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S-arithmetic subgroups Γ of reductive algebraic groups G over number fields are
finitely presented and contain a torsion-free subgroup of finite index, which is of
type FL (Ragunathan 1968, Borel-Serre 1976), therefore they are of type FP∞,
i.e. there exists a projective resolution

Pm → Pm−1 → · · · → P0 → Z → 0

of finitely generated ZΓ-modules Pi for all m, and also of type F∞, i.e. there exists
an Eilenberg-MacLane complex K(Γ, 1) with finite m-skeleton for all m (cf. [Br2],
VIII).

For function fields F ([F : Fq(t)] < ∞, q = pk, p = charF ) however, many
counter-examples are known: SL2(Fq[t]) is not even finitely generated, i.e. not of
type F1 (Nagao 1959, Serre 1968), SL2(Fq[t, t

−1]) and SL3(Fq[t]) are finitely gener-
ated, but not finitely presented, i.e. of type F1, not F2 (Stuhler 1976, Behr 1977);
for the S-arithmetic ring OS (S a finite, non-empty set of primes of F ), SL2(OS) is
of type F|S|−1, but not F|S| (Stuhler 1980), SLn(Fq[t]) is of type Fn−2 but not Fn−1

as long as q ≥ 2n−2 (Abels 1989) or q ≥
(

n−2

[n−2

2
]

)

(Abramenko 1987) and similar re-

sults hold for absolutely almost simple Fq-groups G and Γ = G(Fq[t]) (Abramenko
1994), the positive part was proved without restriction on q for Chevalley groups
G, Γ = G(OS), |S| = 1 (Behr 2004).

All these results provided evidence for the following conjecture: If G is an abso-
lutely almost simple algebraic group, defined over F with F -rank r > 0 (“isotropic
group”), rv = rankFv

G for the completion Fv of F (v ∈ S, S finite, S 6= ∅), Γ
S-arithmetic subgroup (discrete in GS = Πv∈SG(Fv)), then Γ is of type Fd−1, but
not of type Fd for d =

∑

v∈S rv.
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This conjecture was proved for the classical properties finite generation (iff
d ≥ 2, Behr 1969, Keller 1980) and finite presentation (iff d ≥ 3: Behr 1998) and
the negative part for arbitrary d (Bux-Wortman 2007). Moreover for anisotropic
G (i.e. rkF G = 0) it was known (Serre 1971), that Γ is of type F∞.

The positive part is now proved in a preprint by Bux – Gramlich – Witzel
([BGW], 2011). This paper gives a completely different and relatively short proof,
using two old results on cohomology, which has the advantage not to need such
precise local informations, which are necessary in (almost) all proofs of the results
mentioned above, and, also in [BGW], which use filtrations of buildings, defined
in very clever ways.

In 1976 Borel-Serre also computed the cohomology of spherical and affine build-
ings over non-archimedean local fields. If Xv is the Bruhat-Tits-building of G(Fv)
(G a semi-simple F -group, v ∈ S), then the product X = Πv∈SXv is a contractible
polysimplicial complex. X gives rise to a chain-complex C = (Cn)n∈N with ZΓ-
modules Cn, generated by polysimplices, but these are (in general) not projective
nor finitely generated. Borel-Serre proved that the reduced cohomology with com-
pact support H̃ i

c(X ;M) for a ZΓ− module M vanishes in all dimensions, except
for the top-dimension d =

∑

v∈S dv, dv = dimXv = rv = rankFv
G. For Hd

c (X ;M)
they gave an explicit description by locally-constant functions on unipotent groups.
In section 1 we present a short version of their results.

On the other hand, K. Brown found in 1975 a very interesting cohomological
criterion for finiteness properties. In his proof he constructed for a Γ-complex Cn

of projective modules another complex C ′
n with the same homology, but finitely

generated Γ-modules. His assumptions are not all valid in our case and so we
cannot use his general arguments. In section 2 we use his construction, but we
must be more explicit, on the other side our situation is more special: The crucial
point is Borel-Serre’s vanishing result for cohomology with compact supports; in
some sense, this substitutes the notion of being essentially trivial for filtrations (see
[Br3],2). We obtain a partial resolution of Z by finitely generated free Γ-modules
up to dimension d − 1, so Γ is of type FPd−1. By this method we cannot prove
type Fd−1, but this is implied together with finite presentation for d ≥ 3 ([B3]).

In section 3 we give a proof for the negative part, which is based on the same
ideas as the proof in [BW], but the computations of Borel-Serre provide a more
natural construction of cycles, that also illustrates the geometry of Bruhat-Tits-
buildings: we find arbitrary big spherical holes in a mod Γ compact subcomplex
X0 of X , which only become boundaries of cones, arbitrary far from X0.

I am very grateful for interesting comments by Herbert Abels, Robert Bieri,
Kenneth Brown, Kai-Uwe Bux, Ulrich Stuhler and especially to Wolf-Hanno Rehn
for pointing out several mistakes.
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1 Borel-Serre: Cohomology of buildings and

S-arithmetic groups (see [BS])

1.1 Spherical or Tits buildings

Let k be a non-archimedean local field, G a connected semi-simple k-group of
rank l ≥ 1 and Y the Tits-building of G(k). It is well-known by the Solomon-
Tits-theorem that Y has the homotopy-type of a bouquet of (l − 1)-spheres with
respect to its simplicial topology. Borel-Serre provide Y with the analytic topology,
induced by the valuation on k and prove an analogue for the Alexander-Spanier-
cohomology (cf. [Sp1] or [Sp2]).

Denote by P a minimal k-parabolic subgroup of G and by C the closed chamber

of Y fixed by P (k). Then Y can be described asG(k)/P (k)×C with identifications.

The homogeneous space G(k)/P (k) = (G/P )(k) is compact for the k-analytic
topology, C carries the simplicial topology and Y gets the quotient-topology: Yt.

We have P (k) = ZG(T )(k) · U(k), where T is a maximal k-split torus of G,
ZG its centralizer and U the unipotent radical of P , W the corresponding Weyl
group. The Bruhat-decomposition G(k) = P (k)WP (k) = U(k)WP (k) gives a
more concrete description of Y . Especially for the longest element w0 of W this
product-decomposition is unique; therefore we have a 1-1-correspondence between
U(k) and the set CP of all chambers opposite to C, defined by u 7→ u ·w0C. Since
two opposite chambers determine an apartment (cf. [BT], 4), the set AP of all
apartments containing C is also in 1-1-correspondence with U(k) and thus inherits
a k-analytic structure from that of U(k). AP = {uAo|u ∈ U(k)}, where Ao is the
apartment, defined by the opposite pair (C,w0C) and fixed by ZG(T )(k) = P (k)∩
w0P (k)w

−1
0 . In this setting Borel-Serre can compute the (reduced) Alexander-

Spanier cohomology H∗(Yt;M) for a Z-module M , using the group C∞
c (AP ;M)

of locally constant functions with compact support on AP or U(k):

Proposition 1. (=[BS], thm. 2.6)

(i) H i(Yt;M) = 0 for i 6= l − 1

(ii) H̃ l−1(Yt;M) ≃ C∞
c (U(k);M)

1.2 Affine or Bruhat-Tits-buildings

The affine (or euclidean) building X of G(k) (for a non-archimedean local field k)
is more conveniently defined for the simply-connected covering G̃ of G in order to
obtain X as a product of the buildings Xj for the almost simple factors Gj of G̃
– so it is a polysimplicial complex (see [BS], 4). An important part of this paper
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([BS], 5) consists of the construction of a compactification of X by adding Y as a
boundary at infinity. Thereby the direct sum Z = X ∐ Y becomes a contractible
compact space Zt, inducing the natural topology on X and Yt on Y .

Using the long exact cohomology sequence for Zt mod Yt

· · · → H̃ i(Zt;M) → H̃ i(Yt;M) → H i+1
c (X ;M) → H i+1(Zt;M) → . . .

where M is a module over a ring R and H∗
c denotes the cohomology with compact

supports and moreover by the vanishing of H̃∗(Zt;M) we can transfer proposition
1 to

Proposition 2. (=[BS], thm. 5.6)

(i) H i
c(X ;M) = 0 for i 6= l

(ii) H l
c(X ;M) ≃

{

H l−1(Yt;M) if l ≥ 1
M if l = 0

in particular for R = Z and l ≥ 1:

H l
c(X ;M) ≃ C∞

c (U(k);M)

Remark: A function f ∈ C∞
c (U(k);M) has compact support and is locally

constant, so there exists a finite union of open subsets of U(k), such that f is
constant on each of them. This union corresponds to a neighbourhood of Yt in Zt

and f is determined on its compact complement on X .

1.3 S-arithmetic groups over function fields

Let F be a function field (i.e. [F : Fq(t)] <∞, q = pm, p = char F ) with a finite
non-empty set S of places of F and Fv the completion of F with respect to v ∈ S.

G denotes a connected semi-simple algebraic F -group of rank r, rv := rankFv
G

(v ∈ S), GS := Πv∈SG(Fv); X = Πv∈SXv with Bruhat-Tits-buildings Xv of G(Fv),
dim Xv = dv = rv and d = dim X =

∑

v∈S dv. Finally Γ is a S-arithmetic
subgroup, discrete in GS.

G is called isotropic if r > 0 and anisotropic if r = 0. It is well known from

reduction theory (“Godement’s compactness criterion”; cf. [H] or [B1]) that X/Γ
is compact iff G is anisotropic.

For this cocompact case Borel-Serre prove (thm. 6.2 in [BS])

Proposition 3. A S-arithmetic subgroup Γ of an anisotropic connected semi-
simple group G over a function field F is finitely presented and of type FP∞ and
also of type F∞.
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Remarks:

a) More precisely they show that Γ has a torsion free subgroup Γ0 of finite index,
which is of type FL and so of type F (P )∞, thus Γ inherits this properties.

b) Moreover H i(Γ0;ZΓ0) ≃

{

0 for i 6= d
Hd

c (X ;Z), thus free

c) In the “number-field-case” (over a number field K instead of F ) all these results
are valid for arbitrary S-arithmetic groups, i.e. also for isotropic G.

In the function-field-case Bux and Wortman proved in [BW], that Γ can be
of type F∞ only for anisotropic G: They give a bound for the “finiteness length”
(max{n : Γ has type Fn}) for isotropic groups. To obtain a sharp bound, one should
restrict to absolutely almost simple groups: A simply connected semi-simple group
G is the direct product of its almost simple factors Gi and so is Γ =

∏

Γi, Γi in
Gi. For instance Γ can only be finitely generated if all Γi are so. In this situation
they show, that Γ cannot be of type FPd (so not Fd).

1.4 Isotropic groups

Now assume that G is an isotropic, absolutely almost simple F -group. So there
exists a minimal F -parabolic subgroup P with unipotent radical U . For each v ∈ S
choose a minimal Fv-parabolic group Qv, contained in P with unipotent radical
Uv, such that Uv(Fv) ⊇ U(Fv) ⊃ U(F ).

Set US :=
∏

v∈S Uv(Fv) ⊇ US :=
∏

v∈S U(Fv) ⊃ U(F ) (the last inclusion by
diagonal embedding) and Γ ⊂ G(F ) is S-arithmetic. By propositions 1 and 2 we
have the isomorphisms for an arbitrary Z−module M

Hdv
c (Xv;M) ≃ Hdv−1

c (Yv;M) ≃ C∞
c (Uv(Fv);M)

and H i
c(Xv;M) = 0 for i < dv, so for X =

∏

v∈S Xv we obtain by Künneth’s
formula

Theorem 1. (cf. [BS] , 6.6)

a) H i
c(X ;M) = 0 for i < d =

∑

v∈S dim Xv;

b) Hd
c (X ;M) =

⊗

v∈S H
dv
c (Xv;M) ≃ C∞

c (US;M)
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2 Construction of a FPd−1-resolution for Γ

The Bruhat-Tits-buildingX provides an augmented chain-complex C = (Cn)−1≤n≤d

with ZΓ− modules Cn, generated by the n−dimensional polysimplices of X for

n ≥ 0 and C−1 = Z, Cn
∂n
→ Cn−1. Since X is a contractible space, C has trivial

reduced homology.
Following K. Brown (see [Br1]) we shall construct inductively a projective — or

even free — resolution of Z by defining chain-complexes C ′(k) =
(

C ′(k)n
)

−1≤n≤d−1

with finitely generated ZΓ−modules C ′(k)n, where C ′(k)n = C ′(k − 1)n for
n ≤ k − 1 and C ′(k)n = 0 for n > k, beginning with C ′

−1 = Z (derivation
∂′n : C ′

n → C ′
n−1).

Moreover we define chain-maps fk : C ′(k) → C, starting with f−1 = idZ and
fk an extension of fk−1. Thereby we obtain finally a subcomplex C ′ of C, whose
support in X is compact modulo Γ.

We consider the mapping-cones C ′′(k) for fk−1, given by
C ′′(k)n := Cn⊕C

′(k−1)n−1, C
′′(k)−1 = Z and ∂′′n(c, c

′) =
(

∂nc−fn−1(c
′),−∂′n−1(c

′)
)

,
∂′−1 = 0.

2.1 Homology and the beginning of induction

There is a short exact sequence

0 → C → C ′′ → ΣC ′ → 0, (ΣC ′)n := C ′
n−1,

giving rise to a long exact sequence for homology

(1) . . .→ Hn(C) → Hn

(

C ′′(k)
)

→ Hn−1

(

C ′(k − 1)
)

→ Hn−1(C) → . . .

Denote by Xo the set of vertices of X , then we have

C ′′(0)0 = C0(X)⊕ Z = {(Σzixi, z
′) | xi ∈ X0; zi, z

′ ∈ Z}

and with ∂0(Σzixi) = Σzi (augmentation-map) we obtain ∂′′0
(

(Σzixi, z
′)
)

= 0 ⇔
Σzi = z′. Furthermore C ′′(0)1 = C1(X)⊕ {0};H0(C) = 0 implies

Z0(C) = B0(C) ≃ B0

(

C ′′(0)
)

= {Σzixi, 0) | Σzi = 0}

Choose now a base point x0 ∈ X0, then
(

Σzi(x0 − xi), 0
)

∈ B0

(

C ′′(0)
)

and we see
that

H0

(

C ′′(0)
)

≃ {
(

(Σzi) · x0, (Σzi)
)

} = {(zx0, z) | z ∈ Z} ≃ Z

We can give evidence of its ZΓ−module-structure:

H0

(

C ′′(0)
)

≃ {
(

Σzγ(γx0),Σzγ
)

| zγ ∈ Z, γ ∈ Γ}/
{
(

Σzγ(γx0),0
)

|Σzγ=0}
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Using this description, we can lift the augmentation-map ǫ : ZΓ → Z to a
ZΓ−homomorphism ϕ0 of ZΓ into Z0

(

C ′′(0)
)

, defined by ϕ0(Σzγγ) :=
(

Σzγ(γx0),Σzγ
)

;
so ϕ0 surjects onto H0

(

C ′′(0)
)

. Z0

(

C ′′(0)
)

can be viewed as a fiber-product
C0 ×Z C

′
−1, given by the maps ∂0 and f−1:

ZΓ
∂′

0

**V

V

V

V

V

V

V

V

V

V

V

V

ϕ0

%%J

J

J

J

J

J

J

J

J

J

f0

��
8

8

8

8

8

8

8

8

8

Z0

(

C ′′(0)
)

��

// C ′
−1 = Z

f−1

��

C0 ∂0

// Z

According to this diagram we define

C ′
0 := ZΓ, f0 : C

′
0 → C0 by f0(Σzγγ) : = Σzγ(γx0)

∂′0 : C
′
0 → C ′

−1 by ∂′0(Σzγγ) : = Σzγ

As a consequence we have to set C ′′(1)1 = C1⊕C
′
0 and C

′′(1)0 = C0⊕Z, C ′′(1)n =
Cn for n > 1. We confirm that

∂′′0 ◦ ∂
′′
1 (c1, c

′
0) = ∂′′0

(

∂1(c1)− f0(c
′
0),−∂

′
0(c

′
0)
)

=
(

∂0 ◦ ∂1(c1)− ∂0 ◦ f0(c
′
0)− f−1 ◦ (−∂

′
0(c

′
0),−∂

′
1 ◦ (−∂

′
0)(c

′
0)
)

= 0, (since ∂0 ◦ f0 = f−1 ◦ ∂
′
0)

Moreover ∂′′1 (0,−c
′
0) =

(

− f0(−c
′
0)
)

,−∂′0(−c
′
0)
)

=
(

Σzγ(γx0),Σzγ
)

for c′0 = Σzγγ,
which means that ∂′′1 : C ′′(1)1 → C ′′(1)0 is surjective on H0

(

C ′′(0)
)

, thus
H0

(

C ′′(1)
)

= 0.
Observe that f0(C0) = f0(ZΓ) = Z · (Γx0), whose support is the subcomplex

Γ · x0 =: X ′
0 of X .

For the next step consider H0

(

C ′(0)
)

= Z0

(

C ′(0)
)

= {Σzγ ·γ | Σzγ = 0} =: IΓ,
the augmentation ideal of ZΓ. It is well known that IΓ is a finitely generated
ZΓ−module iff Γ is a finitely generated group. Now Γ is a S−arithmetic subgroup
of G(F ), G an absolutely almost simple algebraic F−group — what we assume
from now on. Therefore Γ is finitely generated iff the sum of local ranks d ≥ 2
(see [B1] or [B3]); so we find a free module (ZΓ)r1 =: C ′(1)1, which surjects on
IΓ = H0

(

C ′(0)
)

. By sequence (1) H0

(

C ′(0)
)

is isomorphic to H1

(

C ′′(1)
)

, because
H1(C) = H0(C) = 0. We can lift the surjection of C ′(1)1 onto H1

(

C ′′(1)
)

to
Z1

(

C ′′(1)
)

, which is by definition a fiberproduct C1×C0
Z0(C

′
0)with respect to the

maps ∂1 and f0. As above in the diagram we get the maps f1 : C ′(1)1 → C1 and

7



∂′1 : C
′(1)1 → C ′(1)0 = C ′(0)0, more concretely:

c′1
∂′

1

**U

U

U

U

U

U

U

U

U

U

U

U

U

""E

E

E

E

E

E

E

E

E

f1

��
3

3

3

3

3

3

3

3

3

(c1, c
′
0)

��

// c′0

f0
��

with ∂′0(c
′
0) = 0

c1
∂1

// ∂1(c1) = f0(c
′
0)

Let us point out, that c1 is a 1−chain in C1(X), whose boundary is contained in
f0(C

′
0). Since C

′(1)1 is finitely generated, we get finitely many elements c11, . . . , c
r1
1 ,

whose supports are paths p1, . . . , pr1 in X , which generate a Γ−subcomplex X ′
1 of

X with X ′
1/Γ compact.

For each c′0 ∈ Z0

(

C ′(0)
)

there exists c1 ∈ C1 with ∂1c1 = f0(c
′
0), since H0(C) =

0 and also c′1 ∈ C ′(1)1 with ∂′1(c
′
1) = c′0 : H0

(

C ′(1)
)

= 0. Alternatively we could
use C ′′(2)2 := C2 ⊕ C ′(1)1 and compute ∂′′2 , proving that H1

(

C ′′(2)
)

= 0, which
implies by (1) H0

(

C ′(1)
)

= 0.

2.2 Some examples

1. Γ = SL2(Fq[t]) is not finitely generated, due to Nagao-Serre (see [S], II. 1.6);
its Bruhat-Tits-building is a treeX , which has a half-lineH as a fundamental
domain mod Γ. H has vertices xi(i ∈ N0) with stabilizers Γi = stabΓxi, where

Γ0 = SL2(Fq),Γi =

(

F∗
q Fq[t]i
0 F∗

q

)

with Fq[t]i = {p ∈ Fq[t] | deg p ≤ i} for

i > 0.

We have X ′
0 = Γ · x0, which contains γix0 for γi ∈ Γi�Γi−1 : the shortest

path pi in X , connecting x0 with γix0 must contain the vertex xi. Thus the
complex X ′

1, generated by the pi is not compact mod Γ. If c′i = γix0 − x0
∈ C(0)′0 and ci is the chain corresponding to pi in C ′

1 we have (ci, c
′
i) ∈

Z1

(

C ′′(1)
)

, which shows, that H1

(

C ′′(1)
)

cannot be a finitely generated ZΓ−
module — just as H0

(

C ′(0)
)

.

2. Γ = SL3(Fq[t]) is finitely generated: it is easy to see, that E = SL3(Fq) ∪
{e12(p), e23(q) | p, q ∈ Fq[t]1} is a set of generators. A standard apartment
A of its Bruhat-Tits-building X is a triangulated plane and a fundamen-
tal domain for X mod Γ is given by a cone C in A with vertex x0 and
angle π

3
. Let △0 be the triangle with vertex x0 and contained in C, s.th.

for each γ ∈ E we have γ△0 ∩ △0 6= φ (γ fixes at least one vertex of
△0). This implies, that every vertex γx0 is connected with x0 by a path
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p, that projects into △0, so p is contained in Γ△0 =: X ′
1, which means

X ′
1/Γ is compact. In the language of chains: For each c′ ∈ Z0

(

C ′(0)
)

with
f0(c

′) ∈ C0(X
′
0) ⊂ C0(X), X ′

0 = Γ · x0 we find c ∈ C1(X
′
1) ⊂ C1(X)

s. th. (c, c′) ∈ Z1

(

C ′′(1)
)

. But these pairs generate H1

(

C ′′(1)
)

, since (c, 0) ∈
Z1

(

C ′′(1)
)

is a boundary by H1(X) = 0 and for (c1, c
′), (c2, c

′) ∈ Z1

(

C ′′(1)
)

we have (c1, c
′)− (c2, c

′) = (c1 − c2, 0) ∈ B1

(

C ′′(1)
)

. Conclusion: H1

(

C ′′(1)
)

is a finitely generated ZΓ− module, because the elements c′ = γx0−x0 with
γ ∈ E generate Z0

(

C ′(0)
)

.

On the other side SL3(Fq[t]) is not finitely presented: this is shown in
[B2] by constructing an infinite series of closed paths in X ′

1

(

or 1−cycles
c′n ∈ C ′

1(1)1
)

, which cannot be contracted in ΓCn where Cn(n ∈ N) are com-
pact subsets of C with

⋃

n

Cn = C. In the same way as in example 1 we obtain

elements (cn, c
′
n) in Z2

(

C ′′(2)
)

, which cannot be contained in a finitely gen-
erated ZΓ−module and of course are inequivalent mod B2

(

C ′′(2)
)

— s.th.
H2

(

C ′′(2)
)

is not finitely generated as a ZΓ−module and the supports of all
2−chains cn cannot be contained in a complex X ′

2 with X ′
2/Γ compact.

3. Γ = SL2(Fq[t, t
−1]) is finitely generated by the set E = SL2(Fq) ∪ {e12(p) |

p ∈ Fq[t]1}∪

{(

t 0
0 t−1

)}

. An apartment A ofX = X1×X2

(

the buildings

X1 of SL2(Fq[t]) and X2 of SL2(Fq[t
−1])

)

is a plane, divided into squares.
Choose x0 ∈ A with stabΓx0 = SL2(Fq), then there exists a finite union
Q of squares, containing x0, s.th. γQ ∩ Q 6= φ for all γ ∈ E. Then each
γx0 ∈ Γx0 =: X ′

0 is connected with x0 by a path in ΓQ =: X ′
1, so X

′
1/Γ is

compact and we conclude as in example 2, that H1

(

C ′′(1)
)

is generated by
elements (c, c′) with c ∈ C1(X

′
1), so it is a finitely generated ZΓ−module.

On the other hand, Γ is not finitely presented, which was shown in [St1] in a
similar way as for example 2, s. th. H2

(

C ′′(2)
)

cannot be finitely generated.

4. G = SL2 × SL2 is semi-simple, but not almost simple and Γ = Γ1 × Γ2 =
SL2(Fq[t]) × SL2(Fq[t]) is not finitely generated, since the Γi are not and
H0

(

C ′(0)
)

= IΓ1× IΓ2, isomorphic to H1

(

C ′′(1)
)

, is not a finitely generated
ZΓ−module — although the sum d of local ranks is 2!

2.3 Cohomology

The examples show that in order to construct a resolution with free ZΓ− modules
and a mod Γ finite subcomplex of X , one should prove that Hk

(

C ′′(k)
)

is a
finitely generated ZΓ− module for k ≤ d − 1. Brown’s construction in [Br1] uses
cohomology for this purpose, but he assumes, that the given modules of chains are
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projective, which is not true in our case - so we need more special arguments. We
shall apply Borel-Serre’s theorem (thm. 1) on cohomology with compact supports.
They refer to Alexander-Spanier-cohomology, but for the polysimplicial complex X
it can also be described by homomorphisms on the ZΓ−modules Cn(X) of chains
(cf [Sp1], section 19 or [Sp2], 6.9). A compact support then consists of finitely
many chains in Cn(X), just as for the more abstract complexes C ′

n and C ′′
n.

Recall that an element of Hn(X ;M) with an arbitrary coefficient-module M
is given by an abelian group homomorphism ϕ on Cn(X), which must be zero
on the module Bn(X) of boundaries (since δnϕ := ϕ ◦ ∂n+1) and can be modified
by δn−1ψ = ψ ◦ ∂n with ψ : Cn−1(X) → M . The action of Γ on ϕ is given
by (γϕ)(c) = γ[ϕ(γ−1c)]. We are interested in finitely generated ZΓ−modules of
ϕ′s; sometimes it is more convenient, assuming that the supports of generators
contain only one element in each Γ-orbit, to consider the Γ-orbit {γϕ | γ ∈ Γ} as
a Γ−homomorphism ϕ̃ with ϕ̃(γc) = γϕ̃(c). The finite generation of the module
of ϕ′s is equivalent to say, that the module of Γ−homomorphisms ϕ̃ has compact
(or finite) support mod Γ.

Now we construct the complexes C ′ and C ′′ by induction and also the sub-
complex X ′ of X , where X ′/Γ is finite and f(C ′) = C(X ′). We start induction
with

X ′
0 := Γ · x0(x0 ∈ X), C ′(0)0 := ZΓ, f0(

∑

zγγ) =
∑

zγ(γx0).

Suppose now k > 1 (I should point out, that we don’t need the first step, described
in 2.1, which used homology and the theorem on finite generation of Γ). Define
the Γ−homomorphism ϕ

ϕ : C ′′(k)k = Ck × C ′(k − 1)k−1 −→ Ck−1, given by ϕ(c, c′) = ∂k(c),

of course the support of ϕ is not compact mod Γ. Since C ′(k− 1)k = 0, we have
Bk

(

C ′′(k)
)

= Bk(C) = Zk(C), so ϕ vanishes on Bk

(

C ′′(k)
)

and defines an element
of Hk

(

C ′′(k);Ck−1

)

. We can modify ϕ in its cohomology class by (−π1 ◦ ∂
′′
k ), π1

the projection of C ′′(k − 1) to its first component Ck−1, thus we have

π1 ◦ ∂
′′
k(c, c

′) = π1(∂kc− fk−1c
′, ∂′k−1c

′) = ∂kc− fk−1c
′.

The restriction of the class of ϕ to homology is a well-defined element ϕ ∈

HomΓ

(

Hk

(

C ′′(k)
)

;Ck−1

)

.

(Remark: In the more comfortable situation of [Br 1] one even has an isomor-

phism between Hk
(

C ′′(k);M
)

and HomΓ

(

Hk

(

C ′′(k)
)

;M
)

for arbitrary M .) We

have
ϕ(c, c′) = ∂k(c) = fk−1(c

′).
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The image of ϕ is Hk−1

(

fk−1

(

C ′(k − 1)
)

)

since ∂k−1(fk−1c
′) = ∂k−1 ◦ ∂k(c) = 0

and because Hk−1(C) = 0 there exists for each cycle fk−1(c
′) an element c ∈ Ck

with ∂k(c) = fk−1(c
′).

For isotropic groups we know, that X/Γ is not compact, so we have to consider
a filtration of X , i.e. an ascending sequence of subcomplexes X(m) with X(m)/Γ
compact and U

m
X(m) = X. Denote by ϕm the restriction of ϕ to C

(

X(m)
)

k
×

C ′(k − 1)k−1, then ϕm has compact support mod Γ (the second component
C ′(k− 1)k−1 is a finitely generated ZΓ− module by induction) and defines an ele-
ment of Hk

c

(

C ′′(k);Ck−1

)

; its restriction ϕm may be non-trivial only for a finitely
generated submodule of Hk

(

C ′′(k)
)

.
For cohomology there exists also a long exact sequence

(2) . . .→ Hn−1
c (C;M) → Hn−1

c

(

C ′(k−1);M
)

→ Hn
c

(

C ′′(k);M
)

→ Hn
c (C;M) → . . .

for arbitrary coefficient-modules M . For n ≤ d − 1 Borel-Serre’s result says, that
Hn

c (C;M) = 0 which implies Hk
c

(

C ′′(k);M
)

≃ Hk−1
c

(

C ′(k− 1);M
)

for k ≤ d− 1.
By induction C ′(k − 1) is a complex of finitely generated free ZΓ− modules and
therefore its cohomology is also finitely generated, which means that the module
of the corresponding Γ−homomorphisms has compact support modulo Γ− and by
the isomorphism this ist also true for Hk

c

(

C ′′(k);M
)

.
We apply this conclusion to the Γ−homomorphisms ϕm withM = Ck−1 and its

cohomology classes: They vanish outside some C
(

X(m0)
)

k
. In particular we have

ϕm = ϕ for all m > m0 for the restrictions to the homology Hk

(

C ′′(k)
)

. Observe
that the support of ∂k : Ck → Ck−1 is of course not compact mod Γ, but there
may be different elements c1 and c2 ∈ C(k), s.th. (c1, c

′) and (c2, c
′) define the same

homology class, which means (c1, c
′)−(c2, c

′) ∈ Bk

(

C ′′(k)
)

⇒ ∂kc1 = fk−1c
′ = ∂kc2.

We summarize: For each c′ ∈ Zk−1

(

C(k − 1)
)

= Hk−1

(

C ′(k − 1)
)

, c′ 6= 0 with
∂′k−1c

′ = 0 and ∂k−1(fk−1c
′) = fk−2(∂

′
k−1c

′) = 0 we find c ∈ Ck with ∂kc = fk−1c
′,

because Hk(C) = 0. Since ϕ(c, c′) = ∂kc = 0 for c /∈ C
(

X(m0)
)

we must have
c ∈ C

(

X(m0)
)

for all c′ ∈ Hk−1

(

C ′(k − 1)
)

. X(m0)/Γ is compact, so there exists
a set X ′

k of k−dimensional polysimplices, X ′
k ⊂ X(m0) and C(X

′
k)/Γ finite, which

supports the first component of Hk

(

C ′′(k)
)

.
We choose a (minimal) finite set {c1, . . . , cr} of generators for C(X ′

k). There
may exist several elements c′ with fk−1c

′ = ∂kci, but we may assume by induction
that they are congruent mod Γ (even mod the finite stabilizer Γ0 of ∂kci). Thus
we can also choose c′i ∈ C ′(k − 1)k−1, s.th. {(ci, c′i) | i = 1, . . . , r} is a finite set
of generators for the Γ−module Hk

(

C ′′(k)
)

, where (c, c′) is the class of (c, c′) ∈
Zk

(

C ′′(k)
)

.
Now we can define C ′(k)k := (ZΓ)r and get the following diagram for

ϕk(
r
∑

i=1

zγi · γi) :=
r
∑

1

zγi · γi(ci, c
′
i) ∈ Zk

(

C ′′(k)
)

.
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(ZΓ)r

∂′

k

,,Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

ϕk

&&L

L

L

L

L

L

L

L

L

L

fk

��
:

:

:

:

:

:

:

:

:

:

Zk

(

C ′′(k)
)

pr1

��

pr2
// Zk−1

(

C ′(k − 1)
)

⊂ C ′(k − 1)k−1

fk−1

��

C
(

X(m0)
)

k ∂k

// C
(

X(m0)
)

k−1

∩ ∩
Ck Ck−1

thus defining ∂′k : C
′(k)k → C ′(k)k−1 and

fk : C
′(k)k → Ck.

Moreover we have C ′′(k + 1)k+1 := Ck+1 ⊕ C ′(k)k and the k−dimensional

subcomplex X ′(k) :=
k
⋃

j=1

X ′
j , adding X

′
k.

We also saw, that ∂′k surjects on Zk−1

(

C ′(k−1)
)

, which means Hk−1

(

C ′(k)
)

=
0, so we obtained a resolution of Z by finitely generated free ZΓ−modules up to
dimension k.

Remarks

1. Under the assumptions of [Br1], one can even show, that Hk(C;M) ≃
HomZΓ

(

Hk(C);M
)

and if the cohomology of C preserves direct limits for
the coefficient modules, Brown constructs the chain-complex C ′ with finitely
generated ZΓ−modules.

2. For the semi-simple group G of example 4 the construction above should
not work, although for d = 2 the sequence (2) implies that H1

c

(

C ′′(1), C0

)

is
finitely generated.

Here we have X ′
0 = Z(Γ1×Γ2)·(x

1
0, x

2
0) and the shortest path between (x10, x

2
0)

and (γ1i x
1
0, x

2
0) must contain the vertex (x1i , x

2
0) (notations as in example 1

with upper index 1 or 2) s.th. the distance between x10 and γ1i x
1
0 goes to

infinity with i−analogous in the second component. There exists a closed
path in X = X1 ×X2 with the following vertices:

(x10, x
2
0) → (x1i , x

2
0) → (γ1i x

1
0, x

2
0) → (γ1i x

1
0, x

2
j ) → (x1i , x

2
j ) → (x10, x

2
j ) →

(x10, x
2
0). This path p (or chains, whose support is p) is a boundary in X(d ≥

2), therefore a homomorphism from cohomology has to vanish on p, e.g. ∂1,
which should define the isomorphism on homology. Bur for fixed x1i we get x

i
2
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arbitrary far from x02, which means, that ∂1 cannot be restricted to compact
supports.

We summarize our results in the following

Proposition 4. a) There exists a partial resolution of Z with free ZΓ−modules
of finite rank: C ′

d−1 → C ′
d−2 → . . .→ C ′

0 → Z

b) There exists a (d − 1)−dimensional subcomplex X ′ = X ′(d − 1) of X with
Hk(X

′) = 0 for k < d− 1.

Both properties imply the following finiteness theorem: Cf. for the first [Br2],
VIII. 4.3 and for the second [Br3], 1.1 (observing that stabilizers in Γ of cells in
X are finite).

Theorem 2. A S−arithmetic subgroup Γ of an absolutely almost simple algebraic
group G, defined over a function field F with rankFG > 0 and d =

∑

r∈S

rankFv
G is

of type FPd−1.

Remarks:

1. For semi-simple groups we obtain type FPd′−1, where d
′ is the minimal d for

the simple factors.

2. Our (co)homological method cannot prove that Γ is also of type Fd−1; but
this is true, since finite presentability was shown for d = 3 (see [B3]: un-
fortunately this proof is case-by-case and lengthy and part II of it was not
published, but exists!): cf [Br2], VIII. 7.

3 Spherical holes in X imply, that Γ is not of

type FPd.

This theorem cannot be deduced immediately from Borel-Serre’s result on the
top-cohomology of X . But their computations provide a natural construction of
cycles. We prove that the codim 1−homology is not essentially trivial and use then
Brown’s criterion. An important tool is the existence of a section of apartments,
which is compact modulo Γ — already used in [BW].
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3.1 Homology and cohomology in the top-dimension

For v ∈ S let Yv be the Tits-building and A an apartment of Yv in AP (cf. 1.1).
A is an oriented sphere and its homology Hl−1(A;Z) is generated by the cycle
∑

w∈W

(−1)lwwC in the fundamental class [A]. An element h of the cohomology

H̃ l−1(A;Z) can be restricted as a function to homology: The values h([A]) es-
tablish the isomorphism H̃ l−1(Yv,t;Z) ≃ C∞

c (Ap;Z), the set of locally constant
functions with compact support on Ap (see [BS], 2.5-2.6). Roughly speaking, the
cohomology may be understood as the characteristic function of supports for ho-
mology.

Recall that the standard apartment A0 is determined by a pair (C,Cop) of
opposite chambers and each A ∈ Ap by a pair (C, uCop) with u ∈ U(Fv), giving the
1−1−correspondence between Ap and U(Fv), s.th. H̃

l−1(Yv,t;Z) ≃ C∞
c

(

U(Fv);Z
)

.
For the spherical join Y of the Yv(v ∈ S) we have to consider the product US =
∏

v∈S

U(Fv) and obtain H̃d−1(Yt;Z) ≃ C∞
c (US;Z).

The transition to affine buildings with boundary is based on the sequence (cf.
1.2)

0 → Yt → Zt → X → 0

and its long exact sequence for cohomology shows that H l−1(Yt;Z) ≃ H l
c(X ;Z),

since the cohomology of Zt vanishes.
This isomorphism can be explained as follows: The (l − 1)−cycles in Yt are

given by fundamental classes [A] of apartments A ∈ AP in Yt and A bounds an
apartment A of X . By retraction of A∪A towards a center zA ∈ A we can remove
a collar and can consider [A] as a (l− 1)-cycle in X ; there it is the boundary of a
l−chain cA. In the top-domension cA is unique, its support is a cone with vertex
zA and edges, whose directions represent vertices in Yt, defining chambers in A.
Observe that the support of cA in X is compact. In the other direction: A given
support of a l−chain cA may be extended in different ways towards Yt. But since
the cohomology is locally constant, their extension is constant for a neighbourhood
in Yt.

3.2 Example: Γ = SL2(0S)

It should be useful to see the proof at first for a simple example without too many
technicalities. We choose the first example, for which the theorem was proved in
1980 by U. Stuhler, computing the Fp−cohomology of Γ.

For SL2(0S) the Bruhat-Tits-building X is the product of s =| S | trees Xv, its
apartments are Rs with a right-angled complex. The apartments of the boundary
Y are spherical joins, its chambers (s − 1)-simplices. A pair of opposite minimal
parabolic subgroups is (P+, P−), the groups of upper and lower triangular matrices
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with Levi-decompositions P+ = T ⋉U+, P− = T ⋉U−. The standard apartments
A0 and A0 are determined by the opposite chambers C and C−, fixed by P+

S =
∏

v∈S

P+(Fv) and P−
S . The torus TS acts on A0; if we choose an origin o = (ov)

in A0, we get A0 = {(xv) = (tvov) | (tv) ∈ TS, v ∈ S}. If α is the root of T
with respect to P+, | α(t) |=

∏

v

| α(tv) |v and by abuse of notation α(x) =
∑

v

α(xv) =
∑

log | α(tv) |v for xv = (tvov) is a linear weight-function on A0 and

H = {x ∈ A0 | α(x) = 0} a hyperplane in A0, containing o.
SL2(F ) is diagonally embedded in SL2(FS) =

∏

v

SL2(Fv) and by the product-

formula for values we see that T (0S) = {t ∈ T (F )
∣

∣ | α(t) |= 1}, so T (0S) is by
Dirichlet’s unit-theorem the product of a finite group and a free abelian group
of rank (s − 1). The latter acts on H as a lattice of translations and therefore
H/T (0S) is compact. The subcomplex X0 := Γ · H of X is then also compact
mod Γ. Our aim is to project apartments into X0.

Denote by pv resp. p
′
v the vertices of C and C ′ and consider them as directions

in A0, given by half-lines, starting at a center z. We choose a series of centers
zm(m ∈ N) in the sector with vertex o and base C: α[(zm)v] = m for all v.

Let ρm be the projection of Zt = X ∐ Yt into X0 with center zm. For the
restriction to A0 ∪ A0 we obtain ρm(pv) = ρm(p

′
v) =: qv,m with the following

coordinates: α[(qv,m)w] = m for all w 6= v and α[(qv,m)v] = −(s − 1)m. The
vertices qv,m span a (s− 1)−simplex △m in H and ρm(A0) = △m.

Consider now arbitrary apartments uA0 ∈ Ap, u ∈ US. It is well known, that
US =

∏

v

U(Fv) is compact mod U(0S) (see [B1], Satz 3): US = U(0S) · K,K

compact (if the class-number of 0S is 1, one can choose for K the product
∏

v

0v of

the valuation rings). We assume that the origin o is fixed by K.
Take u′ ∈ stabzm ∩ US, u

′ = u · k with u ∈ U(0S), k = (kv) ∈ K and suppose
log | u |v= α[(zm)v] = m, so m > α[qv,m)v], which implies that u fixes none of the
vertices qv,m — but u(qv,m) ∈ Γ ·H = X0.

Let us now describe the fundamental classes [A0] and u[A0], elements of
Hs−1(Yt;Z). [A0] is given by

∑

w∈W

(−1)lw · wC; the Weyl-group W of SL2(FS) is

(Z/2Z)s = {w =
∏

v

wǫv
v | ǫv = 0, 1}, where wv is the involution with wv[P

+(Fv)] =

P−(Fv), in particular w0 =
∏

v

wv and C ′ = w0C.

For u([A0]) we get uwǫv
v pv = pv for ǫ = 0(U stabilizes C) and uwǫv

v pv = up′v for
ǫ = 1, so all chambers uwC have vertices from {pv} ∪ {up′v}, especially uC = C
and uw0C = uC ′. In geometric terms: the apartments uA0 are cross-polytopes
(for s = 3 octahedrons) and topologically (s− 1)− spheres.

In the last step we retract these cycles into X0 by ρm (observe that ρm is
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compatible with the action of Γ): ρm(pv) = qv = ρm(p
′
v), ρm(up

′
v) = uqv. Thus

ρm(u[A0]) is a cycle cm ∈ Zs−1(X0;Z), whose support is a (s − 1)−sphere Sm,
consisting of 2s (s − 1)−simplices. We should point out, that different simplices
are in different apartments of X with boundary in Ap. Moreover these apartments
contain the retraction-center zm and therefore the cone Cm with base Sm and
vertex zm, which supports a s−chain C̃m, whose boundary is cm. In the top-
dimension such a chain C̃m is unique and since zm /∈ X0, we conclude that cm
defines a non-trivial class in Hs−1(X0,Z). In short: Sm is a spherical hole in X0.
On the other hand lim

m→∞
zm ∈ C, which means that the cones Cm grow out of each

subcomplex X ′ compact mod Γ : Hs−1(X ;Z) is not essentially trivial (using a
filtration (Xm)m∈N0

of X with X0 and Xm/Γ compact). Then Brown’s criterion
([Br3], thm. 2.2) shows, that SL2(0S) is not of type F|S|.

3.3 The general case

Most problems arise already for a fixed place v ∈ S. For the construction of spheres
and cycles it seems convenient not to use complete apartments but only the links
of two opposite vertices in Yv. These links have good projections into a hyperplane
H in an apartment A of X , on which an arithmetic torus acts cocompactly. The
proof of the following proposition can be found in [BW], thm. 2.2 and the literature
quoted there.

Proposition 5. Let Q be a maximal F−parabolic subgroup of G, containing a
1−dimensional F−split torus T1 with Levi-decomposition Q = ZG(T1)⋉ Ru(Q).

a) There exists a maximal F−torus T in Q, such that:

(i) The maximal F−split torus of T is T1;

(ii) T contains a maximal Fv− split torus Tv for all v ∈ S.

b) TS =
∏

v∈S

T (Fv) acts on an apartment A =
∏

v

Av of dimension d =
∑

v

dv in

X =
∏

v

Xv.

c) TS is the product of a compact group and a free abelian group of rank d,
which acts on A by translations.

d) T (0S) is discrete in TS and is the product of a finite group and a free abelian
group of rank

∑

v

rankFv
(T )− rankFT = d − 1 (“generalized Dirichlet-unit-

theorem”).

e) Fixung an origin o in A, we get a hyperplane H ⊂ A on which T (0S) acts
cocompactly.
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We concentrate now on a fixed place v ∈ S and consider an apartment Av ⊂ Xv

with boundary Av ⊂ Yv (for simplicity we omit the index v for the details).
Av is determined by a pair of opposite chambers C and C ′, fixed by Fv−

minimal parabolic subgroups P and P ′. The vertices of C and C ′ are stabilized by
Fv− maximal parabolics, containing P resp. P ′. We assume that the F−group Q
of prop. 5 is one of them and denote it by Q0, fixing p0 ∈ C and its opposites by
Q′

0 and p′0.
There exist several minimal parabolic groups P ′

i , contained in Q′
0 (their number

depends on the local Weyl-group), fixing chambers C ′
1, . . . , C

′
k, so the union

k
⋃

1

C ′
i

is the star of p′0 in Av and the faces of the C ′
i, which do not contain p′0, establish

the link L(p′0). On the opposite side we have the link L(p0).
Remember that the set of all apartments in Av, containing the chamber C

is given by the elements of U(Fv), where U is the unipotent radical of P . Set
U0 := Ru(Q0), then U0(Fv) ≤ U(Fv), since Q0 ≥ P. This is also true for the other
minimal parabolics Pi ≤ Q0 and if some maximal Qi ≥ Pi fixes a vertex pi ∈ L(p0),
then the unipotent radical Ui(Fv) of Qi(Fv) has a non-trivial intersection with
U0(Fv). An element u 6= 1 from this intersection is not contained in U ′

i(Fv), where
U ′
i is the unipotent radical of Q′

i, fixing the vertex p′i opposite to pi — but then u
moves p′ ∈ L(p′o).

Now we turn the attention to Av, interpreting the vertices of Av as directions
in Av. T (Fv) acts by translations on Av, in particular T1(Fv) on lines with ends p0
and p′0. Each of the minimal parabolic subgroups P ′

i determines a so-called dual
root-systems RV

i of characters on T (Fv). Its basis consists of fundamental weights
ω′
ij(i = 1, . . . , k; j = 0, . . . , dv − 1), which describe the action of T (Fv) on the

unipotent radicals of maximal parabolic subgroups containing P ′
i . In particular

ω′
0 := ω′

i0 for all i belongs to Q0.
If we choose an origin ov ∈ Av, then every x ∈ A is given as x = txov with

tx ∈ T (Fv) and we define ω′
ij(x) = log | ω′

ij(tx) |v as linear functions on A.

Lemma 1. For H from Prop. 5 H ∩Av is a hyperplane in Av.

a) The vector ω′
0 is orthogonal to H ∩ Av.

b) All half-lines in Av with direction ω′
ij — starting at a vertex on the same

side of H ∩ Av as p0 — intersect H ∩Av.

Proof: a) For a sequence xm(m ∈ N) of vertices in Av with lim
m→∞

xm = p′0 we

have lim
m→∞

vol [stab xm ∩ U ′
0(Fv)] = ∞. By reduction theory we know that

(U ′
0)S =

∏

v

U ′
0(Fv) = U ′

0(0S) ·K with a compact set K (cf 3.2). Therefore the

finite intersections stab xm ∩ U ′
0(OS) grow also for m → ∞, so the vertices
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xm cannot be congruent mod Γ to finitely many ones. Since H is compact
mod Γ, the direction w′

0 can not have a component in H ∩ Av.

b) It is well known that the angles between fundamental weights are acute, if
RV is irreducible (cf [B3], 2.2).

If we assume that the origin o = (ov)v ∈ ΠAv = A lies in H and observe
that the linear function ω′

0 is defined on all Av, s.th. ω′
0[(xv)v] =

∑

v

ω′
0(xv), we

obtain — using the product formula for values — an explicit description for H :
H = {x ∈ A | ω′

0(x) = 0}.

Construction of spheres and cycles in the subcomplex X0 := Γ ·H of X ,
which is compact mod Γ — just as H . It will be enough to work in a fixed
building Xv and take spherical joins in the end. In Xv we are not interested in full
apartments but only in links of opposite vertices.

In the first step we project the link L(p′0) ⊂ Yv into H ∩ Av, using a series of
projection-centers zm, lying on the half-line with vertex ov and direction ρo with
lim

m→∞
zm = p0. Then all half-lines hm,p′ with vertex zm and direction p′ ∈ L(p′0)

— or with vector ω′
ij — intersect H ∩ Av in a vertex qm. This provides a map of

L(p′0) onto the link L(q0,m) in H ∩ Av. In order to simplify the situation we shall
not consider the whole link, but only a (dv − 1)−simplex

∑

m with vertices from
L(q0,m), that will be specified in the following lemma.

In a second step we map
∑

m by an element u ∈ stab zm∩U0(OS) into X0∩Av.
Over Fv the element u splits up into root-factors, which are needed to define further
simplices connecting

∑

m and u(
∑

m).
Thus the lemma will be an exercise on root-systems. The root-system R for

T (Fv) with respect to the Fv−minimal parabolic group P has a generating set
{α1, . . . , αr} of simple roots, which contains the set △ = {α1, . . . , αr0} of simple
roots over F . We specialize the definition of Q0, assuming that
T1 =

⋂

i∈△−{α1}

(kerαi)
0 (where 0 denotes the connected component of identity:

Q0 = ZG(T )⋉ U0.

Lemma 2. There exist Fv− maximal parabolic subgroups Qi(i = 1, . . . , r;
r = rankFv

G), which fix pi ∈ L(p0), and opposites Q′
i, fixing p

′
i ∈ L(p′0) and root-

factors uj ∈ U0(0S) ∩ Uβ(Fv) for some positive root β ∈ R+, also for j = 1, . . . , r,
such that uj(p

′
i) = p′i for i 6= j and uj(p

′
j) 6= p′j .

For the proof we describe the roots, who contribute factors to the unipotent
radicals Ui of the groups Qi(i = 0, . . . , r); we use a suitable order of the simple
roots (see the remark afterwards).
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Let u ∈ U0(Fv) be the product u =
∏

β

uβ with uβ ∈ Uβ(Fv) for

β ∈ {α1, α1 + α2, . . . , α1 + . . . + αr} — so we admit no factors, where β has a
coefficient > 1.

Now take Q1 with U1 = Ru(Q1), s.th. U1 has root-factors Uj with
j ∈ {αr, αr + αr−1, . . . , αr + αr−1 + . . .+ α1}, perhaps additional ones.

Denote the generators of the local Weyl-group Wv with si(i = 1, . . . , r), s.th.
si(αi) = −αi and define the groups Qi for i > 1 by Q2 = sr(Q1), Q3 = sr−1(Q2),
. . . , Qr = s2(Qr−1). We indicate briefly the roots for the unipotent radicals Ui.
U2 : {−αr, αr−1, αr−1 + αr−2, . . .}, U3 : {−αr − αr−1,−αr−1, αr−2, . . .}, . . . , and
finally Ur : {−αr − . . .− αr−2, . . .− α2, α1}.

Remark: The numbering of roots is not always the usual one. αr must be a
long root and for E6, E7, E8 the “extra” vertice must be α4.

The result is as follows: Each factor uβ from the product u =
∏

β

uβ is contained

in exactly one of the unipotent radicals Ui(for i = 1, . . . , v). If we rewrite u =
v
∏

j=1

uj, we can assume that uj ∈ Uj(Fv), but uj /∈ Ui(Fv) for all i 6= j. Now

uj /∈ Ui(Fv) implies that uj ∈ U ′
i(Fv) ⊂ Q′

i(Fv) for the opposite group, which
means uj(p

′
i) = p′i for i 6= j and since uj /∈ U ′

j(Fv) also uj(p
′
j) 6= p′j.

It remains to guarantee, that the factors uj = uβ can be chosen in U0(0S). For
this purpose we have to make precise the positions of ov and (zm)v. We know that
U0(Fv) = U(0S) ·Kv with Kv compact, so we can suppose that Kv fixes ov. For
vertices xv ∈ T1(Fv) · ov we have β(xv) = α1(xv) for all β ∈ {α1, α1 + α2, . . . , α1 +
. . . + αr}, especially we get β(ov) = 0 and we define (zm)v by α1[(zm)v] = m =
β[(zm)v]. An arbitrary element uβ ∈ Uβ(Fv) can be written in the form uβ = u′β ·kβ
with u′β ∈ U0(OS) and kβ ∈ Kv with β(u′β) = β(uβ) and we have also u′β(p

′
i) = p′i

for uβ = uj, i 6= j and u′β(p
′
j) 6= pj — but not u′β(p

′
j) = uβ(pj) in general.

The result can be transmitted to the image of projections into X0 = Γ ·H.

Corollary 1. For u =
r
∏

j=1

uj ∈ U0(0S)∩
∏

β

Uβ(Fv)∩stab zm and qi = hm,p′i
∩H∩Av

there is u(qi) = ui(qi) ∈ X0 ∩Av, since uj(qi) = qi for i 6= j.

Remark: A simple, but instructive example for this proof is Γ = SL4(0S),
s = 1 with r = 3, where q1, q2, q3 are vertices of a triangle in L(q0), cutting off the
three other vertices of L(q0).

Now it is easy to construct spherical complexes in X0 ∩ Av, following a sim-
ilar pattern as in the example 3.2. We start with the (dv − 1)−simplex

∑

m ⊆
L(q0) ⊂ H∩Av with vertices q1, . . . , qdv(dv = r), which come from the projection of
L(p′0) ⊂ Yv towards the center (zm)v ∈ T1(Fv) · ov. Now we use a product u =
r
∏

j=1

uj ∈ U0(0S) ∩ stab zm from the corrollary and map
∑

m by partial products:
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Set J = {1, . . . , r} = J ′
·
∪ J ′′ and uJ ′ :=

∏

j∈J ′

uj, thus uJ ′ fixes the vertices qj with

j ∈ J ′′ and for j ∈ J ′ we get uJ ′(qj) = u(qj) ∈ u(
∑

m) ⊆ u
(

L(q0)
)

. We get 2dv

(dv − 1)−simplices, which fit together to a topological (dv − 1)−sphere Sdv−1
m .

Its faces UJ ′(
∑

m) are contained in different apartments uJ ′(Av), determined by
the pair

(

C, uJ ′(C ′)
)

of opposite chambers in Yv. Moreover all these apartments
contain the center (zm)v, so S

dv−1
m can be retracted to (zm)v. For (zm)v we have

α1[(zm)v] = m > 0, which means (zm)v /∈ X0∩Av and implies that Sdv−1
m cannot be

a boundary in X0∩Xv — by uniqueness in the top-dimension for killing homology:
We have a spherical hole in X0 ∩XV .

For the combination of all places v ∈ S we simply have to define the spherical
joins of all Sdv−1

m to obtain topological (d−1)−spheres Sd−1
m in X0, supporting non-

trivial elements in Hd−1(X0;Z). For lim
m→∞

zm = p0 ∈ Y with α1[(zm)v] = m → ∞

for all v ∈ S we have therefore shown that Hd−1(X0;Z) is not essentially trivial.

Theorem 3. A S−arithmetic subgroup of an absolutely almost simple algebraic
group G, defined over a function field F with rankFG > 0 and d =

∑

v∈S

rankFv
G is

not of type FPd and so not of type Fd.

Remark: The result can be extended to reductive groups, taking the minimum
of the sums of local ranks for the simple factors.
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1980)

[Sp1] E.H. Spanier: Cohomology theory for general spaces ; Ann. of Math.
49(1948), 407-427.

[Sp2] E.H. Spanier: Algebraic topology ; McGraw-Hill (1966).

[St1] U. Stuhler: Zur Frage der endlichen Präsentierbarkeit gewisser arithmeti-
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