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BRUNO KAHN

Abstract. We relate R-equivalence on tori with Voevodsky’s the-
ory of homotopy invariant Nisnevich sheaves with transfers and
effective motivic complexes.
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1. Main results

Let k be a field and let T be a k-torus. The R-equivalence classes on
T have been extensively studied by several authors, notably by Colliot-
Thélène and Sansuc in a series of papers including [3] and [4]: they play
a central rôle in many rationality issues. In this note, we show that
Voevodsky’s triangulated category of motives sheds a new light on this
question: see Corollaries 1, 3 and 4 below.
More generally, let G be a semi-abelian variety over k, which is an

extension of an abelian variety A by a torus T . Denote by HI the
category of homotopy invariant Nisnevich sheaves with transfers over
k in the sense of Voevodsky [19]. Then G has a natural structure of
an object of HI ([17, proof of Lemma 3.2], [1, Lemma 1.3.2]). Let L be
the group of cocharacters of T .

Proposition 1. There is a natural isomorphism G−1
∼

−→ L in HI.

Here −1 is the contraction operation of [18, p. 96], whose definition
is recalled in the proof below.

Date: March 9, 2012.
2010 Mathematics Subject Classification. 14L10, 14E08, 14G27, 14F42.

1



2 BRUNO KAHN

Proof. Recall that if F is a presheaf [with transfers] on smooth k-
schemes, the presheaf [with transfers] Fp

−1 is defined by

U 7→ Coker(F(U ×A1) → F(U ×Gm)).

If F is homotopy invariant, we may replace U × A1 by U and the
rational point 1 ∈ Gm realises Fp

−1(U) as a functorial direct summand
of F(U ×Gm).
If F is a Nisnevich sheaf [with transfers], F−1 is defined as the sheaf

associated to Fp
−1.

Now A(U ×A1)
∼

−→ A(U ×Gm) since A is an abelian variety, hence
Ap

−1 = 0. We therefore have an isomorphism of presheaves T p
−1

∼
−→

Gp
−1, and a fortiori an isomorphism of Nisnevich sheaves T−1

∼
−→ G−1.

Let p : Gm → Spec k be the structural map. One easily checks that

the étale sheaf Coker(T
i

−→ p∗p
∗T ) is canonically isomorphic to L.

Since i is split, its cokernel is still L if we view it as a morphism of
presheaves, hence of Nisnevich sheaves. �

From now on, we assume k perfect. Let DMeff
− be the triangulated

category of effective motivic complexes introduced in [19]: it has a t-
structure with heart HI. It also has a tensor structure and a (partially
defined) internal Hom. We then have an isomorphism

L[0] = G−1[0] ≃ HomDMeff
−
(Gm[0], G[0])

[10, Rk. 4.4], hence by adjunction a morphism in DMeff
−

(1) L[0]⊗Gm[0] → G.

Let ν≤0G[0] denote the cone of (1): by [11, Lemma 6.3] or [8, §2],
ν≤0G[0] is the birational motivic complex associated to G. We want to
compute its homology sheaves.
For this, consider a coflasque resolution

(2) 0 → Q → L0 → L → 0

of L in the sense of [3, p. 179]. Taking a coflasque resolution of Q and
iterating, we get a resolution of L by invertible lattices1:

(3) · · · → Ln → · · · → L0 → L → 0.

We set

Qn =

{

Q for n = 1

Ker(Ln−1 → Ln−2) for n > 1.

1Recall that a lattice is a free finitely generated Galois module; a lattice is
invertible if it is a direct summand of a permutation lattice.
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Theorem 1. a) Let Tn denote the torus with cocharacter group Ln.
Then ν≤0G[0] is isomorphic to the complex

· · · → Tn → · · · → T0 → G → 0.

b) Let Sn be the torus with cocharacter group Qn. For any connected
smooth k-scheme X with function field K, we have

Hn(ν≤0G[0])(X) =











0 if n < 0

G(K)/R if n = 0

Sn(K)/R if n > 0.

The proof is given in Section 2.

Corollary 1. The assignment Sm(k) ∋ X 7→
⊕

x∈X(0) G(k(x))/R
provides G/R with the structure of a homotopy invariant Nisnevich
sheaf with transfers. In particular, any morphism ϕ : Y → X of
smooth connected k-schemes induces a morphism ϕ∗ : G(k(X))/R →
G(k(Y ))/R. �

This functoriality is essential to formulate Theorem 2 below. For ϕ
a closed immersion of codimension 1, it recovers a specialisation map
on R-equivalence classes with respect to a discrete valuation of rank
1 which was obtained (for tori) by completely different methods, e.g.
[4, Th. 3.1 and Cor. 4.2] or [7]. (I am indebted to Colliot-Thélène for
pointing out these references.)

Corollary 2. a) If k is finitely generated, the n-th homology sheaf of
ν≤0G[0] takes values in finitely generated abelian groups, and even in
finite groups if n > 0 or G is a torus.
b) If G is a torus, then ν≤0G[0] = 0 if G is split by a Galois extension
E/k whose Galois group has cyclic Sylow subgroups. This condition is
automatic if k is (quasi-)finite.

The proof is also given in Section 2.
Given two semi-abelian varieties G,G′, we would now like to under-

stand the maps

Homk(G,G′) → HomDMeff
−
(ν≤0G[0], ν≤0G

′[0]) → HomHI(G/R,G′/R).

In Section 3, we succeed in elucidating the nature of their composi-
tion to a large extent, at least if G is a torus. Our main result, in the
spirit of Yoneda’s lemma, is

Theorem 2. Let G,G′ be two semi-abelian varieties, with G a torus.
Suppose given, for every function field K/k, a homomorphism fK :
G(K)/R → G′(K)/R such that fK is natural with respect to the func-
toriality of Corollary 1. Then
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a) There exists an extension G̃ of G by a permutation torus, and a

homomorphism f : G̃ → G′ inducing (fK).
b) fK is surjective for all K if and only if there exist extensions G̃, G̃′

of G and G′ by permutation tori such that fK is induced by a split
surjective homomorphism G̃ → G̃′.

The proof is given in §3.3. See Proposition 2, Corollary 5, Remark
4 and Proposition 3 for complements.
This relates to questions of stable birationality studied by Colliot-

Thélène and Sansuc in [3] and [4], providing alternate proofs and
strengthening of some of their results (at least over a perfect field).
More precisely:

Corollary 3. a) Let G′ be a semi-abelian k-variety such that G′(K)/R
= 0 for any function field K/k. Then G′ is an invertible torus.
b) In Theorem 2 b), assume that fK is bijective for all K/k. Then there

exist extensions G̃, G̃′ of G and G′ by invertible tori such that fK is
induced by an isomorphism G̃

∼
−→ G̃′.

Proof. a) This is the special case G = 0 of Theorem 2 b).
b) By Theorem 2 b), we may replace G and G′ by extensions by

permutation tori such that fK is induced by a split surjection f : G →
G′. Let T = Ker f . Then T/R = 0 universally. By a), T is invertible.

�

Corollary 3 a) is a version of [4, Prop. 7.4] (taking [3, p. 199, Th.
2] into account). Theorem 2 was inspired by the desire to understand
this result from a different viewpoint.

Corollary 4. Let f : G 99K G′ be a rational map of semi-abelian
varieties, with G a torus. Then the following conditions are equivalent:

(i) f∗ : ν≤0G[0] → ν≤0G
′[0] is an isomorphism (see Proposition 2).

(ii) f∗ : G(K)/R → G′(K)/R is bijective for any function field
K/k.

(iii) f is an isomorphism, up to extensions of G and G′ by invertible
tori and up to a translation. (See Lemma 6.) �

Acknowledgements. Part of Theorem 1 was obtained in the course of
discussions with Takao Yamazaki during his stay at the IMJ in October
2010: I would like to thank him for inspiring exchanges. I also thank
Daniel Bertrand for a helpful discussion. Finally, I wish to acknowledge
inspiration from the work of Colliot-Thélène and Sansuc, which will be
obvious throughout this paper.
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2. Proofs of Theorem 1 and Corollary 2

Lemma 1. The exact sequence

0 → T (k) → G(k) → A(k)

induces an exact sequence

0 → T (k)/R
i

−→ G(k)/R → A(k).

Proof. Let f : P1
99K G be a k-rational map defined at 0 and 1. Its

composition with the projection G → A is constant: thus the image of
f lies in a T -coset of G defined by a rational point. This implies the
injectivity of i, and the rest is clear. �

Let NST denote the category of Nisnevich sheaves with transfers.
Recall that DMeff

− may be viewed as a localisation of D−(NST), and
that its tensor structure is a descent of the tensor structure on the
latter category [19, Prop. 3.2.3].

Lemma 2. If G is an invertible torus, there is a canonical isomorphism
in D−(NST)

L[0]⊗Gm
∼

−→ G[0].

In particular, ν≤0G[0] = 0.

Proof. We reduce to the case T = RE/kGm, where E is a finite extension
of k. Let us write more precisely NST(k) and NST(E). There is a pair
of adjoint functors

NST(k)
f∗

−→ NST(E), NST(E)
f∗
−→ HI(k)

where f : SpecE → Spec k is the projection. Clearly,

f∗Z = Ztr(SpecE), f∗Gm = T

where Ztr(SpecE) is the Nisnevich sheaf with transfers represented by
SpecE. Since Ztr(SpecE) = L, this proves the claim. �

Proof of Theorem 1. a) Recall that L0 is an invertible lattice chosen so
that L0(E) → L(E) is surjective for any extension E/k. In particular,
(2) and (3) are exact as sequences of Nisnevich sheaves; hence L[0] is
isomorphic in D−(NST) to the complex

L· = · · · → Ln → · · · → L0 → 0.

(We may view (3) as a version of Voevodsky’s “canonical resolutions”
as in [19, §3.2 p. 206].)
By Lemma 2, Ln[0] ⊗ Gm[0] ≃ Tn[0] is homologically concentrated

in degree 0 for all n. It follows that the complex

T· = · · · → Tn → · · · → T0 → 0
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is isomorphic to L[0]⊗Gm[0] in D−(NST), hence a fortiori in DMeff
− .

b) For any nonempty open subscheme U ⊆ X we have isomorphisms

(4) Hn(ν≤0G[0])(X)
∼

−→ Hn(ν≤0G[0])(U)
∼

−→ Hn(ν≤0G[0])(K)

(e.g. [8, p. 912]). By a), the right hand term is the n-th homology
group of the complex

· · · → Tn(K) → · · · → T0(K) → G(K) → 0

with G(K) in degree 0. By [3, p. 199, Th. 2], the sequences

0 → S1(K) → T0(K) → T (K) → T (K)/R → 0

0 → Sn+1(K) → Tn(K) → Sn(K) → Sn(K)/R → 0

are all exact. Using Lemma 1 for H0, the conclusion follows from an
easy diagram chase. �

Remark 1. As a corollary to Theorem 1, Sn(K)/R only depends on G.
This can be seen without mentioning DMeff

− : in view of the reasoning
just above, it suffices to construct a homotopy equivalence between two
resolutions of the form (3), which easily follows from the definition of
coflasque modules.

Proof of Corollary 2. a) This follows via Theorem 1 and Lemma 1 from
[3, p. 200, Cor. 2] and the Mordell-Weil-Néron theorem. b) We may
choose the Ln, hence the Sn split by E/k. The conclusion now follows
from Theorem 1 and [3, p. 200, Cor. 3]. The last claim is clear. �

Remark 2. In characteristic p > 0, all finitely generated perfect fields
are finite. To give some contents to Corollary 2 a) in this character-
istic, one may pass to the perfect [one should say radicial] closure k
of a finitely generated field k0. If G is a semi-abelian k-variety, it is
defined over some finite extension k1 of k0. If k2/k1 is a finite (purely
inseparable) subextension of k/k1, then the composition

G(k2)
Nk2/k1−→ G(k1) → G(k2)

equals multiplication by [k2 : k1]. Hence Corollary 2 a) remains true at
least after inverting p.

3. Stable birationality

If X is a smooth variety over a field k, we write Alb(X) for its
generalised Albanese variety in the sense of Serre [16]: it is a semi-
abelian variety, and a rational point x0 ∈ X determines a morphism
X → Alb(X) which is universal for morphisms from X to semi-abelian
varieties sending x0 to 0.
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We also write NS(X) for the group of cycles of codimension 1 on X
modulo algebraic equivalence. This group is finitely generated if k is
algebraically closed [9, Th. 3].

3.1. Well-known lemmas. I include proofs for lack of reference.

Lemma 3. a) Let G,G′ be two semi-abelian k-varieties. Then any
k-morphism f : G → G′ can be written uniquely f = f(0) + f ′, where
f ′ is a homomorphism.
b) For any semi-abelian k-variety G, the canonical map G → Alb(G)
sending 0 to 0 is an isomorphism.

Proof. a) amounts to showing that if f(0) = 0, then f is a homomor-
phism. By an adjunction game, this is equivalent to b). Let us give
two proofs: one of a) and one of b).
Proof of a). We may assume k to be a universal domain. The

staement is classical for abelian varieties [15, p. 41, Cor. 1] and an
easy computation for tori. In the general case, let T, T ′ be the toric
parts of G and G′ and A,A′ be their abelian parts. Let g ∈ G(k). As
any morphism from T to A′ is constant, the k-morphism

ϕg : T ∋ t 7→ f(g + t)− f(g) ∈ G′

(which sends 0 to 0) lands in T ′, hence is a homomorphism. Therefore
it only depends on the image of g in A(k). This defines a morphism
ϕ : A → Hom(T, T ′), which must be constant with value ϕ0 = f . It
follows that

(g, h) 7→ f(g + h)− f(g)− f(h)

induces a morphism A × A → T ′. Such a morphism is constant, of
value 0.
Proof of b). This is true if G is abelian, by rigidity and the equiv-

alence between a) and b). In general, any morphism from G to an
abelian variety is trivial on T . This shows that the abelian part of
Alb(G) is A. Let T ′ = Ker(Alb(G) → A). We also have the counit
morphism Alb(G) → G, and the composition G → Alb(G) → G is
the identity. Thus T is a direct summand of T ′. It suffices to show
that dimT ′ = dimT . Going to the algebraic closure, we may reduce
to T = Gm.
Then consider the line bundle completion Ḡ → A of the Gm-bundle

G → A. It is sufficient to show that the kernel of

Alb(G) → Alb(Ḡ) = A

is 1-dimensional. This follows for example from [1, Cor. 10.5.1]. �
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Lemma 4. Suppose k algebraically closed, and let G be a semi-abelian
k-variety. Let A be the abelian quotient of G. Then the map

(5) NS(A) → NS(G)

is an isomorphism.

Proof. Let T = Ker(G → A) and X(T ) be its character group. Choos-
ing a basis (ei) of X(T ), we may complete the Gn

m-torsor G into a
product of line bundles Ḡ → A. The surjection

Pic(A)
∼

−→ Pic(Ḡ) →→ Pic(G)

show the surjectivity of (5). Its kernel is generated by the classes of
the irreducible components Di of the divisor with normal crossings
Ḡ− G. These components correspond to the basis elements ei. Since
the corresponding Gm-bundle is a group extension of A by Gm, the class
of the 0 section of its line bundle completion lies in Pic0(A), hence goes
to 0 in NS(Ḡ). �

Lemma 5. Let X be a smooth k-variety, and let U ⊆ X be a dense
open subset. Then there is an exact sequence of semi-abelian varieties

0 → T → Alb(U) → Alb(X) → 0

with T a torus. If NS(Ū) = 0 (this happens if U is small enough), there
is an exact sequence of character groups

0 → X(T ) →
⊕

x∈X(1)−U (1)

Z → NS(X̄) → 0.

Proof. This follows for example from [1, Cor. 10.5.1]. �

Lemma 6. Let f : G 99K G′ be a rational map between semi-abelian
k-varieties, with G a torus. Then there exists an extension G̃ of G by
a permutation torus and a homomorphism f̃ : G̃ → G′ which extends f
up to translation in the following sense: there exists a rational section
s : G 99K G̃ of the projection π : G̃ → G and a rational point g′ ∈ G′(k)

such that f = f̃ s + g′. If f is defined at 0G and sends it to 0G′, then
g′ = 0.

Proof. Let U be an open subset of G where f is defined. We define
G̃ = Alb(U). Applying Lemmas 5 and 3 b) and using NS(Ḡ) = 0, we
get an extension

0 → P → G̃ → G → 0

where P is a permutation torus, as well as a morphism f̃ = Alb(f) :

G̃ → G′.
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Let us first assume k infinite. Then U(k) 6= ∅ because G is unira-

tional. A rational point g ∈ U defines an Albanese map s : U → G̃
sending g to 0G̃. Since P is a permutation torus, g ∈ G(k) lifts to

g̃ ∈ G̃(k) (Hilbert 90) and we may replace s by a morphism sending

g to g̃. Then s is a rational section of π. Moreover, f = f̃s + g′ with
g′ = f(g)− f̃(g̃). The last assertion follows.
If k is finite, then U has at least a zero-cycle g of degree 1, which is

enough to define the Albanese map s. We then proceed as above (lift
every closed point involved in g to a closed point of G̃ with the same
residue field). �

Lemma 7. Let G be a finite group, and let A be a finitely generated
G-module. Then
a) There exists a short exact sequence of G-modules 0 → P → F →
A → 0, with F torsion-free and flasque, and P permutation.
b) Let B be another finitely generated G-module, and let 0 → P ′ →
E → B → 0 be an exact sequence with P ′ an invertible module. Then
any G-morphism f : A → B lifts to f̃ : F → E.

Proof. a) is the contents of [4, Lemma 0.6, (0.6.2)]. b) The obstruction
to lifting f lies in Ext1G(F, P

′) = 0 [3, p. 182, Lemme 9]. �

3.2. Functoriality of ν≤0G. We now assume k perfect.

Lemma 8. Let

(6) 0 → P → G → H → 0

be an exact sequence of semi-abelian varieties, with P an invertible
torus. Then ν≤0G[0]

∼
−→ ν≤0H [0].

Proof. As P is invertible, (6) is exact in NST hence defines an exact
triangle

P [0] → G[0] → H [0]
+1
−→

in DMeff
− . The conclusion then follows from Lemma 2. �

Proposition 2. Let G,G′ be two semi-abelian k-varieties, with G a
torus. Then a rational map f : G 99K G′ induces a morphism f∗ :
ν≤0G[0] → ν≤0G

′[0], hence a homomorphism f∗ : G(K)/R → G′(K)/R
for any extension K/k. If K is infinite, f∗ agrees up to translation with

the morphism induced by f via the isomorphism U(K)/R
∼

−→ G(K)/R
from [3, p. 196 Prop. 11], where U is an open subset of definition of f .

Proof. By Lemma 6, f induces a homomorphism G̃ → G′ where G̃ is
an extension of G by a permutation torus. By Lemma 8, the induced
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morphism
ν≤0G̃[0] → ν≤0G

′[0]

factors through a morphism f∗ : ν≤0G[0] → ν≤0G
′[0].

The claims about R-equivalence classes follow from Theorem 1 b)
and Lemma 6. �

Remark 3. The proof shows that f ′
∗ = f∗ if f ′ differs from f by a

translation by an element of G(k) or G′(k).

Corollary 5. If T and T ′ are birationally equivalent k-tori, then ν≤0T [0]
≃ ν≤0T

′[0]. In particular, the groups T (k)/R and T ′(k)/R are isomor-
phic.

Proof. The proof of Proposition 2 shows that f 7→ f∗ is functorial
for composable rational maps between tori. Let f : T 99K T ′ be a
birational isomorphism, and let g : T ′

99K T be the inverse birational
isomorphism. Then we have g∗f∗ = 1ν≤0T [0] and f∗g∗ = 1ν≤0T ′[0]. The
last claim follows from Theorem 1. �

Remark 4. It is proven in [3] that a birational isomorphism of tori

f : T 99K T ′ induces a set-theoretic bijection f∗ : T (k)/R
∼

−→ T ′(k)/R
(p. 197, Cor. to Prop. 11) and that the group T (k)/R is abstractly
a birational invariant of T (p. 200, Cor. 4). The proof above shows
that f∗ is an isomorphism of groups if f respects the origins of T and
T ′. This solves the question raised in [3, mid. p. 397]. The proofs of
Lemma 6 and Proposition 2 may be seen as dual to the proof of [3, p.
189, Prop. 5], and are directly inspired from it.

3.3. Faithfulness and fullness.

Proposition 3. Let f : G 99K G′ be a rational map between semi-
abelian varieties, with G a torus. Assume that the map f∗ : G(K)/R →
G′(K)/R from Proposition 2 is identically 0 when K runs through the
finitely generated extensions of k. Then there exists a permutation
torus P and a factorisation of f as

G
f̃

99K P
g

−→ G′

where f̃ is a rational map and g is a homomorphism. If f is a mor-
phism, we may choose f̃ as a homomorphism.
Conversely, if there is such a factorisation, then f∗ : ν≤0G[0] → ν≤0G

′[0]
is the 0 morphism.

Proof. By Lemma 6, we may reduce to the case where f is a morphism.
Let K = k(G). By hypothesis, the image of the generic point ηG ∈
G(K) is R-equivalent to 0 on G′(K). By a lemma of Gille [6, Lemme
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II.1.1 b)], it is directly R-equivalent to 0: in other words, there exists
a rational map h : G ×A1

99K G′, defined in the neighbourhood of 0
and 1, such that h|G×{0} = 0 and h|G×{1} = f .
Let U ⊆ G × A1 be an open set of definition of h. The 0 and

1-sections of G×A1 → G induce sections

s0, s1 : G → Alb(U)

of the projection π : Alb(U) → Alb(G ×A1) = G such that Alb(h) ◦
s0 = 0 and Alb(h) ◦ s1 = f . If P = Ker π, then s0 − s1 induces a

homomorphism f̃ : G → P such that the composition

G
f̃

−→ P → Alb(U)
Alb(h)
−→ G′

equals f . Finally, P is a permutation torus by Lemma 5.
The last claim follows from Lemma 2. �

Proof of Theorem 2. a) Take K = k(G). The image of the generic
point ηG by fK lifts to a (non unique) rational map f : G 99K G′.
Using Lemma 6, we may extend f to a homomorphism

f̃ : G̃ → G′

where G̃ is an extension of G by a permutation torus P . Since G̃(K)/R
∼

−→ G(K)/R, we reduce to G̃ = G and f̃ = f .
Let L/k be a fonction field, and let g ∈ G(L). Then g arises from

a morphism g : X → G for a suitable smooth model X of L. By
assumption on K 7→ fK , the diagram

G(K)/R
fK−−−→ G′(K)/R

g∗




y

g∗




y

G(L)/R
fL

−−−→ G′(L)/R

commutes. Applying this to ηK ∈ G(K), we find that fL([g]) = [g ◦ f ],
which means that fL is the map induced by f .
b) The hypothesis implies that G′(E)/R = 0 for any algebraically

closed extension E/k, which in turn implies that G′ is also a torus.
Applying a), we may, and do, convert f into a true homomorphism by
replacing G by a suitable extension by a permutation torus. Applying
Lemma 7 a) to the cocharacter group of G, we get a resolution 0 →
P1 → Q → G → 0 with Q coflasque and P1 permutation. Hence we
may (and do) further assume G coflasque.
Let K = k(G′) and choose some g ∈ G(K) mapping modulo R-

equivalence to the generic point of G′. Then g defines a rational map
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g : G′
99K G such that fg is R-equivalent to 1G′. It follows that the

induced map

(7) 1− fg : G′/R → G′/R

is identically 0.
Reapplying Lemma 6, we may find an extension G̃′ ofG′ by a suitable

permutation torus which converts g into a true homomorphism. Since
G is coflasque, Lemma 7 b) shows that f : G → G′ lifts to f̃ : G → G̃′.

Then (7) is still identically 0 when replacing (G′, f) by (G̃′, f̃).
Summarising: we have replaced the initial G and G′ by suitable

extensions by permutation tori, such that f lifts to these extensions
and there is a homomorphism g : G′ → G such that (7) vanishes
identically. Hence 1−fg factors through a permutation torus P thanks
to Proposition 3. Write u : G′ → P and v : P → G′ for homomorphisms
such that 1− fg = vu. Let G1 = G× P and consider the maps

f1 = (f, v) : G1 → G′, g1 =

(

g
u

)

: G′ → G1.

Then f1g1 = 1 and G′ is a direct summand of G1 as requested. �

4. Some open questions

Question 1. Are lemma 6 and Proposition 2 still true when G is not a
torus?

This is far from clear in general, starting with the case where G is
an abelian variety and G′ a torus. Let me give a positive answer in the
case of an elliptic curve.

Proposition 4. The answer to Question 1 is yes if the abelian part A
of G is an elliptic curve.

Proof. Arguing as in the proof of Proposition 2, we get for an open
subset U ⊆ G of definition for f an exact sequence

0 → Gm → P → Alb(U) → G → 0

where P is a permutation torus. Here we used that NS(Ḡ) ≃ Z, which
follows from Lemma 4.
The character group X(P ) has as a basis the geometric irreducible

components of codimension 1 of G − U . Up to shrinking U , we may
assume that G − U contains the inverse image D of 0 ∈ A. As the
divisor class of 0 generates NS(Ā), D provides a Galois-equivariant
splitting of the map Gm → P . Thus its cokernel is still a permutation
torus, and we conclude as before. �
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Question 2. Can one formulate a version of Theorem 2 and Corollary 3
providing a description of the groups HomDMeff

−
(ν≤0G[0], ν≤0G

′[0]) and

HomHI(G/R,G′/R) (at least when G and G′ are tori)?

The proof of Theorem 2 suggests the presence of a closed model
structure on the category of tori (or lattices), which might provide an
answer to this question.
For the last question, let G be a semi-abelian variety. Forgetting its

group structure, it has a motive M(G) ∈ DMeff
− . Recall the canonical

morphism
M(G) → G[0]

induced by the “sum” maps

(8) c(X,G)
σ

−→ G(X)

for smooth varieties X ([17, (6), (7)], [1, §1.3]).
The morphism (8) has a canonical section

(9) G(X)
γ

−→ c(X,G)

given by the graph of a morphism: this section is functorial in X but
is not additive.
Consider now a smooth equivariant compactification Ḡ ofG. It exists

in all characteristics. For tori, this is written up in [2]. The general
case reduces to this one by the following elegant argument I learned
from M. Brion: if G is an extension of an abelian variety A by a torus
T , take a smooth projective equivariant compactification Y of T . Then
the bundle G×T Y associated to the T -torsor G → A also exists: this
is the desired compactification.
Then we have a diagram of birational motives

(10)

ν≤0M(G)
∼

−−−→ ν≤0M(Ḡ)

ν≤0σ





y

ν≤0G[0].

By [11], we have H0(ν≤0M(Ḡ))(X) = CH0(Ḡk(X)) for any smooth
connected X . Hence the above diagram induces a homomorphism

(11) CH0(Ḡk(X)) → G(k(X))/R

which is natural in X for the action of finite correspondences (compare
Corollary 1). One can probably check that this is the homomorphism
of [12, (17) p. 78], reformulating [3, Proposition 12 p. 198]. Similarly,
the set-theoretic map

(12) G(k(X))/R → CH0(Ḡk(X))
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of [3, p. 197] can presumably be recovered as a birational version of
(9), using perhaps the homotopy category of schemes of Morel and
Voevodsky [14].
In [12], Merkurjev shows that (11) is an isomorphism for G a torus

of dimension at most 3. This suggests:

Question 3. Is the map ν≤0σ of Diagram (10) an isomorphism when G
is a torus of dimension ≤ 3?

In [13], Merkurjev gives examples of tori G for which (12) is not
a homomorphism; hence its (additive) left inverse (11) cannot be an
isomorphism. Merkurjev’s examples are of the form G = R1

K/kGm ×

R1
L/kGm, where K and L are distinct biquadratic extensions of k. This

suggests:

Question 4. Can one study Merkurjev’s examples from the above view-
point? More generally, what is the nature of the map ν≤0σ of Diagram
(10)?

We leave all these questions to the interested reader.
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