : KOodd(T )→ KOeven(T ) is injective from the Bott exact sequence since
KUodd(T ) = 0 (note that η : KOeven(T )→ Kodd(T ) is surjective.)

Next we study the map t1. Since δ|KU2∗−2(U) = 0 (from K2∗−1(T ) = 0), the
map δ factors as

δ : KO2∗−2(U)→ KO2∗−2(U)/KU2∗−2(U)→ KO2∗−1(T ).

Moreover, we have the diagram

KO8N+2∗−2,∗−1(U)
∼=

−−−−→ W ∗−1(U) −−−−→ W ∗(T )

t1





y

∼=





y

t2





y

KO2∗−2(U) −−−−→ KO2∗−2(U)/KO2∗−2(U) −−−−→ KO2∗−1(T ).

Then we can prove the lemma from the five lemma. If t3(x) = 0, then f∗(x) = 0,
so there is x′ ∈ W ∗(T ) with g∗(x′) = x. Since g∗(t2(x

′)) = 0, there is x̃ ∈
KO2∗−2(U) with δ(x̃) = .t2(x

′). From the above diagram, we can take x′′ ∈
W ∗−1(U) such that t1(x

′′)− x̃ = 0 ∈ KO2∗−2(U)/KU2∗−2(U). Since t2(δ(x
′′)) =

δ(x̃) = t2(x
′), we see that δx′′ = x′ and x = 0. Hence t3 is injective.

For y ∈ KO2∗−1(X), we can take y′ ∈W ∗(U) with t4(y
′) = f∗(y). Then δ(y′) =

0 since t5 is injective. So there is y′′ ∈W ∗(X) such that f∗(t3(y
′′)− y) = 0. Hence

there is z ∈ KO2∗−1(X) with g∗(z) = t3(y
′′)−y. Then we see t3(y

′′−g∗t−1
2 (z)) = y.

Therefore we also have the surjectivity of t3. �

We will study the case which is not cellular but (1), (2) in the above lemma are
satisfied.

Lemma 5.2. Let k be an algebraically closed field. Let U → X → T be a cofiber
sequence in the stable A1-homotopy category. For both Y = X,T (resp. Y =
X,U), if (1),(2) in Lemma 5.1 are satisfied, and moreover, g∗ : KU∗(tC(T )) →
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KU∗(tC(X)) is injective (resp. f∗ : KU∗(tC(X)) → KU∗(tC(U)) is surjective),
then (1), (2) are satisfied for Y = U (resp. Y = T ).

Proof. Consider the diagram for exact sequences

W ∗(T )
g∗

−−−−→ W ∗(X)
f∗

−−−−→ W ∗(U)
δ

−−−−→ W ∗+1(T )
g∗

1−−−−→ W ∗+1(X)

∼=





y

t2 t3





y

∼=





y

t4 t5





y

t6





y

KO2∗−1(T )
g∗

−−−−→ KO2∗−1(X)
f∗

−−−−→ KO2∗−1(U)
δ

−−−−→ KO2∗(T )
g∗

2−−−−→ KO2∗(X).

We want to see that t4 is an isomorphism. Consider the Bott exact sequence

0→W ∗+1(T ) ∼= KO2∗+1(T )
η

−−−−→ KO2∗(T ) −−−−→ KU2∗(T )

g∗

1





y

g∗

2





y

g∗

3





y

injective

0→W ∗+1(X) ∼= KO2∗+1(X)
η

−−−−→ KO2∗(X) −−−−→ KU2∗(X)

Here note that ×η|KOodd(−) is injective, and g∗3 are also injective by the assump-
tion. If x ∈ Ker(g∗2), then x ∈ Im(η) from the injectivity of g∗3 . Hence we easily
see (from the injectivity of ×η) that Ker(g∗2)

∼= Ker(g∗1), and t4 is isomorphic from
the five lemma.

The second case is similarly proved by using the following diagram (to see
Im(f∗

2 )
∼= Im(f∗

3 )).

KU2∗−2(X) −−−−→ KO2∗−2(X) −−−−→ KU2∗−2(X)/KU2∗−2(X) ∼= W ∗−1(X)

f∗

1





y

surjective f∗

2





y

f∗

3





y

KU2∗−2(U) −−−−→ KO2∗−2(U) −−−−→ KU2∗−2(U)/KU2∗−2(U) ∼= W ∗−1(U)

�

Remark. When X = G/T, T = Th(tℓ) and U = G/T ℓ−1, of course, tℓ :
KU∗(T )→ KU∗(X) is not injective. In fact, KU∗(G/T ) ∼= KU∗ ⊗H∗(G/T ) and
gℓ (given in Lemma 3.1) is in Ker(tℓ).

We consider the classifying space BG for a finite group G. First consider the
case G = Z/2r. In the stable A1-homotopy category, we have the cofibering (see
(6.4) in [Vo3] for details)

BZ/2r → E
qr
→ Th(E)

where E = O(−2r) is the −2r-th twisted line bundle (of the canonical one) of P∞

and Th(E) is its Thom space and qr is the composition map with 2r-times twist
on P∞ and the quotient map.

Of course Pn is cellular, and (see §7 in [Ya1])

W ∗(Pn) ∼=

{

Z/2{1, yn} for deg(yn) = n if n : odd

Z/2{1}, otherwise.

Hence we have W ∗(P∞) ∼= Z/2. (For Witt groups of infinite spaces, see the remark
after Lemma 6.1 below.) . We also see W ∗((P∞)×n) ∼= Z/2. Moreover E = O(−2r)
represents zero in Pic(P∞)/2, and so we have the Thom isomorphism

W̃ ∗+1(Th(E)) ∼= W ∗(E) ∼= W ∗(P∞) ∼= Z/2.
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Therefore we have the exact sequence

→W ∗−1(P∞)
×2r=0
→ W ∗(P∞)→W ∗(BZ/2r)→ ...

Hence we obtain W ∗(BZ/2r) ∼= Λ(x) with deg(x) = 0. (In fact x2 = 0 since so in

E(P )∗,∗
′

2 and x2 6= 1 by the naturality.)
For each space X , we have the cofibering

BZ/2r ×X → E ×X
qr×id
→ Th(E)×X.

By induction on i, starting (P∞)×n, we can prove with deg(xj) = 0

W ∗((×i
s=1BZ/(2rs))× (P∞)×(n−i)) ∼= Λ(x1, ..., xi).

Theorem 5.3. Let k be algebraically closed. Let G be a 2-group of rank = n i.e.,
G ∼= ⊕n

s=1Z/(2
rs). Then there are isomorphisms

q∗ : W ∗(BG) ∼= KO2∗(BG)/KU2∗(BG) ∼= Λ(x1, ..., xn), deg(xi) = 0.

Proof. We only need to see the first isomorphism. It is well known that KU∗(BG)
is torsion free for each compact group G. In particular

×2ri |KU∗((×i−1
s=1BZ/(2rs))× (P∞)×(n−i+1))

is injective. Hence this satisfies the assumptions in the preceding lemma. Hence
(2) in the lemma also satisfies for U = (×i

s=1BZ/(2rs))× (P∞)×(n−i). �

The isomorphisms are still given in Theorem 7.4, 7.7 in [Ya1] for G = (Z/2)⊕n.
(However it was not proved that the map q∗ induces these isomorphisms.)

Recall grH∗(BZ/2r) ∼= Z/2[y]⊗ Λ(x), and Pic(BZ/2r)/2 ∼= Z/2{y}. We easily
see H∗(H∗(Z/2[y]⊗ Λ(x);Sq2 + y) = 0 as the proof of Lemma 4.5. The analogue
of the theorem by Calmès and Fasel also holds.

Corollary 5.4. Let k be algebraically closed and let G ∼= ⊕n
s=1Z/(2

rs). Then

W ∗(BG;L) = 0 for 0 6= L ∈ Pic(BG)/2.

Let S be a 2-Sylow subgroup of a finite group G. Since we can identify the
induced map g : BS → BG as a finite covering, we have the Gysin map g∗ in also
Witt theory (so that g∗g

∗ = [G;S]).

Corollary 5.5. Let k be algebraically closed. Let G be a finite group having an
abelian 2-Sylow subgroup. Then

q∗ : W ∗(BG) ∼= KO2∗(BG)/KU2∗(BG).

6. Gille-Pardon spectral sequence.

Balmer and Walter ((1) in [Ba-Wa]) define the Gersten-Witt complex

0→W (k(X))→ ⊕x∈X(1)W (k(x))→ ...→ ⊕x∈X(n)W (k(x))→ 0.

Let H∗(W (X)) denote the cohomology group of the above cochain complex, with
W (k(X)) in degree 0. Then Balmer-Walter constructed the spectral sequence (The-
orem in [Ba-Wa])

E(BW )r,t2
∼=

{

Hr(W (X)) (t = 0 mod(4)) =⇒W r+t(X).

0 (t 6= 0(mod(4))
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By the affirmative answer to the Milnor conjecture of quadratic forms by Orlov-
Vishik-Voevodsky (Theorem 4.1 in [Or-Vi-Vo]), we have an isomorphism of graded
rings H∗

et(k(x);Z/2)
∼= grW (k(x)). Using this fact, we can reinterpret the Pardon-

Gille spectral sequence (Corollary 0.13 in [Pa] and [Gi]) as a spectral sequence

E(P )r,s2
∼= Hr

Zar(X ;Hs
Z/2) =⇒ Hr(W (X)) ∼= E(BW )r,4t2

so that the differential dr has degree (1, r − 1) for r ≥ 2. Here Hs
Z/2 is the Zariski

sheaf associated to the presheaf V 7→ Hs
et(V ;Z/2) for any open subscheme V of X .

The above sheaf cohomology Hr
Zar(X ;Hs

Z/2) is related to the motivic cohomol-

ogy H∗,∗′

(X ;Z/2) = ⊕r,s∈ZH
r,s(X ;Z/2) (for details, see [Vo1-3]) as follows.

Recall that τ ∈ H0,1(Spec(k);Z/2) ∼= Z/2 be a generator. (For example, if

k is algebraically closed, then H∗,∗′

(Spec(k);Z/2) ∼= Z/2[τ ].) Then we get the
long exact sequence from the solution of the Beilinson-Lichtenbaum conjecture
(Theorem 1.3 in [To], Lemma 2.4 (5) in [Or-Vi-Vo]),

→ Hm,n−1(X ;Z/2)
×τ
→ Hm,n(X ;Z/2)

→ Hm−n
Zar (X ;Hn

Z/2)→ Hm+1,n−1(X ;Z/2)
×τ
→ ...

All elements in the above cohomology groups are 2-torsion, and we have the fol-
lowing additive isomorphisms

Lemma 6.1. E(P )m−n,n
2

∼= Hm−n
Zar (X ;Hn

Z/2)
∼=

Hm,n(X ;Z/2)/(Im(τ))⊕Ker(τ)|Hm+1,n−1(X;Z/2).

Remark. LetXn be smooth and colimnXn = X . Suppose⊕sH
∗(Xn;H

s
Z/2) is a

finite group. (Note H∗(Xn;H
∗′

Z/2) = 0 for ∗ > dim(Xn).) Then ⊕m,sE(P )m,s
r (Xn)

is a finite group, and so is ⊕mE(BW )m,0
∞ . Therefore W ∗(Xn) is a finite group for

each ∗ ∈ Z/4. So lim1 = 0, and we have

W ∗(X) ∼= limnW
∗(Xn).

It is well known that CHm(X) ∼= H2m,m(X ;Z) (Corollary 2 in [Vo2]). Since
H2m+1,m(X ;Z) = 0 (Corollary 2.3 in [Vo1]), from the Bockstein exact sequence,
we have an isomorphism H2m,m(X ;Z/2) ∼= H2m,m(X ;Z)/2. In particular,

E(P )m,m
2
∼= Hm

Zar(X ;Hm
Z/2)
∼= H2m,m(X ;Z/2) ∼= CHm(X)/2,

E(P )m,m+1
2

∼= Hm
Zar(X ;Hm+1

Z/2 ) ∼= H2m,m+1(X ;Z/2).

In H∗,∗′

(X ;Z/2), we can define the cohomology operation Sqi from Voevodsky (§9
in [Vo3], §3.3 in [Vo1]) (or Brosnan [Br] for CH∗(X)/2). This Sqi is compatible
with that in the usual (topological) mod 2 cohomology via the realization map tC
when k ⊂ C (§3.4 in [Vo1]). Moreover Sq2Sq2 = τSq3Sq1 (Theorem 10.2 in [Vo3]).
Then Totaro proved

Lemma 6.2. (Theorem 1.1 in [To]) If x ∈ E(P )m,m
2
∼= CHm(X)/2, then d2(x) =

Sq2(x).

We assume the following assumption throughout this section

Assumption 6.3. If x ∈ E(P )m,m+1
2

∼= H2m+1,m+1(X ;Z/2), then d2(x) = Sq2(x).
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This assumption should be proved if the Gersten-Witt complex can be defined
for each object X in the A1-homotopy category (see Proposition 7.8 in [Ya1]).

Hereafter in this paper, we always assume that k is an algebraically closed field
(of ch(k) = 0). Hence H∗,∗′

(pt.;Z/2) ∼= Z/2[τ ]. Since W ∗′′

(X) = BO∗,∗′

(X) has
the ring structure from the results by Schlichting and Panin-Walter, W ∗(−) is a
multiplicative cohomology theory. So W ∗(X) is a W ∗(pt.) ∼= Z/2-algebra, i.e., we
have the cup product

W ∗(X)⊗Z/2 W
∗′

(X)→W ∗+∗′

(X ×X)
∆
→W ∗+∗′

(X).

For a map X → Y in A1-homotopy category, we have the long exact sequence

→ W̃ ∗(Y/X)→W ∗(Y )→W ∗(X)
δ
→ W̃ ∗+1(Y/X)→ ...

The coboundary map δ is a derivation (over Z/2) in the following sense. There is
a commutative diagram

W ∗(X)⊗W ∗′

(X ′)
δ′

−−−−→ W ∗+1(Y,X)⊗W ∗(X ′)⊕W ∗(X)⊗W ∗′+1(Y ′, X ′)




y





y

W ∗+∗′

(X ×X ′)
δ

−−−−→ W ∗+∗′+1(X × Y ′ ∪ Y ×X ′, X ×X ′)

where δ′(a⊗ b) = δ(a)⊗ b+ a⊗ δ(b) from the standard arguments (as topological
cases).

Let us consider

Zn ⊂ Zn−1 ⊂ ... ⊂ Z1 ⊂ Z

series of smooth embedding with codimZ(Z
i) = i. Then we have the diagram

W ∗(X ;L0)
g∗

←−−−− W ∗(Z1;L1)
g∗

←−−−− W ∗(Z2;L2)
g∗

←−−−− ...

ց f∗

x




δ ց f∗

x




δ

W ∗(X − Z1;L0)
f∗δ
−−−−→ W ∗(Z1 − Z2;L1)

f∗δ
−−−−→ ...

Roughly speaking, the Gersten-Witt complex is constructed by taking limit of the
above diagram [Bl-Og], [Ka]. Indeed, we have the commutative diagram

W ∗(X − Z1;L0)
f∗δ
−−−−→ W ∗(Z1 − Z2;L1)

f∗δ
−−−−→ W ∗(Z2 − Z3;L2) −−−−→ ...





y





y





y

W ∗(k(X))
d

−−−−→ ⊕x∈X(1)W ∗(k(x))
d

−−−−→ ⊕x∈X(2)W ∗(k(x))
d

−−−−→ ...

Moreover we have a natural map

⊕x∈X(i),x′∈X′(j)W ∗(k(x)) ⊗W ∗′

(k(x′))→ ⊕x∈(X×X′)(i+j)W ∗+∗′

(k(x)).

Then we can prove that the differential d of the Gersten-Witt complex is a deriva-
tion by using that the coboundary map δ∗ is a derivation in the sense above.

Hence spectral sequences E(P )∗,∗
′

r and E(BW )∗,∗
′

r are that of graded rings, e.g.,
the differential is a derivation.

For X = Gk, Y = G′
k, we still know from Corollary 3.7,

H∗,∗′

(X × Y ;Z/2) ∼= H∗,∗′

(X ;Z/2)⊗Z/2[τ ] H
∗,∗′

(Y ;Z/2).
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Hence the spectral sequences has the same property

E(P )∗,∗
′

r (X × Y ) ∼= E(P )∗,∗
′

r (X)⊗ E(P )∗,∗
′

r (Y )

E(BW )∗,∗
′

r (X × Y ) ∼= E(BW )∗,∗
′

r (X)⊗ E(BW )∗,∗
′

r (Y )

Therefore W ∗(X × Y ) ∼= W ∗(X) ⊗W ∗(Y ). In particular the spectral sequences
for X are differential Hopf algebras. It is known (e.g., Araki [Ar],Toda [Tod]) that
the image of differential of a ring generator (indecomposable element) is also a ring

generator or zero. (We can identify grE∗,∗′

2 to be primitively generated, and use
the fact that the image of the differential of a primitive element is primitive.)

Lemma 6.4. The Witt ring W ∗(Gk) is a Hopf algebra. So spectral sequences

E(P )∗,∗
′

r and E(BW )∗,∗
′

r are differential Hopf algebras, that implies differential dr
works as ring generators maps to ring generators or zero.

From Corollary 3.5, we have

grH∗,∗′

(Gk;Z/2) ∼= Z/2[τ ]⊗ P (y)⊗ Λ(x1, ..., xℓ)

with w(P (y)) = 0 and w(xi) = 1. So we get

H∗,∗′

(Gk;Z/2)/(Im(τ)) ∼= P (y)⊗ Λ(x1, ..., xℓ),

and Ker(τ)|H∗,∗′ (Gk;Z/2)
= 0.

Thus we get a bigraded ring isomorphism

E(P )∗,∗
′

2
∼= P (y)⊗ Λ(x1, ..., xℓ)

with deg(z) = (1/2|z|, 1/2|z|) for z ∈ P (y) and deg(xi) = (1/2(|xi| − 1), 1/2(|xi|+
1)).

On the other hand, we give a (coniveau) filtration to topological H∗(G;Z/2)
by Fi = {x|w(x) ≤ i} and denote by grH∗(G;Z/2) = ⊕Fi/Fi−1 the associated
algebra. Then we have the ring isomorphism

grH∗(G;Z/2) ∼= P (y)⊗ Λ(x1, ..., xℓ).

Here Sq2Sq2 = Sq3Sq1 = 0 and Sq2 define a differential of grH∗(G;Z/2). Let us
write its homology by H∗(G;Sq2) with deg(yi) = 1/2|yi| and deg(xi) = 1/2(|xi| −
1).

Then we have the Sq2-bidegree ring isomorphism

E(P )∗,∗
′

2
∼= grH∗(G;Z/2)

identifying w(yi) = 0 and w(xi) = 1. From the result of Totaro and Assumption
6.3, we have

E(P )∗,∗
′

3
∼= H∗(grH2∗(G;Z/2);Sq2) = H∗(G;Sq2).

Recall the degree of differential deg(dr) = (1, r − 1). Here we consider the
assumption

Assumption 6.5. There is an algebra isomorphism

E(P )∗,∗
′

3
∼= H∗(G;Sq2) ∼= Λ(z1, ..., zs) with first.deg(zi) = odd.

or E(P )∗,∗
′

4
∼= H∗(H∗G;Sq2); d3) ∼= Λ(z1, ..., zs),

Lemma 6.6. There is a spectral sequence

E2
∼= H∗(G;Sq2)⇒ H∗(G/T ;Sq2).
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Proof. (Recall the proof of Lemma 4.5 and see also §2 in [Ki-Oh].) Let us write
d = Sq2 simply. Recall S(t) ∼= ⊗ℓ

i=1Z/2[ti]. We give deg(ti) = 1 here to compatible
with degree of W ∗(−). We get

H∗(S(t); d) ∼= ⊗ℓ
iH

∗(Z/2[ti]; d) ∼= Z/2

since H∗(Z/2[t];Sq2) ∼= Z/2, (Sq2 : todd 7→ todd+1).
Suppose that Sq2(b1) = 0 (i.e., Sq2(x1) = 0). Then S(t)/(b1) is a d-module. We

consider the short exact sequence

0→ S(t)
b1→ S(t)→ S(t)/(b1)→ 0

of d-modules, and consider the induced long exact sequence

→ H∗(S(t); d)
×b1→ H∗(S(t); d)→ H∗(S(t)/(b1); d)→ ...

The first and the second terms in the above sequence are isomorphic to Z/2 and
×b1 = 0. Hence we have

H∗(S(t)/(b1); d) ∼= Z/2{1, b̃1} ∼= Λ(b̃1).

Here d(b̃1) = b1, which is a cycle in S(t)/(b1) (but not in S(t)), and b̃21 ∈ Im(d) ⊂
S(t)).

Suppose that Sq2(b1) 6= 0. Then can take b2 with Sq2(b1) = b2 (i.e., Sq2(x1) =

x2). Then S(t)/(b2) is a d-module and H∗(S(t)/(b2); d) ∼= Λ(b̃2) here note b̃2 = b1,
by the arguments above. Next consider a short exact sequence

0→ S(t)/(b2)
b1→ S(t)/(b2)→ S(t)/(b1, b2)→ 0.

and induced long exact sequence of d-homology,

→ Λ(b1)
b1→ Λ(b1)→ H∗(S(t)/(b1, b2); d)→ ...

Hence we have

H∗(S(t)/(b1, b2); d) ∼= Λ(b̃1,2) d(b̃1,2) = b21.

Similarly, we can compute H∗(S(t)/(b1, ..., bℓ); d) ∼= Λ(b̄1, ..., b̄ℓ′).
On the other hand, we consider the homology of Λ(x1, ..., xℓ). If Sq2(x1) = 0.

then H∗(Λ(x1); d1) ∼= Λ(x̃1). If Sq
2(x1) = x2, then

H∗(Λ(x1, x2), d) ∼= Λ(x1,2) identifying x1,2 = x1x2.

Similarly we have an isomorphism H∗(Λ(x1, ..., xℓ); d) ∼= Λ(x̄1, ..., x̄ℓ′). Thus we
can construct an isomorphism

H∗(Λ(x1, ..., xℓ); d) ∼= H∗(S(t)/(b1, ..., bℓ); d).

Therefore we have

H∗(G;Sq2) ∼= H∗(P (y)⊗ Λ(x1, ..., xℓ); d)

∼= H∗(P (y)⊗ S(t)/(b1, ..., bℓ); d) ∼= H∗(grH∗(G/T ;Z/2); d).

Hence we have a spectral sequence

H∗(G;Sq2) ∼= H∗(grH∗(G/T ;Z/2); d)⇒ H∗(H∗(G/T ;Z/2); d).

�
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Theorem 6.7. Let k be an algebraically closed field in C. For each simply con-
nected simple Lie group G, Assumption 4.1, 6.3, 6.5 are satisfied and

W ∗(Gk) ∼= H∗(G/T ;Sq2) ∼= Λ(z1, ..., zs) deg(zi) = odd.

which is also isomorphic to

{

E(P )∗,∗
′

4
∼= H∗(H∗(G;Sq2); d3) for G = E6, E7, E8

E(P )∗,∗
′

3
∼= H∗(G;Sq2) otherwise.

Proof. We assume here 6.3 and 6.5 which are shown for each simple group G in
the next section. From Assumption 6.5, Gill-Pardon and Balmer-Walter spectral
sequences collapse because, from Lemma 6.4, the dr-image of zi must be some zj
(mod(decomposable el.)). However deg(zi) − deg(zj) = even but deg(dr) = odd,

and this means dr = 0. Hence W ∗(Gk) ∼= E(P )∗,∗
′

4
∼= H∗(H∗(G;Sq2); d3).

Recall that W ∗(Gk) is a subquotient of H∗(G/T ;Sq2) from Corollary 4.2 (and
is isomorphic to it if and only if Assumption 4.1 is satisfied).

On the other hand, by the preceding lemma, we know H∗(G/T ;Sq2) is a sub-
quotient of H∗(G;Sq2). Here we also assume that

(∗) H∗(G/T ;Sq2) is a subquotient of E(P )∗,∗
′

4
∼= H∗(G;Sq2); d3).

(Of course (∗) holds when d3 = 0. For the cases G = E6, E7, E8, it is proved in the
next section.) Then we get

W ∗(Gk) ∼= E(P )∗,∗
′

4
∼= H∗(G/T ;Sq2).

�

The homology H∗(G;Sq2) is easier computed than H∗(G/T ;Sq2). However,
unfortunately, in this paper, we use the ring structure of H∗(G/T ;Z/2) (for each
simple group) to see Lemma 3.1 (for Corollary 3.5 and Theorem 3.6) and to see
Assumption 6.3. We are hoping to obtain alternative proofs that do not rely on
the detailed ring structure of H∗(G/T ;Z/2).

Here we note the map of spectral sequences induced from Gk → Gk/Tk. Since
Gk/Bk is cellular, we have isomorphisms

E(P )∗,∗
′

∞ (G/T ) ∼= E(P )∗,∗
′

3 (G/T ) ∼= E(P )∗,∗3 (G/T ) ∼= H∗(G/T ;Sq2).

From the above theorem, we also see that the Balmer-Walter spectral sequence also
collapses.

E(P )∗,∗∞ (G/T ) ∼= grE(BW )∗,4∗
′

∞ (G/T ) ∼= grW ∗(Gk/Tk).

The projection Gk → Gk/Tk induces the isomorphism of the Balmer-Walter spec-

tral sequence E(BW )∗,∗
′

r (G/T ) ∼= E(BW )∗,∗
′

r (G), but not for the Gille-Pardon
spectral sequence, indeed

E(P )∗,∗4 (G/T ) ∼= E(P )∗,∗
′

4 (G/T )→ E(P )∗,∗
′

4 (G)

is not injective nor surjective (while grE(BW )∗,∗
′′

2
∼= E(P )∗,0∞ ).
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7. Simple Lie groups

(I) classical groups.
For classical groups, we will see Assumption 6.3 and 6.5. First, we consider the

case G = U(2m+ 1). Its cohomology is

H∗(G;Z/2) ∼= Λ(x1, x3, ..., x4m+1)

∼= Λ(x1)⊗⊗
m
s Λ(x4s−1, x4s+1) with Sq2x4s−1 = x4s+1.

(Throughout this section, subscripts indicate degree, e.g, |xi| = i for convenience.)
Therefore we have the Sq2 homology

H∗(G;Sq2) ∼= Λ(x1)⊗⊗
m
s=1Λ(x4s−1x4s+1),

which is (changing degree so that deg(xi) = 1/2(i− 1)) isomorphic to

Λ(u1)⊗H∗(G/T ;Sq2) ∼= Λ(z0)⊗⊗Λ(z4s−1) deg(zi) = i.

This result coincides with that given by Kishimoto, Kono and Ohsita. When
G = 2m + 2, H∗(G;Sq2) ∼= H∗(U(2m + 1);Sq2) ⊗ Λ(x′

2m+1). This element
x′
2m+1 corresponds the element z in the notation of [Ki-Ko-Oh]. We also get

H∗(SU(n);Sq2) ∼= H∗(U(n);Sq2)/(z0).
The case G = Sp(n) is easy. Infact, H∗(G;Z/2) ∼= Λ(x3, x7, ..., x4n−1) and so

Sq2 = 0. Hence H∗(G;Sq2) ∼= Λ(x′
1, ..., x

′
2n−1) where x′

2i+1 corresponds x4i+3 in
H∗(G;Z/2).

Next we consider the case G = SO(4m + 2). Then the mod 2-cohomology is
written as ( see for example [Ni])

grH∗(SO(4m+ 1);Z/2) ∼= Λ(x1, x2, ..., x4m+1)

where the multiplications are given by x2
s = x2s. We write y2(odd) = x2

odd. Let us
write

grH∗(G;Z/2) ∼= Λ(y2, y4, ..., y4m)⊗ Λ(x1, x3, ..., x4m+1).

Here grP (y) ∼= Λ(y2, y4, ..., y4m) and Sq2(y4s+2) = y4s+4. Hence

H∗(P (y);Sq2) ∼= ⊗m
s Λ(y4s−2y4s).

This result also coincides with the result of Kishimoto-Kono-Ohsita

H∗(SO(4m+ 1)/T ;Sq2) ∼= ⊗m
s=1Λ(z4s−1, w4s−1)

where z4s−1 (resp. w4s−1) corrsponds x4s−1x4s+1 (resp. y4s−2y4s). The other n
cases are similar (see also [Ki-Ko-Oh]).

Here we give some note for G = Spin(n) case. The cohomology is

H∗(Spin(n);Z/2) ∼= H∗(SO(m);Z/2)/(x1, y1)⊗ Λ(a)

∼= Λ(y2, y4, ..., y4m)/(y2s |s ≥ 1)⊗ Λ(x3, ..., x4m+1)⊗ Λ(a)

where |a| = 2t − 1 for 2t−1 < m ≤ 2t ([Mi-Ni], [Tod]). Then we can prove that
H∗(G;Sq2) is isomorphic to

H∗(SO(n);Sq2)/(z0, w2s−1|s ≥ 1)⊗ (⊗t−2
s=1Λ(y

′
2s−1))⊗ Λ(a′2t−1−1)

where w2s−1 (resp. y
′
2s−1−1, a

′
2t−1−1) corresponds y2s−2y2s (resp. y2s−2, a). Identi-

fying y′2s−1 = w2s−1 and a′2t−1−1 = w2i−1−1, we have an isomorphismH∗(Spin(n);Sq2) ∼=
H∗(SO(n);Sq2)/(z0). Indeed, we still knowH∗(Sin(n)/T ;Z/2) ∼= H∗(SO(n)/T ;Z/2)
(see §3 in [Tod]).
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Proposition 7.1. Let G be a simple classical group. Then Assumption 6.3 and
6.5 are satisfied.

Proof. Assumption 6.5 is satisfied from above arguments. We will prove Assump-
tion 6.3 for G = SO(2m+1). Then the other cases are shown by the naturality of
maps e.g., SU(n)→ SO(2n).

Let G′ = SO(2m − 3) and suppose the assumption for G′. The cohomology is
written

H∗(G;Z/2) ∼= H∗(G′;Z/2)⊗ Λ(y4m−2, y4m, x4m−1, x4m+1)

with Sq2(y4m−2) = y4m, Sq2(x4m−1) = x4m+1.

In the Gille-Pardon spectral sequence if d2(x4m−1) 6= x4m+1, then d2(x4m−1) = 0
by Lemma 6.4. By th dimensional reason, x4m−1 is a permanent cycle. However
this element is zero in H∗(G/T ;Sq2) (there is no ring generator in dim = 4m− 1).
This is a contradiction. So d2(x4m−1) = x4m+1. Of course we know d2(y4m−2) =
y4m from Lemma 5.3. �

(II) exceptional groups G2 and F4.
The cohomology is given

grH∗(G2;Z/2) ∼= Λ(y6, x3, x5) with Sq2x3 = x5.

We have the natural inclusion SU(3) ⊂ G2. Hence in the Gille-Pardon spectral
sequence d2(x3) = x5 and hence

H∗(G2;Sq
2) ∼= Λ(z3, y

′
3)

where z3 (resp. y′3) corresponds x3x5 (resp. y6). The cohomology

H∗(F4;Z/2) ∼= H∗(G2;Z/2)⊗ Λ(x15, x23).

Hence H∗(F4;Sq
2) ∼= H∗(G2;Sq

2) ⊗ Λ(x′
7, x

′
11) where x′

7 (resp. x′
11) corresponds

x15 (resp. x23). (See also [Ki-Oh].) Thus Assuption 6.3, 6.5 are satisfied for these
cases.

(III) exceptional Lie groups E6, E7, E8.
First consider the case G = E6. Its cohomology is

grH∗(E6;Z/2) ∼= Λ(y6, x3, x5, x9, x15, x17, x23).

where Sq2xi = xi+2. We easily see

H∗(G;Sq2) ∼= Λ(y′3, z3, x
′
4, z15, x

′
11)

by the notation similar to (I),(II) (e.g., x′
4 = x9, z15 = x15x17, x

′
11 = x23).

The spectral sequence in Lemma 6.5 does not collapse by the following reason.
In H∗(G/T ;Z/2), we know Sq2y6 = c4 by (§4 in [Ki-Oh], Theorem 5.9 in [Ko-Is],
y6 is written by γ3 in there). So d3(y

′
3) = x′

4, and we have

H∗(G/T ;Z/2) ∼= Λ(z3, v7, z15, x
′
11)

where v7 corresponds y6x9. Indeed, this result is still given in [Ki-Oh].
Now return to the Gille-Pardon spectral sequence

E(P )∗,∗3
∼=

{

Λ(y′3, z3, x
′
4, z15, x

′
11) if d2(x15) = y17

Λ(y′3, z3, x
′
4, x

′
7, x

′
8, x

′
11) otherwise.

For the second case above if d3(y6) 6= x9, then x9 = x′
4 is a permanent cycle

in the Gille-Pardon and Balmer-Walter spectral sequences by Lemma 6.4 (in fact
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deg(x′
i) − deg(x′

4) 6= 1 mod(4)). This is a contradiction to the fact that W ∗(G) is
a subquotient of H∗(G/T ;Sq2), where there are no generator of dim = 4. For the
first case, if d3(y6) 6= x9, then y6 = y′3 is a permanent cycle, (w(z3 = x3x5) = 2
but w(x′

4 = x9) = 1, and hence there is no differential d(z3) = x′
4) and this is also

contradicts to H∗(G/T ;Sq2).
Thus we see d3(y6) = x9. Then we easily prove d2(x15) = x17 by the same

reason. Therefore we have Theorem 6.7 for G = E6. (In fact we have showed (∗)
in the proof of Theorem 6.7.)

Next we consider the case G = E7. The cohomology is

grH∗(E7;Z/2) ∼= grH∗(E6;Z/2)⊗ Λ(y10, y18, x27).

Hence we easily see

H∗(G/T ;Sq2) ∼= H∗(E6/T ;Z/2)⊗ Λ(y′5, y
′
9, x

′
13)

∼= Λ(v7, y
′
5, y

′
9, z3, z15, x

′
11, x

′
13)

where y′5 = y10, y
′
9 = y18, x

′
13 = x27.

At last we consider the case G = E8. The chomology is

grH∗(E8;Z/2) ∼= grH∗(E7;Z/2)⊗ Λ(y12, y24, y20, y30, x29)

∼= Λ(yi|i = 6, 12, 24, 10, 20, 18, 30)⊗ Λ(xj |j = 3, 5, 9, 15, 17, 23, 27, 29).

The Steenrod operation acts as Sq2(yi) = yi+2, Sq
2(xi) = xi+2 and Sq2(y12y10) =

y24 (in fact, y24 = y212). Hence we can compute

H∗(G/T ;Sq2) ∼= Λ(v7, w23, w19, y
′
15, z3, z15, x

′
11, z27)

where w23 = y10y12y24, y
′
15 = y30, z27 = x27x29. Ohsita first computed this homol-

ogy by using the Sq2-algebra structure of H∗(G/T ;Z/2) , and of course, our result
coincides with him. We can easily show d2(x27) = x29 in the Gille-Pardon spectral
sequence and see Theorem 6.7.
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