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1. Introduction

Let E be an arbitrary field and F the function field of the projective line P
1

over E. For m ∈ N, there is a well-known exact sequence

0 −→ K
(m)
2 E −→ K

(m)
2 F

∂−→
⊕

x∈P1

0

K
(m)
1 E(x)−→K

(m)
1 E −→ 0 ,(1.1)

due to Milnor and Tate (cf. [6, (2.3)]). Here, K
(m)
1 and K

(m)
2 are the functors that

associate to a field its first and second K-groups modulo m, respectively, and P
1
0

is the set of closed points of P1. The map ∂ is called the ramification map. By

[3, (7.5.4)], for m prime to the characteristic of E, the sequence (1.1) translates

into a sequence in Galois cohomology, and the proof of its exactness essentially

goes back to Faddeev [2].

In this article we study how for a given element ρ in the image of ∂ one finds a

good ξ ∈ K
(m)
2 F with ∂(ξ) = ρ. Our main result (3.10) states that there is such a

ξ that is a sum of r symbols (canonical generators of K
(m)
2 F ) where r is bounded

by half the degree of the support of ρ. This generalizes results from [4], [7], and

[8], where the problem has been studied in terms of Brauer groups in presence of

a primitive mth root of unity in E for m > 0. Developing further an idea in [8,

Prop. 2], we provide examples (4.3) where the bound on r cannot be improved.

2. Milnor K-theory of a rational function field

We recall the basic terminology of the K-theory for fields as introduced by

Milnor [6], with slightly different notation. Let F be a field. For m,n ∈ N, let
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K
(m)
n F denote the abelian group generated by elements called symbols, which are

of the form {a1, . . . , an} with a1, . . . , an ∈ F×, subject to the defining relations

that {∗, . . . , ∗} : (F×)n −→ K
(m)
n F is a multilinear map, that {a1, . . . , an} = 0

whenever ai + ai+1 = 1 in F for some i < n, and that m · {a1, . . . , an} = 0.

For a, b ∈ F× we have {ab} = {a} + {b} in K
(m)
1 F . The second relation above

is void when n = 1, hence K
(m)
1 F is the same as F×/F×m

, only with different

notation for the elements and the group operation. As shown in [6, (1.1) and

(1.3)], it follows from the defining relations that, for a1, . . . , an ∈ F×, we have

{aσ(1), . . . , aσ(n)} = ε{a1, . . . , an} for any permutation σ of the numbers 1, . . . , n

with signature ε = ±1, and furthermore {a1, . . . , an} = 0 whenever ai + ai+1 = 0

for some i < n.

With these notations, K
(0)
n F is the full Milnor K-group KnF introduced in [6],

and K
(m)
n F is its quotient modulo m for m ≥ 1.

By a Z-valuation we mean a valuation with value group Z. Given a Z-valuation

v on F we denote by Ov its valuation ring and by κv its residue field. For a ∈ Ov

let a denote the natural image of a in κv. By [6, (2.1)], for n ≥ 2 and a Z-

valuation v on F , there is a unique homomorphism ∂v : K
(m)
n F −→ K

(m)
n−1κv such

that

∂v({f, g2, . . . , gn}) = v(f) · {g2, . . . , gn}
for f ∈ F× and g2, . . . , gn ∈ O×

v . When n = 2, for f, g ∈ F× we have f−v(g)gv(f) ∈
O×

v and

∂v({f, g}) = {(−1)v(f)v(g)f−v(g)gv(f)} in K
(m)
1 κv .

We turn to the situation where F is the function field of P1 over E. By the

choice of a generator, we identify F with the rational function field E(t) in the

variable t over E. Let P denote the set of monic irreducible polynomials in E[t].

Any p ∈ P determines a Z-valuation vp on E(t) that is trivial on E and such

that vp(p) = 1. There is further a unique Z-valuation v∞ on E(t) such that

v∞(f) = − deg(f) for any f ∈ E[t] \ {0}. We set P ′ = P ∪ {∞}. For p ∈ P ′

we write ∂p for ∂vp and we denote by Ep the residue field of vp. Note that Ep is

naturally isomorphic to E[t]/(p) for p ∈ P, and E∞ is naturally isomorphic to E.

It follows from [6, Sect. 2] that the sequence

(2.1) 0 −→ K(m)
n E −→ K(m)

n E(t)
⊕

∂p−→
⊕

p∈P

K
(m)
n−1Ep −→ 0

is split exact. We are going to reformulate this fact for n = 2 and to relate (2.1)

to (1.1). We set

R
′

m(E) =
⊕

p∈P ′

K
(m)
1 Ep .
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For p ∈ P ′, the norm map of the finite extension Ep/E yields a group homo-

morphism K
(m)
1 Ep −→ K

(m)
1 E. Summation over these maps for all p ∈ P ′ yields

a homomorphism N : R′
m(E) −→ K

(m)
1 E . Let Rm(E) denote the kernel of N.

We set ∂ =
⊕

p∈P ′ ∂p. By [3, (7.2.4) and (7.2.5)] we obtain an exact sequence

0 −→ K
(m)
2 E −→ K

(m)
2 E(t)

∂−→ R
′

m(E)
N−→ K

(m)
1 E −→ 0 .(2.2)

In particular, Rm(E) is equal to the image of ∂ : K
(m)
2 E(t) −→ R

′
m(E).

The choice of the generator of F over E fixes a bijection φ : P
1
0 −→ P ′

and for x ∈ P
1
0 a natural isomorphism between E(x) and Eφ(x). This identi-

fies
⊕

x∈P1

0

K
(m)
1 E(x) with R

′
m(E), and further the sequence (1.1) with (2.2). We

will work with (2.2) in the sequel.

For ρ = (ρp)p∈P ′ ∈ R
′
m(E) we denote Supp(ρ) = {p ∈ P ′ | ρp 6= 0} and

deg(ρ) =
∑

p∈Supp(ρ)[Ep : E], and call this the support and the degree of ρ. The

degree of an element of R′
m(E) is invariant under automorphisms of E(t)/E.

3. Bound for representation by symbols in terms of the degree

In this section we study the relation between the degree of ρ ∈ Rm(E) to the

properties of elements ξ ∈ K
(m)
2 E(t) with ∂(ξ) = ρ. In (3.10) we will show that

there always exists such ξ that is a sum of r symbols where r is the integral part

of deg(ρ)
2

. In particular, any ramification of degree at most three is realized by a

symbol. This settles a question in [4, (2.5)]. In some of the following statements,

we consider elements of R′
m(E), rather than only of Rm(E).

3.1. Proposition. If ρ ∈ Rm(E) then deg(ρ) 6= 1.

Proof. Consider an element ρ ∈ R
′
m(E) with deg(ρ) = 1. The support of ρ

consists of one rational point p ∈ P ′. Hence N(ρ) = ρp 6= 0 in K
(m)
1 E. As

N ◦ ∂ = 0 it follows that ρ /∈ Rm(E). �

We say that p ∈ P ′ is rational if [Ep : E] = 1. We call a subset of P ′ rational

if all its elements are rational. We give two examples showing how to realize a

given ramification of small degree and with rational support by one symbol.

3.2. Examples. (1) Let a, c ∈ E× and c /∈ E×m
. The symbol σ = {t − a, c} in

K
(m)
2 E(t) satisfies Supp(σ) = {t− a,∞}, ∂t−a(σ) = {c} and ∂∞(σ) = {c−1}.
(2) For a1, a2, c1, c2 ∈ E× with a1 6= a2, we compute the ramification of the

symbol σ = { t−a1
c2(a2−a1)

, c1(t−a2)
a1−a2

} in K
(m)
2 E(t). It has Supp(σ) ⊆ {t−a1, t−a2,∞},

∂t−ai(σ) = {ci} for i = 1, 2, and ∂∞(σ) = {(c1c2)−1}.

A ramification of degree two can under some extra condition be realized by a

symbol one of whose entries is a constant.
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3.3. Proposition. Let ρ ∈ Rm(E) be such that deg(ρ) = 2. If Supp(ρ) is rational

or char(E) 6= m = 2, there exist e ∈ E× and f ∈ E(t)× such that ρ = ∂({e, f}).

Proof. Suppose first that the support of ρ is rational. We choose a, e ∈ E× such

that t−a ∈ Supp(ρ) and ρt−a = {e} in K
(m)
1 E. Then Supp(ρ) = {t−a, p} where

p ∈ P ′ is rational. As N(ρ) = 0 we obtain that ρp = {e−1} in K
(m)
1 Ep. If p = ∞,

we set f = 1
t−a

. Otherwise p = t− b for some for b ∈ E, and we set f = t−b
t−a

. In

either case we obtain that ρ = ∂({e, f}).
It remains to consider the case where char(E) 6= m = 2 and Supp(ρ) = {p} for

a quadratic polynomial p ∈ P. Then Ep/E is a separable quadratic extension.

Let x ∈ E×
p be such that ρp = {x}. As Supp(ρ) = {p} and N(ρ) = 0, we obtain

that the norm of x with respect to the extension Ep/E lies in E×2, and therefore

xE×2
p = eE×2

p for some e ∈ E× (cf. [5, Chap. VII, (3.9)]). Hence, ρp = {x} = {e}
in K

(2)
1 Ep, and we obtain that ρ = ∂({e, p}). �

In (3.3) the rationality of the support when m 6= 2 is not a superfluous condi-

tion; the following example was pointed out to us by J.-P. Tignol.

3.4. Example. Let k be a field. We consider the rational function field in two

variables u and v over k. Let τ denote the k-automorphism of k(u, v) satisfying

τ(u) = v and τ(v) = u. Then τ 2 is the identity map on k(u, v), and E =

{x ∈ k(u, v) | τ(x) = x} is a subfield of k(u, v) such that [k(u, v) : E] = 2.

Consider the element y = v
u
∈ k(u, v). Since y /∈ E, the quadratic polynomial

p = (t− y)(t− τ(y)) = t2 − u2+v2

uv
t+ 1 is irreducible over E.

Let m be an odd positive integer. We consider the symbol σ = {p, t} in

K
(m)
2 E(t). Note that the support of ∂(σ) is contained in {p} and ∂p(σ) = {t}.

Moreover, mapping t to y induces an E-isomorphism Ep −→ k(u, v). Since y is

not an mth power in k(u, v), it follows that ∂p(σ) 6= 0. Hence, Supp(∂(σ)) = {p}
and deg(∂(σ)) = 2.

We claim that ∂(σ) 6= ∂({e, f}) for any e ∈ E× and f ∈ E(t)×. Suppose on

the contrary that there exist e ∈ E× and f ∈ E(t)× such that ∂p(σ) = ∂p({e, f}).
Then we obtain that evp(f)y is an mth power in k(u, v), and taking norms with

respect to the extension k(u, v)/E yields that e2vp(f) ∈ E×m
. Since m is odd, it

follows that evp(f) ∈ E×m
, and thus ∂p({e, f}) = 0, a contradiction.

The remainder of this section builds up to our main result (3.10).

3.5. Lemma. Let ρ ∈ R
′
m(E) with deg(ρ) ≥ 2. There exists a symbol σ in

K
(m)
2 E(t) such that deg(ρ − ∂(σ)) ≤ deg(ρ) − 1 and such that this inequality is

strict except possibly when ∂∞(σ) 6= 0 = ρ∞ or deg(ρ) = 2. More precisely, one

may choose σ = {fh, g} where f is the product of the polynomials in Supp(ρ)
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and g, h ∈ E[t] \ {0} are such that deg(g) < deg(f) and, either deg(h) < deg(g),

or gh ∈ E×.

Proof. Let f be the product of the polynomials in Supp(ρ). By the Chinese

Remainder Theorem, we may choose g ∈ E[t] prime to f with deg(g) < deg(f)

such that ∂p({f, g}) = ρp for all monic irreducible polynomials p ∈ Supp(ρ). If g

is constant, let h = 1. If g is not square-free, let h be the product of the different

monic irreducible factors of g. If g is square-free and not constant, then using the

Chinese Remainder Theorem we choose h ∈ E[t] prime to g with deg(h) < deg(g)

such that ∂p({f, g}) − ρp = {h} in K
(m)
1 Ep for every monic irreducible factor p

of g. Then g, h and σ = {fh, g} have the desired properties. �

3.6. Lemma. Let d ∈ N \ {0} and f ∈ E[t] non-constant and square-free such

that deg(p) ≥ d for every irreducible factor p of f . Let F = E[t]/(f) and let

ϑ denote the class of t in F . For any a ∈ F× there exist nonzero polynomials

g, h ∈ E[t] with deg(h) ≤ d− 1 and deg(g) ≤ deg(f)− d such that a = g(ϑ)
h(ϑ)

.

Proof. Let V =
⊕d−1

i=0 Eϑi and W =
⊕e−d

i=0 Eϑi where e = deg(f). By the choice

of d and the Chinese Remainder Theorem, we have V \ {0} ⊆ F×, where F×

denotes the group of invertible elements of F . As a ∈ F× we have dimE(V a) =

dimE(V ) = d and dimE(V a) + dimE(W ) = e + 1 > e = [F : E], so V a ∩W 6= 0.

Therefore h(ϑ)a = g(ϑ) for certain h, g ∈ E[t] \ {0} with deg(h) ≤ d − 1 and

deg(g) ≤ e− d. Thus h(ϑ) ∈ V \ {0} ⊆ F× and a = g(ϑ)
h(ϑ)

. �

3.7. Lemma. Let ρ ∈ R
′
m(E) and q ∈ Supp(ρ) such that deg(q) = 2n + 1 with

n ≥ 1. There exists a symbol σ in K
(m)
2 E(t) such that deg(ρ−∂(σ)) ≤ deg(ρ)−2.

More precisely, one may choose σ = {qhf−2g−2, g−1f} with f, g, h ∈ E[t] \ {0}
such that deg(f), deg(g) ≤ n and deg(h) ≤ 2n− 1.

Proof. Using (3.6) we choose f, g ∈ E[t] \ {0} with deg(f), deg(g) ≤ n such that

∂q({q, g−1f}) = ρq. Then q is prime to fg. If fg is constant, let h = 1. If fg is

not square-free, let h be the product of the different monic irreducible factors of

fg. If fg is square-free and not constant, we choose h ∈ E[t] prime to fg and

with deg(h) < deg(fg) such that ∂p({h, g−1f}) = ∂p({q−1f 2g2, g−1f}) for every
monic irreducible factor p of fg. In any case deg(h) ≤ 2n− 1 = deg(q)− 2.

Let σ = {qhf−2g−2, g−1f}. We have ∂q(σ) = ρq and ∂p(σ) = 0 for every monic

irreducible polynomial p ∈ E[t] prime to h and not contained in Supp(ρ). It

follows that q ∈ Supp(ρ)\Supp(ρ−∂(σ)) and that every polynomial in Supp(ρ−
∂(σ)) \ Supp(ρ) divides h. Furthermore, if deg(h) = 2n − 1, then deg(f) =

deg(g) = n, so that deg(qh) = 4n = 2deg(fg) and thus ∂∞(σ) = 0. We conclude

that deg(ρ− ∂(σ)) ≤ deg(ρ)− 2 in any case. �
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3.8. Proposition. Let ρ ∈ R
′
m(E) with deg(ρ) ≥ 2. There exists a symbol σ

in K
(m)
2 E(t) such that deg(ρ − ∂(σ)) ≤ deg(ρ) − 1. Moreover, if deg(ρ) ≥ 3

and Supp(ρ) contains an element of odd degree, then there exists a symbol σ in

K
(m)
2 E(t) such that deg(ρ− ∂(σ)) ≤ deg(ρ)− 2.

Proof. In view of (3.5) only the second part of the statement remains to be

proven. If Supp(ρ) contains a non-rational point of odd degree, the statement

follows from (3.7). Suppose now that Supp(ρ) contains a rational point. Note

that the statement is invariant under E-automorphisms of E(t). Hence, we may

assume that ∞ ∈ Supp(ρ), in which case the statement follows from (3.5). �

3.9. Question. Given ρ ∈ Rm(E) with deg(ρ) ≥ 3, does there always exist a

symbol σ in K
(m)
2 E(t) such that deg(ρ− ∂(σ)) ≤ deg(ρ)− 2?

For x ∈ R, the unique z ∈ Z such that z ≤ x < z + 1 is denoted ⌊x⌋.

3.10. Theorem. For ρ ∈ Rm(E) and n = ⌊deg(ρ)
2

⌋, there exist symbols σ1, . . . , σn

in K
(m)
2 E(t) such that ρ = ∂(σ1 + · · ·+ σn).

Proof. We proceed by induction on n. If n = 0 then ρ = 0 by (3.1) and the

statement is trivial. Assume that n > 0. We have either deg(ρ) = 2n+1, in which

case ρ contains a point of odd degree, or deg(ρ) = 2n. Hence, by (3.8) there exists

a symbol σ in K
(m)
2 E(t) with deg(ρ−∂(σ)) ≤ 2n−1. By the induction hypothesis

there exist symbols σ1, . . . , σn−1 in K
(m)
2 E(t) with ρ− ∂(σ) = ∂(σ1 + · · ·+ σn−1).

Then ρ = ∂(σ1 + · · ·+ σn−1 + σ). �

If we knew that for m ≥ 1 every element of Rm(E) had a lift to R0(E) of the

same degree, it would be sufficient to formulate and prove (3.10) for m = 0.

4. Example showing that the bound is sharp

In this section we show that the bound (3.10) is sharp for all m and in all

degrees. In order to obtain an example in (4.3) where the bound of (3.10) is an

equality, we adapt Sivatski’s argument in [8, Prop. 2].

For any a ∈ E, there is a unique homomorphism sa : K
(m)
n E(t) −→ K

(m)
n E

such that sa({f1, . . . , fn}) = {f1(a), . . . , fn(a)} for any f1, . . . , fn ∈ E[t] prime to

t− a and such that sa({t− a, ∗, . . . , ∗}) = 0 (cf. [3, (7.1.4)]).

4.1. Lemma. The homomorphism s = s0 − s1 : K
(m)
n E(t) −→ K

(m)
n E has the

following properties:

(a) s(K
(m)
n E) = 0,

(b) s({(1− a)t+ a, b2, . . . , bn}) = {a, b2, . . . , bn} for any a, b2, . . . , bn ∈ E×,

(c) any symbol in K
(m)
n E(t) is mapped under s to a sum of two symbols in K

(m)
n E.
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Proof. Since s0 and s1 both restrict to the identity on K
(m)
n E, part (a) is clear.

For a, b2, . . . , bn ∈ E× and σ = {(1 − a)t + a, b2, . . . , bn}, we have s1(σ) = 0 and

thus s(σ) = s0(σ) = {a, b2, . . . , bn}. This shows (b). Part (c) follows from the

observation that both s0 and s1 map symbols to symbols. �

4.2. Proposition. Let d ∈ N, a1, . . . , ad ∈ E×, and σ1, . . . , σd symbols in K
(m)
n−1E.

Assume that
∑d

i=1{ai} · σi ∈ K
(m)
n E is not equal to a sum of less than d symbols

and let

ξ =

d∑

i=1

{(1− ai)t + ai} · σi ∈ K(m)
n E(t) .

Then deg(∂(ξ)) = d + 1, and if r ∈ N is such that ∂(ξ) = ∂(τ1 + · · · + τr) for

symbols τ1, . . . , τr in K
(m)
n E(t), then r ≥ ⌊d+1

2
⌋.

Proof. The hypothesis that ξ cannot be written as a sum of less than d symbols

has a few consequences. For i = 1, . . . , d, it follows that {ai} · σi 6= 0, so in

particular ai 6= 1, and with p = t − ai
1−ai

we get that ∂p(ξ) = σi 6= 0 in K
(m)
n−1E.

Furthermore, we obtain that ∂∞(ξ) = −∑d
i=1 σi 6= 0 in K

(m)
n−1E. Therefore we

have Supp(∂(ξ)) = {t− ai
1−ai

| 1 ≤ i ≤ d} ∪ {∞} and thus deg(∂(ξ)) = d+ 1.

Assume now that r ∈ N and ∂(ξ) = ∂(τ1 + · · · + τr) for symbols τ1, . . . , τr in

K
(m)
n E(t). Then τ1 + · · ·+ τr − ξ is defined over E. Let s be the map from (4.1).

By (4.1) we obtain that s(τ1 + · · ·+ τr − ξ) = 0 and thus

d∑

i=1

{ai} · σi = s(ξ) = s(τ1) + . . .+ s(τr) ∈ K(m)
n E ,

which is a sum of 2r symbols. Hence 2r ≥ d, by the hypothesis on d. �

4.3. Example. Let p be a prime dividing m. Let k be a field containing a

primitive pth root of unity ω and a1, . . . , ad ∈ k× such that the Kummer extension

k( p
√
a1, . . . , p

√
ad) of k has degree pd. Let b1, . . . , bd be indeterminates over k and

set E = k(b1, . . . , bd). Using [9, (2.10)] and [1, (2.1)], it follows that
∑d

i=1{ai, bi}
is not equal to a sum of less than d symbols in K

(p)
2 E. Since p divides m, it follows

immediately that
∑d

i=1{ai, bi} ∈ K
(m)
2 E is not a sum of less than d symbols in

K
(m)
2 E. Consider ξ =

∑d
i=1{(1−ai)t+ai, bi} in K

(m)
2 E(t). By (4.2), for ρ = ∂(ξ)

we have that deg(ρ) = d + 1 and ρ 6= ∂(ξ′) for any ξ′ ∈ K
(m)
2 E(t) that is a sum

of less than r = ⌊deg(ρ)
2

⌋ symbols.
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[4] B.È. Kunyavskǐı, L.H. Rowen, S.V. Tikhonov, V.I. Yanchevskǐı. Bicyclic algebras of prime
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