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Abstract. We prove certain weak versions of some celebrated results due to Alexander
Vishik comparing rationality of algebraic cycles over the function field of a quadric and
over the base field. The original proofs use Vishik’s symmetric operations in the alge-
braic cobordism theory and work only in characteristic 0. Our proofs use the modulo 2
Steenrod operations in the Chow theory and work in any characteristic 6= 2. Our weak
versions are still sufficient for all existing applications. In particular, Vishik’s construc-
tion of fields of u-invariant 2r + 1 (for r ≥ 3) is extended to arbitrary characteristic
6= 2.

The main results of this note are Theorem 1.1 (the basic result) with its enhancement
2.1, Proposition 3.1 with its enhancement 4.1 implying Theorems 3.2 and 3.3 (which go a
little bit beyond the basic result), and (a quite special) Proposition 5.3 (going in a special
situation even more beyond the basic result). The main application is Theorem 5.1.

In characteristic 0, all of this has been proved several years ago by Alexander Vishik
in [3] and [5] (exact references are given right before each statement) with a help of
the algebraic cobordism theory and especially symmetric operations of [4]. In fact, the
original versions of the most results are stronger. They do not involve the assumption
that the group CH(Ȳ ) (notation introduced in the beginning of Section 1) is 2-torsion-free
(and therefore has no 2-primary torsion), made here in Theorem 1.1 and Proposition 3.1.
Our versions with the 2-torsion-free CH(Ȳ ) (let us call them very weak) are even weaker
than the weak versions of [3, Remark on Page 370] where, roughly speaking, for Y with
arbitrary CH(Ȳ ) the results are obtained up to an element of exponent 2 in CH(Ȳ ) and
which (the weak versions) can be obtained (still in characteristic 0 only) with a help of
the Landweber-Novikov operations (still in the algebraic cobordism theory) replacing the
symmetric operations.

Although the very weak versions are already sufficient for all existing applications, we
prove the weak versions as well (see Theorem 2.1 and Proposition 4.1). The proofs here
are only a bit more complicated (than in the very weak case) and have an advantage: they
avoid induction by dimension of the quadric1 and therefore can be adopted to serve for
the proof of Proposition 5.3 of the last section, where dimension of the quadric is specific.
Proposition 5.3 is the final step in extending construction of fields of u-invariant 2r + 1
for any r ≥ 3 given in [5] for characteristic 0 (the case of r = 3 has been done earlier and
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1The inductive proofs of the very weak versions do not work for the weak versions because the Steenrod

operations under use do not map the subgroup of the modulo 2 classes of exponent 2 elements to itself
in general.
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for arbitrary characteristic 6= 2 by Oleg Izhboldin, [2]) to arbitrary characteristic 6= 2, see
Theorem 5.1.
In our proofs (for both weak and very weak versions), the base field is allowed to be of

any characteristic different from 2 because the Landweber-Novikov operations are replaced
here by the Steenrod operations on the modulo 2 Chow groups.
Although the proofs given here are inspired by the original ones, they are not completely

parallel. In particular, our proofs employ essentially less computations.
We refer to [3] for an introduction into the subject. Notation is introduced in the

beginning of Section 1.
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1. Basic result: very weak version

Let F be a field of characteristic 6= 2, Q a smooth projective quadric over F of dimension
n ≥ 0, Y a smooth quasi-projective F -variety (a variety is a separated scheme of finite
type over a field).
The function field F (Q) is defined if n ≥ 1 or if Q is anisotropic. In the case of n = 0

and isotropic Q we have Q = SpecF
∐

SpecF and we set F (Q) := F .
We write CH(Y ) for the integral Chow group of Y (see [1, Chapter X]) and we write

Ch(Y ) for CH(Y ) modulo 2. We write CH(Ȳ ) for the colimit of CH(YL) and we write
Ch(Ȳ ) for the colimit of Ch(YL), where L runs over all field extensions of F . An element
of Ch(Ȳ ) (or of CH(Ȳ )) is L-rational, if it is in the image of Ch(YL) → Ch(Ȳ ) (resp.,
CH(YL) → CH(Ȳ )) (F -rational elements are sometimes simply called rational).
A stronger version of the following result has been proved in characteristic 0 in [3,

Corollary 3.5(1)]:

Theorem 1.1. Assume that the group CH(Ȳ ) is 2-torsion-free. Then for any integer
m < n/2, any F (Q)-rational element of Chm(Ȳ ) is F -rational.

Proof. We induct on n andm. The statement being trivial for negative m, we may assume
that m ≥ 0. In particular, n ≥ 1. Let y be an element of Chm(YF (Q)). We are going to
show that the image ȳ ∈ Chm(Ȳ ) of y is rational.
Let us fix an element x ∈ Chm(Q× Y ) mapped to y under the surjection

Chm(Q× Y ) →→ Chm(YF (Q))

given by the pull-back with respect to the generic point of Q times the identity of Y . Since
over some field extension of F the variety Q becomes cellular (with the Chow classes of
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the cells in codimensions ≤ m given by the powers of the hyperplane section class, see
e.g. [1, §68]), the image x̄ ∈ Chm(Q̄× Ȳ ) of x decomposes as

x̄ = h0 × ȳ + h1 × ym−1 + · · ·+ hm × y0

with some yi ∈ Chi(Ȳ ), where hi ∈ Chi(Q̄) is the ith power of the hyperplane section
class. By induction, all the elements yi are rational. Indeed, the element ym−1 is F (Q)(Q′)-
rational, the element ym−2 is F (Q)(Q′)(Q′′)-rational, and so on, where Q′ is a projective
quadric over F (Q) of dimension n − 2 Witt-equivalent to QF (Q). (The element ym−1 is
F (Q)(Q′)-rational, because ym−1 = pr

∗
(l1 · x̄), where pr is the projection Q×Y → Y and

l1 ∈ Ch1(Q̄) is the class of a line which is F (Q)(Q′)-rational. Similarly, the element ym−2

is F (Q)(Q′)(Q′′)-rational, because ym−2 = pr
∗
(l2 · x̄), where l2 ∈ Ch2(Q̄) is the class of a

plane which is F (Q)(Q′)(Q′′)-rational. And so on.)
Since moreover all the elements hi are rational, it follows that the element

h0 × ȳ = [Q̄]× ȳ ∈ Chm(Q̄× Ȳ )

is rational. Changing notation, let now x ∈ Chm(Q × Y ) be a representative of h0 × ȳ.
For every i = 0, 1, . . . , m, let si be the image in CHm+i(Q̄ × Ȳ ) of an integral class in
CHm+i(Q × Y ) representing the modulo 2 class Si(x) ∈ Chm+i(Q × Y ), where Si is the
ith cohomological Steenrod operation [1, Definition 61.7]. (This choice of si is important
for Lemma 1.3; in Lemma 1.2 si can be any representative of Si(x̄).) We also set si := 0
for i > m as well as for i < 0. Therefore, for any integer i, si is the image in CHm+i(Q̄×Ȳ )
of an integral representative (in CHm+i(Q× Y )) of Si(x).

From now on we are mostly working with the integral Chow groups and we use the
notation hi for the ith power of the integral hyperplane section class in CHi(Q̄) as well.
As before, pr stands for the projection Q× Y → Y and pr

∗
for the corresponding push-

forward homomorphism of Chow groups.

Lemma 1.2. For any i with 0 ≤ i ≤ n− 1, pr
∗
(hisn−i) ≡ 0 (mod 4) in CHm(Ȳ ).

Proof. Since sn−i = 0 for n − i > m, we may assume that i ≥ n − m in which case
hi ≡ 0 (mod 2) in CHi(Q̄) (namely, hi = 2ln−i). Since sn−i (mod 2) = Sn−i([Q̄] × ȳ) =
[Q̄]× Sn−i(ȳ), we are done. �

Let d be any integer satisfying m < d ≤ n. Let P be a smooth subquadric of Q of
dimension d; we write in for the imbedding

(P →֒ Q)× idY : P × Y →֒ Q× Y.

Lemma 1.3. For any integer r, the element

pr
∗

r
∑

i=0

ci(−TP ) · in
∗ sr−i ∈ CHr+m−d(Ȳ )

(where TP is the tangent bundle of P , ci are the Chern classes, and pr is the projection
P × Y → Y ) is twice a rational element.

Proof. We induct on r. For r ≤ −1 the statement is trivial because the sum is empty.
Thus we may assume that r ≥ 0.
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Since pr
∗
in∗ x ∈ Chm−d(Y ) = 0 (because m−d < 0) and the rth homological Steenrod

operation Sr commutes with pr
∗
, the modulo 2 Chow class pr

∗
Sr in

∗ x is 0. Therefore
the integral Chow class

pr
∗

r
∑

i,j=0

ci(−TP ) · cj(−TY ) · in
∗ sr−i−j

is equal to a rational element multiplied by 2. By the induction hypothesis, for any fixed
j > 0, the partial sum

pr
∗

r−j
∑

i=0

ci(−TP ) · cj(−TY ) · in
∗ sr−i−j = cj(−TY ) · pr ∗

r−j
∑

i=0

ci(−TP ) · in
∗ sr−i−j

is also a rational element multiplied by 2. The remaining part of the sum is the sum of
the statement. �

We apply Lemma 1.3 taking as d the maximal integer ≤ n of the shape a power of 2
minus 1 (note that d ≥ n/2 > m) and with r = d. For any i 6= d, the ith summand of the
sum of the statement of Lemma 1.3 is a multiple of

pr
∗
(hi · in∗ sd−i) = pr

∗
(hn−d+isd−i)

(the first pr here is the projection P × Y → Y while the second pr is Q × Y → Y ; the
first h is the hyperplane section class of P , the second – of Q), which is 0 modulo 4 by
Lemma 1.2. Therefore the remaining (dth) summand

pr
∗

(

cd(−TP ) · in
∗ s0

)

is congruent modulo 4 to twice a rational element a ∈ CHm(Ȳ ). By [1, Lemma 78.1] we
have cd(−TP ) =

(

−d−2
d

)

hd. The binomial coefficient
(

−d−2
d

)

=
(

2d+1
d

)

is odd (because d

is a power of 2 minus 1, cf. [1, Lemma 78.6]). Since hd ∈ CHd(P̄ ) modulo 2 is 0 and
in∗ s0 ∈ CHm(P̄ × Ȳ ) is congruent modulo 2 to [P̄ ]×y, where y ∈ CHm(Ȳ ) is an integral
representative of ȳ ∈ Chm(Ȳ ), the product cd(−TP ) · in

∗ s0 is congruent modulo 4 to
hd × y. Finally,

pr
∗

(

hd × y
)

= 2y,

and we get the congruence 2y ≡ 2a modulo 4 in CHm(Ȳ ). Since the group CHm(Ȳ ) is
2-torsion-free, it follows dividing by 2 that the element ȳ = y (mod 2) ∈ Chm(Ȳ ) is the
class modulo 2 of the rational element a ∈ CHm(Ȳ ). Thus Theorem 1.1 is proved. �

2. Basic result: weak version

In this section we continue to use notation introduced in the beginning of Section 1.
We are going to prove a stronger version of Theorem 1.1 (which is still weaker than the
result proved in characteristic 0 in [3, Corollary 3.5(1)] and is precisely the weak version
mentioned in [3, Remark on Page 370]):

Theorem 2.1. For any integer m < n/2, any F (Q)-rational element of CHm(Ȳ ) is
congruent modulo 2 and 2-torsion to an F -rational element.
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Proof. We assume that m ≥ 0 in the proof. Let y be an element of CHm(YF (Q)). We are
going to show that the image ȳ ∈ CHm(Ȳ ) of y is congruent modulo 2 to the sum of a
rational element and an element of exponent 2.

Let us fix an element x ∈ Chm(Q× Y ) mapped to y mod 2 under the surjection

Chm(Q× Y ) →→ Chm(YF (Q)).

The image x̄ ∈ Chm(Q̄× Ȳ ) of x decomposes as

x̄ = h0 × ym + h1 × ym−1 + · · ·+ hm × y0

with some yi ∈ Chi(Ȳ ), where ym = ȳ mod 2.
For every i = 0, 1, . . . , m, let si be the image in CHm+i(Q̄ × Ȳ ) of an element in

CHm+i(Q× Y ) representing Si(x) ∈ Chm+i(Q× Y ). We also set si := 0 for i > m as well
as for i < 0.

We still have Lemma 1.3 for the elements si (with the same proof). In particular, for
the maximal integer d ≤ n of the shape a power of 2 minus 1 and a smooth subquadric
P ⊂ Q of dimension d, the element

pr
∗

d
∑

i=0

ci(−TP ) · in
∗ sd−i ∈ CHm(Ȳ )

(where in is the imbedding (P →֒ Q) × idY : P × Y →֒ Q× Y, TP is the tangent bundle
of P , ci are the Chern classes, and pr is the projection P × Y → Y ) is twice a rational
element. Since ci(−TP ) =

(

−d−2
i

)

· hi and the binomial coefficient
(

−d−2
i

)

=
(

d+i+1
i

)

is odd
for any i = 0, 1, . . . , d, we get that the element

pr
∗

d
∑

i=0

hi · in∗ sd−i ∈ CHm(Ȳ )

is twice a rational element. Finally, since pr
∗
(hi · in∗ sd−i) = pr

∗
(hn−d+i · sd−i), where pr

on the right hand side is the projection Q× Y → Y , we get that the sum

d
∑

i=0

pr
∗
(hn−d+i · sd−i) ∈ CHm(Ȳ )

is twice a rational element.
We would like to compute the sum obtained modulo 4. Since sd−i = 0 if d − i > m,

the ith summand is 0 for any i < d − m. Otherwise – if i ≥ d −m – the factor hn−d+i

is divisible by 2 (because n − d + i ≥ n − m > n/2) and in order to compute the ith
summand modulo 4 it suffices to compute sd−i modulo 2, that is, to compute Sd−i(x̄).

We recall that

x̄ = h0 × ym + h1 × ym−1 + · · ·+ hm × y0.

Therefore Sd−i(x̄) is represented by

m
∑

k=0

d−i
∑

l=0

(

k

d− i− l

)

(hd+k−i−l × εk,l),

where εk,l ∈ CHm−k+l(Ȳ ) is an integral representative of Sl(ym−k) which in the case of
l > m− k we choose to be 0. Besides, we choose ε0,0 = ȳ.



6 NIKITA A. KARPENKO

It follows that for any i ≥ d−m, the summand pr
∗
(hn−d+i · sd−i) is congruent modulo

4 to

2
m
∑

k=0

(

k

d− i− k

)

εk,

where εk := εk,k. Note that εk = 0 for k > m − k, that is for k > m/2. We get that the
sum

2
d
∑

i=d−m

[m/2]
∑

k=0

(

k

d− i− k

)

εk

is congruent modulo 4 to twice a rational element a ∈ CHm(Ȳ ).
For every k = 0, 1, . . . , [m/2], the total coefficient near εk is twice the sum of all binomial

coefficients
(

k
·

)

which (the sum) is equal to 2k and for k ≥ 1 is even. It follows that 2ε0 ≡ 2a
(mod 4). Dividing by 2, we get that ε0 is congruent modulo 2 to the rational element
a plus an element of exponent 2. Since ε0 = ȳ, we are done with the proof of Theorem
2.1. �

3. Beyond basic result: very weak version

In this section we continue to use notation introduced in the beginning of Section 1
and we are assuming that the variety Y is geometrically irreducible. The main result
of this section is the following proposition (a stronger version of it has been proved in
characteristic 0 in [3, Proposition 3.3(2)]):

Proposition 3.1. Assume that n = 2m or n = 2m− 1 for some integer m ≥ 1. Assume
that the group CH(Ȳ ) is 2-torsion-free. Let x be an element of Chm(Q×Y ). If the image
of x under the composition

Chm(Q× Y ) → Chm(QF (Y )) → Chm(Q̄)

is rational, then the image of x under the composition

Chm(Q× Y ) → Chm(YF (Q)) → Chm(Ȳ )

is also rational.

The following two theorems are consequences of Proposition 3.1. A stronger version of
the first one has been proved in characteristic 0 in [3, Corollary 3.5(2)]:

Theorem 3.2. Assume that n = 2m or n = 2m − 1 for some integer m ≥ 1. Assume
that the group CH(Ȳ ) is 2-torsion-free. Assume that the quadric QF (Y ) is not completely
split. Then any F (Q)-rational element of Chm(Ȳ ) is F -rational.

Proof. Let y be an arbitrary element of Chm(YF (Q)). Let x be an element of Chm(Q× Y )
mapped to y under the surjection

Chm(Q× Y ) → Chm(YF (Q)).

Since QF (Y ) is not completely split, the group of F (Y )-rational elements in Chm(Q̄) is
generated by hm (where the modulo 2 Chow class hm is trivial if n = 2m−1). In particular,
any F (Y )-rational element of Chm(Q̄) is F -rational. Therefore, by Proposition 3.1, the
image of x under the composition

Chm(Q× Y ) → Chm(YF (Q)) → Chm(Ȳ )
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(which coincides with the image of y ∈ Chm(YF (Q)) in Chm(Ȳ )) is rational. �

To formulate the second theorem (whose stronger version has been proved in charac-
teristic 0 in [3, Statement 3.8]), we need an additional notation. Let G be the maximal
orthogonal grassmannian associated to Q as in [1, §85]. Let z ∈ Ch(Ḡ) be the class of the
subvariety in G of the maximal linear subspaces in QF (Q) passing through a fixed rational
point of QF (Q) (this z is one of the generators of the ring Ch(Ḡ) given in [1, §86], namely
the generator of maximal codimension).

Theorem 3.3. Assume that n = 2m or n = 2m − 1 for some integer m ≥ 1. Assume
that the group CH(Ȳ ) is 2-torsion-free. Finally, assume that the element z is rational.
Then any F (Q)-rational element of Chm(Ȳ ) is F -rational.

Proof. According to [3, Statement 3.10], the rationality of z ensures that for any element
x ∈ Chm(Q × Y ) there exists an element x′ ∈ Chm(Q × Y ) such that the image of x′

under the composition

Chm(Q× Y ) → Chm(QF (Y )) → Chm(Q̄)

is rational and the image of x′ under the composition

Chm(Q× Y ) → Chm(YF (Q)) → Chm(Ȳ )

coincides with the image of x. The proof of [3, Statement 3.10] does not use the theory
of algebraic cobordism and is valid over fields of any characteristic (even including 2).
Theorem 3.3 follows by Proposition 3.1. �

Proof of Proposition 3.1. We induct on m. We may assume that Q is anisotropic. In this
case, the condition on x ensures that

x̄ = h0 × y + h1 × ym−1 + · · ·+ hm × y0

for some yi ∈ Chi(Ȳ ), i = 0, . . . , m− 1, and some y ∈ Chm(Ȳ ). (Note that hm = 0 in the
case of n = 2m− 1.) The image of x under the composition

Chm(Q× Y ) → Chm(YF (Q)) → Chm(Ȳ )

is equal to y, and we will show y is rational.
By induction, all the elements yi are rational. Indeed, applying the incidence corre-

spondence of [1, Lemma 72.3] to the element xF (Q) ∈ Chm(Q×Y )F (Q), we get an element

x′ ∈ Chm−1(Q′ × YF (Q)) (where Q′ is a projective quadric over F (Q) of dimension n − 2
Witt-equivalent to QF (Q)) such that x̄′ = h0×ym−1+h1×ym−2+· · ·+hm−1×y0. It follows
by induction that the elements ym−1, . . . , y0 are F (Q)-rational. Therefore, by Theorem
1.1, they are F -rational.

Since moreover all the elements hi are rational, it follows that the element

h0 × y = [Q̄]× y ∈ Chm(Q̄× Ȳ )

is rational. Changing notation, let now x ∈ Chm(Q × Y ) be a representative of h0 × y.
For every i = 0, 1, . . . , m − 1, let si be the image in CHm+i(Q̄ × Ȳ ) of an element in
CHm+i(Q × Y ) representing the modulo 2 class Si(x) ∈ Chm+i(Q × Y ). We also set
si := 0 for i > m as well as for i < 0. Finally, we set sm := (s0)2. Therefore, for any
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integer i, si is the image in CHm+i(Q̄× Ȳ ) of an integral representative (in CHm+i(Q×Y ))
of Si(x).

Lemma 3.4. For any i with 0 ≤ i ≤ n− 1, pr
∗
(hisn−i) ≡ 0 (mod 4) in CHm(Ȳ ).

Proof. Since sn−i = 0 for n− i > m, we may assume that i ≥ n−m. If i > n−m, then
hi ≡ 0 (mod 2) in CHi(Q̄). Since sn−i (mod 2) = Sn−i([Q̄]× y) = [Q̄]× Sn−i(y), we are
done in the case of i > n−m.
To finish the proof, let us consider the case of i = n − m. Since the element s0

is congruent modulo 2 to Q̄ × y, where y ∈ CHm(Ȳ ) is an integral representative of
y ∈ Chm(Ȳ ), the element sm = (s0)2 is congruent modulo 4 to Q̄ × y2. Therefore
pr

∗
(hn−msm) modulo 4 is 0. �

Let d be any integer satisfying m ≤ d ≤ n. Let P be a smooth subquadric of Q of
dimension d; we write in for the imbedding

(P →֒ Q)× idY : P × Y →֒ Q× Y.

Lemma 3.5. For any integer r, the element

pr
∗

r
∑

i=0

ci(−TP ) · in
∗ sr−i ∈ CHr+m−d(Ȳ )

(where TP is the tangent bundle of P , ci are the Chern classes, and pr is the projection
P × Y → Y ) is twice a rational element.

Proof. We almost repeat the proof of Lemma 1.3, but the case of d = m here is new.
We induct on r. For r ≤ −1 the statement is trivial because the sum is empty. Thus

we may assume that r ≥ 0.
Note that the element pr

∗
in∗ x ∈ Chm−d(Y ) is 0. Indeed, if m < d, then the whole

group Chm−d(Y ) is 0. Otherwise we have m = d. Since the group Ch0(Y ) imbeds into
Ch0(Ȳ ), triviality of pr

∗
in∗ x follows from triviality of pr

∗
in∗ x̄.

Since the homological Steenrod operation Sr commutes with pr
∗
, the modulo 2 Chow

class pr
∗
Sr in

∗ x is 0. Therefore the integral Chow class

pr
∗

r
∑

i,j=0

ci(−TP ) · cj(−TY ) · in
∗ sr−i−j

is equal to a rational element multiplied by 2. By the induction hypothesis, for any fixed
j > 0, the partial sum

pr
∗

r−j
∑

i=0

ci(−TP ) · cj(−TY ) · in
∗ sr−i−j = cj(−TY ) · pr ∗

r−j
∑

i=0

ci(−TP ) · in
∗ sr−i−j

is also a rational element multiplied by 2. The remaining part of the sum is the sum of
the statement. �

We apply Lemma 3.5 taking as d the maximal integer ≤ n of the shape a power of 2
minus 1 (note that d ≥ m) and with r = d. For any i 6= d, the ith summand of the sum
of the statement of Lemma 3.5 is a multiple of

pr
∗
(hi · in∗ sd−i) = pr

∗
(hn−d+isd−i)
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which is 0 modulo 4 by Lemma 3.4. Therefore the remaining (dth) summand

pr
∗

(

cd(−TP ) · in
∗ s0

)

is congruent modulo 4 to twice a rational element a ∈ CHm(Ȳ ). We have cd(−TP ) =
(

−d−2
d

)

hd. The binomial coefficient
(

−d−2
d

)

=
(

2d+1
d

)

is odd. Since hd ∈ CHd(P̄ ) modulo 2
is 0 and in∗ s0 ∈ CHm(P̄ × Ȳ ) is congruent modulo 2 to [P̄ ]×y, where y ∈ CHm(Ȳ ) is an
integral representative of y ∈ Chm(Ȳ ), the product cd(−TP ) · in

∗ s0 is congruent modulo
4 to hd × y. Finally,

pr
∗

(

hd × y
)

= 2y,

and we get the congruence 2y ≡ 2a modulo 4 in CHm(Ȳ ). Since the group CHm(Ȳ ) is
2-torsion-free, it follows dividing by 2 that the element y = y (mod 2) ∈ Chm(Ȳ ) is the
class modulo 2 of the rational element a ∈ CHm(Ȳ ). Thus Proposition 3.1 is proved. �

4. Beyond basic result: weak version

In this section we continue to use notation introduced in the beginning of Section 1
and we are assuming that the variety Y is geometrically irreducible. The main result of
this section is the following stronger version of Proposition 3.1 (which is still weaker than
the result proved in characteristic 0 in [3, Proposition 3.3(2)] and is precisely the weak
version mentioned in [3, Remark on Page 370]):

Proposition 4.1. Assume that n = 2m or n = 2m− 1 for some integer m ≥ 1. Let x be
an element of Chm(Q× Y ). If the image of x under the composition

Chm(Q× Y ) → Chm(QF (Y )) → Chm(Q̄)

is rational, then the image of x under the composition

Chm(Q× Y ) → Chm(YF (Q)) → Chm(Ȳ )

differs from a rational element by the modulo 2 class of an exponent 2 element of CHm(Ȳ ).

As a consequence of Proposition 4.1, we get the corresponding stronger versions of
Theorems 3.2 and 3.3.

Proof of Proposition 4.1. We may assume thatQ is anisotropic. In this case, the condition
on x ensures that

x̄ = h0 × ym + h1 × ym−1 + · · ·+ hm × y0

for some yi ∈ Chi(Ȳ ), i = 0, 1, . . . , m (where hm = 0 in the case of n = 2m − 1). The
image of x under the composition

Chm(Q× Y ) → Chm(YF (Q)) → Chm(Ȳ )

is equal to ym, and we will show for an integral representative y ∈ CHm(Ȳ ) of ym that y
modulo 2 and 2-torsion is rational.

The elements y0, . . . , ym−1 are the modulo 2 classes of some elements

y0 ∈ CH0(Ȳ ), . . . ,ym−1 ∈ CHm−1(Ȳ ).
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For every i = 1, . . . , m − 1, let si be the image in CHm+i(Q̄ × Ȳ ) of an element of
CHm+i(Q × Y ) representing the element Si(x) ∈ Chm+i(Q × Y ). We also set si := 0 for
i > m as well as for i < 0. Finally, we set

s0 := h0 × y + h1 × ym−1 + · · ·+ hm × y0 ∈ CHm(Ȳ )

and we set sm := (s0)2. Therefore, for any integer i, si is the image in CHm+i(Q̄× Ȳ ) of
an integral representative of Si(x).
Let d be the maximal integer ≤ n of the shape a power of 2 minus 1. Similarly as in

Lemma 3.5 and in the proof of Theorem 2.1, we get that the sum

d
∑

i=d−m

pr
∗
(hn−d+i · sd−i) ∈ CHm(Ȳ )

is twice a rational element. We are going to compute this sum modulo 4.
For any i > d−m, the factor hn−d+i present in the ith summand is divisible by 2. The

other factor modulo 2 is Sd−i(x̄) and is represented by

m
∑

k=0

d−i
∑

l=0

(

k

d− i− l

)

(hd+k−i−l × εk,l),

where εk,l ∈ CHm−k+l(Ȳ ) is an integral representative of Sl(ym−k) which in the case of
l > m− k we choose to be 0. Besides, we choose ε0,0 = y. Finally, in the case of even m,
we choose εm/2,m/2 = (ym/2)2.
It follows that for any i > d−m, we have the congruence

(4.2) pr
∗
(hn−d+i · sd−i) ≡ 2

[m/2]
∑

k=0

(

k

d− i− k

)

εk (mod 4),

where εk := εk,k.
For i = d−m we have

pr
∗
(hn−m · sm) = pr

∗

(

hn−m · (h0 × y + h1 × ym−1 + · · · + hm × y0)2
)

which is 0 modulo 4 in the case of odd m. In the case of even m, this is congruent modulo
4 to 2(ym/2)2 = 2εm/2. Therefore the congruence (4.2) holds for i = d−m as well.
We get that the sum

2
d
∑

i=d−m

[m/2]
∑

k=0

(

k

d− i− k

)

εk

is congruent modulo 4 to twice a rational element a ∈ CHm(Ȳ ) and we finish as in the
proof of Theorem 2.1: for every k = 0, 1, . . . , [m/2], the total coefficient near εk is 2k+1;
it follows that 2ε0 ≡ 2a (mod 4) and therefore ε0 is congruent modulo 2 to the rational
element a plus an element of exponent 2. Since ε0 = y, we are done with the proof of
Proposition 4.1. �
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5. More beyond basic result: u-invariant

The aim of this section is the following result, proved for characteristic 0 in [5, Corollary
5.2]:

Theorem 5.1. For any integer r ≥ 3, any field F of characteristic 6= 2 is a subfield of a
field of u-invariant 2r + 1.

As explained in [5], Theorem 5.1 is a consequence of the following result (proved for
characteristic 0 in [5, Theorem 5.1]):

Theorem 5.2. Let P be a smooth projective quadric over F of dimension 2r − 1 (for
some r ≥ 3). Let G be the maximal and let G′ be the “previous” (the “almost maximal”)
orthogonal grassmannians associated to P . For i = 1, 2, . . . , 2r−1, let ei ∈ Chi(Ḡ) be the

standard generators of the ring Ch(Ḡ) as defined in [1, §86]. Let e′ ∈ Ch2r−1+1(Ḡ′) be
the class of the subvariety in G′ of the linear subspaces in PF (P ) passing through a fixed
rational point. Let Q be a smooth projective quadric over F of dimension 2r = dimP +1.
If the elements e1, e2, . . . , e2r−1

−1, e
′ are F -irrational, then they are also F (Q)-irrational.

The statement on e1, . . . , e2r−1
−1 being given by Theorem 1.1 (note that the groups

CH(Ḡ) and CH(Ḡ′) are torsion-free), we only need to prove irrationality of e′. The
codimension of e′ is 2r−1 + 1 = (dimQ)/2 + 1 so that even the results of Section 3 or
4 (where the codimension is (dimQ)/2 or (dimQ + 1)/2) are not appropriate. In order
to deal with e′, we prove the following result which constitutes the main content of this
section and replaces [5, Proposition 3.5 and Corollary 3.6] in the proof of Theorem 5.2:

Proposition 5.3. Let Q be a smooth projective quadric over F of dimension n = 2r for
some r ≥ 2. For m := 2r−1 + 1, let x be an element of Chm(Q × Y ) such that in the
decomposition

x̄ = h0 × ym + h1 × ym−1 + · · ·+ hm−1 × y1 + lm−1 × y′ + lm−2 × y0 ∈ Chm(Q̄× Ȳ )

with yi ∈ Chi(Ȳ ), i = 0, 1, . . . , m , and y′ ∈ Ch1(Ȳ ), the element y0 is trivial. Then the
element

ym + S1(ym−1) + ym−1 · y′ ∈ Chm(Ȳ )

is rational modulo the classes modulo 2 of integral elements of exponent 2.

Remark 5.4. The condition on x of Proposition 5.3 is automatically fulfilled if the
element lm−2 ∈ Ch(Q̄) is F (Y )-irrational.

Proof of Proposition 5.3. For every i = 0, 1, . . . , m−1, let si be the image in CHm+i(Q̄×Ȳ )
of an element of CHm+i(Q×Y ) representing the element Si(x) ∈ Chm+i(Q×Y ). We also
set si := 0 for i > m as well as for i < 0. Finally, we set sm := (s0)2.

Note that we have

s0 := h0 × ym + h1 × ym−1 + · · ·+ hm−1 × y1 + lm−1 × y′ + lm−2 × y0 ∈ CHm(Ȳ )

with some yi ∈ CHi(Ȳ ), i = 0, 1, . . . , m, y′ ∈ CH1(Ȳ ) (such a decomposition exists for
every element of CHm(Q̄ × Ȳ )). Since s0 mod 2 = x̄, y0 is divisible by 2. Since the
element 2lm−2 = hm ∈ CHm(Ȳ ) is rational, we may assume that the last summand in the
above decomposition of s0 is absent.
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Let d be any integer with m ≤ d ≤ n. Similarly as in Lemma 3.5 and in the proof of
Theorem 2.1, we get that the sum

(5.5)
d
∑

i=d−m

(

−d − 2

i

)

· pr
∗
(hn−d+i · sd−i) ∈ CHm(Ȳ )

is twice a rational element. We are going to use this statement for various values of d
(actually, for 2 values). Note that the sum is a linear combination of always the same el-
ements pr

∗
(hn−msm) = pr

∗
(hm−2sm), pr

∗
(hn−m+1sm−1) = pr

∗
(hm−1sm−1), . . . , pr

∗
(hns0),

only the coefficients vary with d.
Let us compute the ith element pr

∗
(hn−d+i · sd−i) modulo 4. For any i ≥ d−m+2, the

factor hn−d+i is divisible by 2. The other factor modulo 2 is Sd−i(x̄) and it follows that

for any i ≥ d−m+ 2, pr
∗
(hn−d+i · sd−i) ≡ 2

[m/2]
∑

k=0

(

k

d− i− k

)

εk (mod 4),

where εk is an integral representative of Sk(ym−k) which in the case of k > m − k we
choose to be 0. Besides, we choose ε0,0 = ym.
For i = d−m, the ith summand is

pr
∗
(hm−2 · sm) = pr

∗

(

hm−2 · (h0 × ym + h1 × ym−1 + · · ·+ hm−1 × y1 + lm−1 × y′)2
)

≡ 2 pr
∗

(

hm−2 · (h1 × ym−1) · (lm−1 × y′)
)

= 2 · ym−1 · y′

(where the congruence is modulo 4).
We do not compute by now the remaining summand pr

∗
(hm−1sm−1) (corresponding to

i = d−m+ 1).
We are going to consider the sum (5.5) for two following values of d: d = 2r−1 = n−1

(this is the biggest integer of the shape a power of 2 minus 1 non-exceeding n, the choice
we always use) and d = 2r = n. For the first choice of d, since the binomial coefficient
(

−d−2
i

)

is odd for every i = 0, 1, . . . , d, we get that the sum

2ym−1y′ + pr
∗
(hm−1sm−1) + 2

d
∑

i=d−m+2

[m/2]
∑

k=0

(

k

d− i− k

)

εk

is congruent modulo 4 to twice a rational element a ∈ CHm(Ȳ ).2 For every k with
0 < k < (m − 1)/2, the coefficient near εk is twice the sum of all binomial coefficients
(

k
·

)

and therefore is divisible by 4. The coefficient near ε0 is 2 and the coefficient near

ε(m−1)/2 is also 2 (in the sum of the binomial coefficients
(

(m−1)/2
·

)

occurring near ε(m−1)/2

the coefficient
(

(m−1)/2
(m−1)/2

)

= 1 is missing). Therefore the congruence we get with the first

choice of d is

(5.6) 2ym−1y′ + pr
∗
(hm−1sm−1) + 2ε0 + 2ε(m−1)/2 ≡ 2a (mod 4).

2A priori, we should put an integer coefficient representing
(

−d−2

d−m+1

)

modulo 4 near the summand with

pr
∗
, that is, +1 or −1. (This looks like the first case where we have to compute a binomial coefficient

modulo 4, not just modulo 2.) But a fortiori, the summand is 0 modulo 2 so that we can put any of
±1. Another argument is rationality of the summand so that changing the sign we do not change the
statement.
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For the second choice of d, the binomial coefficient
(

−d−2
i

)

with i = 0, 1, . . . , d is odd for
even i < d and is even otherwise (that is, for odd i as well as for i = d). Since the integer
d−m = 2r−1 − 1 is odd, we get that the sum

− pr
∗
(hm−1sm−1) + 2

d−2
∑

i=d−m+3
even i

[m/2]
∑

k=0

(

k

d− i− k

)

εk

is congruent modulo 4 to twice a rational element b ∈ CHm(Ȳ ).2 Note that the coefficient
near ε0 is 0 here. Since for any k ≥ 1, the sum of all binomial coefficients

(

k
·

)

with · of

a fixed parity is equal to 2k−1, only the coefficients near ε1 and ε(m−1)/2 survive modulo

4, where the coefficient near ε(m−1)/2 survives because the binomial coefficient
(

(m−1)/2
(m−1)/2

)

is

missing. Therefore the congruence we get with the second choice of d is

(5.7) − pr
∗
(hm−1sm−1) + 2ε1 + 2ε(m−1)/2 ≡ 2b (mod 4).

Adding together the congruences (5.6) and (5.7), we get that

2ym−1y′ + 2ε0 + 2ε1 ≡ 2(a+ b) (mod 4).

Dividing by 2, we get Proposition 5.3 because ym−1 mod 2 = ym−1, y′ mod 2 = y′, ε0
mod 2 = ym mod 2 = ym, and ε1 mod 2 = S1(ym−1). �

Proof of Theorem 5.2. All parts of the proof of Theorem 5.2 given in [5, Theorem 5.1] are
free from the algebraic cobordism theory and work in any characteristic 6= 2 except for
[5, Theorem 3.1] (replaced here by Theorem 1.1 or its stronger version Theorem 2.1), [5,
Proposition 3.11] (replaced here by Theorem 3.3), and [5, Corollary 3.6] (replaced here
by Proposition 5.3 with Remark 5.4).

�
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