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ABSTRACT. We give an optimal bound on the minimal length of a sum of
symbols in the second Milnor K-group of a rational function field in terms of
the degree of the ramification.
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1. INTRODUCTION

Let E be an arbitrary field and F the function field of the projective line P!
over E. For m € N, there is a well-known exact sequence

(1) 0— KS"E — K{VF % @@ K" B(2)—K{"E — 0,

$E]P(1)

due to Milnor and Tate (cf. [6, (2.3)]). Here, K tm) and K{™ are the functors that
associate to a field its first and second K-groups modulo m, respectively, and P}
is the set of closed points of P!. The map 0 is called the ramification map. By
[3, (7.5.4)], for m prime to the characteristic of F, the sequence (1.1) translates
into a sequence in Galois cohomology, and the proof of its exactness essentially
goes back to Faddeev [2].

In this article we study how for a given element p in the image of 9 one finds a
good ¢ € K\™ F with (&) = p. Our main result (3.10) states that there is such a
¢ that is a sum of r symbols (canonical generators of Kg(m)F ) where r is bounded
by half the degree of the support of p. This generalizes results from [4], [7], and
8], where the problem has been studied in terms of Brauer groups in presence of
a primitive mth root of unity in E for m > 0. Developing further an idea in [8,
Prop. 2], we provide examples (4.3) where the bound on r cannot be improved.

2. MILNOR K-THEORY OF A RATIONAL FUNCTION FIELD

We recall the basic terminology of the K-theory for fields as introduced by
Milnor [6], with slightly different notation. Let F be a field. For m,n € N| let
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K™ F denote the abelian group generated by elements called symbols, which are
of the form {ay,...,a,} with ay,...,a, € F*, subject to the defining relations
that {*,...,*} : (F*)" — KV F is a multilinear map, that {ai,...;a,} =0
whenever a; + a;4; = 1 in F for some i < n, and that m - {ay,...,a,} = 0.
For a,b € F* we have {ab} = {a} + {b} in Kfm)F. The second relation above
is void when n = 1, hence K fm)F is the same as F*/F*™ only with different
notation for the elements and the group operation. As shown in [6, (1.1) and

(1.3)], it follows from the defining relations that, for aq,...,a, € F*, we have
{ao(y, - aomy} = €{as, ..., a,} for any permutation o of the numbers 1,...,n
with signature e = £1, and furthermore {ay, ..., a,} = 0 whenever a; + a;.; =0

for some i < n.

With these notations, K" F is the full Milnor K. -group K, F introduced in [6],
and K,(lm)F is its quotient modulo m for m > 1.

By a Z-valuation we mean a valuation with value group Z. Given a Z-valuation
v on F we denote by O, its valuation ring and by &, its residue field. For a € O,
let @ denote the natural image of a in x,. By [6, (2.1)], for n > 2 and a Z-
valuation v on F, there is a unique homomorphism 9, : KM™F — K (m)l K, such
that

Ou({f; 92, 19n}) = 0(f) - {Ga, -, G}
for f € F* and go,..., 9, € OF. Whenn = 2, for f, g € F* we have 9 g"() ¢
O and
Ou({f.93) = {(=1) O @ g in K™,

We turn to the situation where F is the function field of P* over E. By the
choice of a generator, we identify F' with the rational function field E(t) in the
variable ¢t over E. Let P denote the set of monic irreducible polynomials in E[t].
Any p € P determines a Z-valuation v, on E(t) that is trivial on E and such
that v,(p) = 1. There is further a unique Z-valuation v, on E(t) such that
Veo(f) = —deg(f) for any f € E[t] \ {0}. We set P’ = P U {o0}. For p € P’
we write d, for 0,, and we denote by £, the residue field of v,. Note that E), is
naturally isomorphic to E[t]/(p) for p € P, and E, is naturally isomorphic to E.

It follows from [6, Sect. 2] that the sequence

(2.1) 0— KME — KME(W) &% P KM E, — 0

peEP

is split exact. We are going to reformulate this fact for n = 2 and to relate (2.1)

o (1.1). We set
E) =P K"E

peP’!
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For p € P’, the norm map of the finite extension E,/FE yields a group homo-
morphism K fm)Ep — K fm)E . Summation over these maps for all p € P’ yields
a homomorphism N : R (E) — KY”)E. Let MR,,(E) denote the kernel of N.

We set 0 = @, . 0p. By [3, (7.2.4) and (7.2.5)] we obtain an exact sequence

peP!
22) 0— K™E — KMEBE(W) -5 R (E) = K™E —0.

In particular, R,,(E) is equal to the image of 0 : Kém)E(t) — R (F).

The choice of the generator of F' over FE fixes a bijection ¢ : P} — P’
and for © € Pj a natural isomorphism between E(x) and Ey). This identi-
fies @me]}% Kfm)E(az) with R/ (E), and further the sequence (1.1) with (2.2). We
will work with (2.2) in the sequel.

For p = (pp)perr € MR, (E) we denote Supp(p) = {p € P’ | p, # 0} and
deg(p) = > pcsupp(n)[Ep * B, and call this the support and the degree of p. The
degree of an element of MR/ (F) is invariant under automorphisms of E(t)/E.

3. BOUND FOR REPRESENTATION BY SYMBOLS IN TERMS OF THE DEGREE

In this section we study the relation between the degree of p € R,,(E) to the
properties of elements £ € Kém)E(t) with 9(¢) = p. In (3.10) we will show that
there always exists such & that is a sum of r» symbols where r is the integral part
of degT(p). In particular, any ramification of degree at most three is realized by a
symbol. This settles a question in [4, (2.5)]. In some of the following statements,

we consider elements of R/ (FE), rather than only of R,,(F).
3.1. Proposition. If p € R,,(E) then deg(p) # 1.

Proof. Consider an element p € MR/ (E) with deg(p) = 1. The support of p

consists of one rational point p € P’. Hence N(p) = p, # 0 in Kfm)E. As
N o0 =0 it follows that p ¢ R,,(E). O

We say that p € P’ is rational if [E, : E] = 1. We call a subset of P’ rational
if all its elements are rational. We give two examples showing how to realize a
given ramification of small degree and with rational support by one symbol.

3.2. Examples. (1) Let a,c € E* and ¢ ¢ EX™. The symbol ¢ = {t — a,c} in
Kém)E(t) satisfies Supp(c) = {t — a, 0}, 3;_4(0) = {c} and O (c) = {c'}.

(2) For ay,as,ci,co € E* with a; # ay, we compute the ramification of the
symbol o = {—t=aL_ al=a) 5, elm Bty Tt has Supp(o) € {t—ay, t—as, 00},

ca(az—a1)’ ai1—az

Or—q,(0) ={c;} for i = 1,2, and Oy (0) = {(c1c2) 71}

A ramification of degree two can under some extra condition be realized by a
symbol one of whose entries is a constant.
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3.3. Proposition. Let p € R,,(E) be such that deg(p) = 2. If Supp(p) is rational
or char(E) # m = 2, there exist e € E* and f € E(t)* such that p = 0({e, f}).

Proof. Suppose first that the support of p is rational. We choose a,e € E* such
that t —a € Supp(p) and p;—, = {e} in K(m)E Then Supp(p) = {t —a, p} where
peP is rational As N(p) = 0 we obtain that p, = {e"'} in K(m E,. pr 00,
we set f = -—. Otherwise p =t — b for some for b € E, and we set f = . In
either case we obtam that p = 0({e, f}).

It remains to consider the case where char(E) # m = 2 and Supp(p) = {p} for
a quadratic polynomial p € P. Then E,/E is a separable quadratic extension.
Let x € E be such that p, = {x}. As Supp(p) = {p} and N(p) = 0, we obtain
that the norm of x with respect to the extension E,/F lies in £*? and therefore
zEX? = eE)* for some e € E* (cf. [5, Chap. VIL, (3.9)]). Hence, p, = {z} = {e}
in KfQ)Ep, and we obtain that p = 9({e, p}). O

In (3.3) the rationality of the support when m # 2 is not a superfluous condi-
tion; the following example was pointed out to us by J.-P. Tignol.

3.4. Example. Let k be a field. We consider the rational function field in two
variables u and v over k. Let 7 denote the k-automorphism of k(u,v) satisfying
7(u) = v and 7(v) = u. Then 72 is the identity map on k(u,v), and E =
{z € k(u,v) | 7(z) = z} is a subfield of k(u,v) such that [k(u,v) : E] = 2.
Consider the element y = £ € k(u v). Since y ¢ FE, the quadratic polynomial
p=0t—-y)t—1(y)=t>—*% +” t + 1 is irreducible over E.

Let m be an odd positive mteger We consider the symbol ¢ = {p,t} in
Kém)E(t). Note that the support of 9(o) is contained in {p} and 9,(c) = {t}.
Moreover, mapping ¢ to y induces an E-isomorphism £, — k(u,v). Since y is
not an mth power in k(u,v), it follows that d,(c) # 0. Hence, Supp(d(o)) = {p}
and deg(d(0)) = 2.

We claim that (o) # 0({e, f}) for any e € E* and f € E(t)*. Suppose on
the contrary that there exist e € E* and f € E(t)* such that d,(c) = 9,({e, f}).
Then we obtain that e?»(f)y is an mth power in k(u,v), and taking norms with
respect to the extension k(u,v)/E yields that e?»(f) ¢ EX™. Since m is odd, it
follows that e*») € EX™ and thus d,({e, f}) = 0, a contradiction.

The remainder of this section builds up to our main result (3.10).

3.5. Lemma. Let p € R (F) with deg(p) > 2. There exists a symbol o in
Kg(m)E(t) such that deg(p — 0(0)) < deg(p) — 1 and such that this inequality is
strict except possibly when Ox(0) # 0 = ps or deg(p) = 2. More precisely, one
may choose o = {fh,g} where f is the product of the polynomials in Supp(p)
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and g, h € E[t]\ {0} are such that deg(g) < deg(f) and, either deg(h) < deg(g),
or gh € E*.

Proof. Let f be the product of the polynomials in Supp(p). By the Chinese
Remainder Theorem, we may choose g € E[t] prime to f with deg(g) < deg(f)
such that d,({f, g}) = p, for all monic irreducible polynomials p € Supp(p). If ¢
is constant, let h = 1. If g is not square-free, let h be the product of the different
monic irreducible factors of g. If g is square-free and not constant, then using the
Chinese Remainder Theorem we choose h € E|t] prime to g with deg(h) < deg(g)
such that 9,({f,g}) — p, = {h} in K fm)Ep for every monic irreducible factor p
of g. Then g, h and o = {fh, g} have the desired properties. O

3.6. Lemma. Let d € N\ {0} and f € E[t] non-constant and square-free such
that deg(p) > d for every irreducible factor p of f. Let F = E[t]/(f) and let
¥ denote the class of t in F. For any a € F* there exist nonzero polynomials
g,h € E[t] with deg(h) < d—1 and deg(g) < deg(f) — d such that a = %.

Proof. Let V = EB?;& EY and W = @f:_g EY* where e = deg(f). By the choice
of d and the Chinese Remainder Theorem, we have V' \ {0} C F*, where F*
denotes the group of invertible elements of F.. As a € F* we have dimg(Va) =
dimp(V) =d and dimg(Va) + dimg(W) =e+1>e=[F: E],s0o Van W # 0.
Therefore h(¥)a = g(v) for certain h,g € E[t] \ {0} with deg(h) < d — 1 and

deg(g) < e —d. Thus h(v) € V\ {0} € F* and a = (. -

3.7. Lemma. Let p € R, (E) and q € Supp(p) such that deg(q) = 2n + 1 with
n > 1. There ezists a symbol o in Kém)E(t) such that deg(p—0(0)) < deg(p) —2.
More precisely, one may choose o = {qhf2g~% ¢~ f} with f,g,h € E[t] \ {0}
such that deg(f),deg(g) < n and deg(h) < 2n — 1.

Proof. Using (3.6) we choose f,g € E[t] \ {0} with deg(f),deg(g) < n such that
9,({q,97f}) = p, Then q is prime to fg. If fg is constant, let h = 1. If fg is
not square-free, let h be the product of the different monic irreducible factors of
fg. If fg is square-free and not constant, we choose h € E[t] prime to fg and
with deg(h) < deg(fg) such that 9,({h,g " f}) = 0,({¢ ' f2¢* g~ f}) for every
monic irreducible factor p of fg. In any case deg(h) < 2n — 1 = deg(q) — 2.

Let 0 = {qhf 292,97 f}. We have 9,(c) = p, and 9,(c) = 0 for every monic
irreducible polynomial p € FE[t] prime to h and not contained in Supp(p). It
follows that ¢ € Supp(p) \ Supp(p —09(¢)) and that every polynomial in Supp(p —
d(o)) \ Supp(p) divides h. Furthermore, if deg(h) = 2n — 1, then deg(f) =
deg(g) = n, so that deg(qh) = 4n = 2deg(fg) and thus 0y (c) = 0. We conclude
that deg(p — (o)) < deg(p) — 2 in any case. O
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3.8. Proposition. Let p € R (F) with deg(p) > 2. There exists a symbol o
in Kg(m)E(t) such that deg(p — (o)) < deg(p) — 1. Moreover, if deg(p) > 3
and Supp(p) contains an element of odd degree, then there exists a symbol o in
KS™WE(t) such that deg(p — 8(c)) < deg(p) — 2.

Proof. In view of (3.5) only the second part of the statement remains to be
proven. If Supp(p) contains a non-rational point of odd degree, the statement
follows from (3.7). Suppose now that Supp(p) contains a rational point. Note
that the statement is invariant under E-automorphisms of F(t). Hence, we may
assume that oo € Supp(p), in which case the statement follows from (3.5). O

3.9. Question. Given p € R,,(E) with deg(p) > 3, does there always exist a
symbol o in Kz(m)E(t) such that deg(p — 0(0)) < deg(p) — 27

For z € R, the unique z € Z such that z < z < z 4+ 1 is denoted |z].

3.10. Theorem. For p € R,,(F) and n = LdegT(p)J , there ezist symbols oy, ..., 0,

in K{™ E(t) such that p = 8(o1 + -+ + 0,).

Proof. We proceed by induction on n. If n = 0 then p = 0 by (3.1) and the
statement is trivial. Assume that n > 0. We have either deg(p) = 2n+1, in which
case p contains a point of odd degree, or deg(p) = 2n. Hence, by (3.8) there exists
a symbol o in Kém)E(t) with deg(p—0(0)) < 2n—1. By the induction hypothesis
there exist symbols oy,...,0,_1 in Kém)E(t) with p—0(c) = 0(o1 + -+ -+ 0Tp-1).
Then p=0(oy + -+ 01+ 0). d

If we knew that for m > 1 every element of RR,,(E) had a lift to Ry (E) of the
same degree, it would be sufficient to formulate and prove (3.10) for m = 0.

4. EXAMPLE SHOWING THAT THE BOUND IS SHARP

In this section we show that the bound (3.10) is sharp for all m and in all
degrees. In order to obtain an example in (4.3) where the bound of (3.10) is an
equality, we adapt Sivatski’s argument in [8, Prop. 2].

For any a € FE, there is a unique homomorphism s, : K,gm)E(t) — K\™E

such that s,({f1,..., fu}) ={f1(a),..., fu(a)} for any fi,..., f, € E[t] prime to
t — a and such that s,({t —a,*,...,x}) =0 (cf. [3, (7.1.4)]).

4.1. Lemma. The homomorphism s = sy — s1 : K,gm)E(t) — K{™E has the
following properties:

(a) s(K\E) =0,

(0) s{(1—a)t+a,by,...,b,}) ={a,ba,...,b,} for any a, by, ... b, € EX,

(¢) any symbol in Kr(Lm)E(t) is mapped under s to a sum of two symbols in K™ME.
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Proof. Since sy and s; both restrict to the identity on K,(Lm)E, part (a) is clear.
For a,bs,...,b, € E* and 0 = {(1 —a)t + a, by, ..., b,}, we have s1(0) = 0 and
thus s(o) = so(0) = {a,by,...,b,}. This shows (b). Part (c) follows from the
observation that both sg and s; map symbols to symbols. O

4.2. Proposition. Letd € N, ay,...,aq € E*, and 04, ...,04 symbols in K,(LT)lE.
Assume that S0 {a;} - 0; € K E is not equal to a sum of less than d symbols
and let

d
&= {l—a)t+a} o € KIE().

Then deg(0(§)) = d + 1, and if r € N is such that 9(§) = O(m1 + -+ + 7)) for
symbols 71, ..., 7, in KYVE(t), then r > |45

Proof. The hypothesis that £ cannot be written as a sum of less than d symbols

has a few consequences. For i = 1,...,d, it follows that {a;} - 0; # 0, so in
particular a; # 1, and with p =t — %= we get that J,(§) = 0; # 0 in K,(LT)IE
Furthermore, we obtain that 9. (¢) = — S % 0; # 0 in Kfﬁ)lE- Therefore we

have Supp(9(¢)) = {t — 1%~ [ 1 <4 < d} U {oo} and thus deg(9(£)) = d + 1.

Assume now that r € N and 9(§) = 9(ry + - -+ + 7.) for symbols 71,...,7. in
KY™E(t). Then 7, + - - -+ 7, — € is defined over E. Let s be the map from (4.1).
By (4.1) we obtain that s(m +--- 4+ 7, — &) = 0 and thus

Z{ai} o =5(6)=s(n)+...+s(r) € KIWE,

which is a sum of 2r symbols. Hence 2r > d, by the hypothesis on d. U

4.3. Example. Let p be a prime dividing m. Let k be a field containing a
primitive pth root of unity w and a4, . .., aqs € k* such that the Kummer extension
k(/ai, ..., ¥/aq) of k has degree p?. Let by, ..., by be indeterminates over k and
set B = k(by, ..., bg). Using [9, (2.10)] and [1, (2.1)], it follows that 37 {as, b}
is not equal to a sum of less than d symbols in Kép )B. Since p divides m, it follows
immediately that E?Zl{ai, b} € Kém)E is not a sum of less than d symbols in
Kém)E. Consider ¢ = Z?Zl{(l —a;)t+a;,b;} in Kém)E(t). By (4.2), for p = 0(§)
we have that deg(p) = d+ 1 and p # 9(¢') for any & € K™ E(t) that is a sum

de,
g2(p) J

of less than r = | symbols.
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