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1. Introduction

In this article we want to compare different properties of an extension of real
fields, in terms of extendibility of orderings, semiorderings, and the behavior of
the stability index.

Semiorderings were introduced by Prestel [11] as a means to obtain a local-
global principle for weak isotropy of quadratic forms over a real field. Around the
same time Bröcker [4] introduced a field invariant, referred to in the literature
as the (reduced) stability index. While defined in terms of quadratic forms, the
stability index is characterized in [4, (3.19)] in terms of general valuations and
the corresponding henselizations. In [4, (4.8)] an upper bound for the stability
index of an extension field in terms of the transcendence degree and the stability
index of the ground field is given. Fans were introduced by Becker and Köpping
[2] and used in [5] for a different approach to the stability index. See also [9] for
a treatment of these concepts.

One main aim of this article is to decide for certain types of real field extensions
whether the stability index may decrease, with special attention to algebraic
extensions.

In Section 2 we study fans in relation to semiorderings, with an application in
(2.8) to enumerating the number of extensions of a semiordering to a quadratic
field extension in a particular case, showing that there is no upper bound on the
number of extensions. The problem of determining when fans can be extended
to a field extension deserves further study.

In Section 3 we will compare two conditions for a field extension L/K. If every
ordering of K extends to an ordering of L we say that L/K preserves orderings.
If every semiordering of K extends to a semiordering of L we say that L/K is
totally positive. As we shall see in (3.4), any totally positive extension preserves
orderings. We will show in (3.9) that both properties are equivalent for a Galois
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extension. In general, a field extension that preserves orderings is not necessarily
totally positive. We give examples of finite extensions that show the difference
between these two properties, answering a question raised in [1, (3.7)]. In (3.10)
we obtain an easy example of such an extension of degree 16. In (3.12) we describe
a class of quartic extensions that preserve orderings, and we show in (3.14) that
not every extension in this class is totally positive.

In Section 4 we study the stability index of a field, defined as the supremum on
the degrees of its fans, and we study the behavior of this field invariant under field
extensions that preserve orderings. We show that the stability index cannot drop
over a totally positive extension (4.2) or over a finite extension that preserves
orderings (4.5), but that it may drop for a general field extension that preserves
orderings (4.3).

In Section 5 we show that the stability index may drop under a real quadratic
extension. We give a simplified and more explicit version of Prestel’s construction
in [12] for a particular case, allowing us to show in (5.3) that any real field k
has a real extension field with almost the same properties, having in addition
a quadratic field extension with exactly two orderings and where every sum of
squares is equal to a sum of two squares. Based on this we determine in (5.7) all
possible pairs of values for the stability indices in a real quadratic field extension.
It turns out that there may be an arbitrary decrease except to zero in a real
quadratic extension. This answers a question raised in [4, p. 251].

2. Fans

Let K always denote a field of characteristic different from 2. Let
∑

K2 denote
the subgroup of K× given by the nonzero sums of squares in K. The field K is
said to be real if −1 /∈∑K2, nonreal otherwise.

We use the notation ±S = S ∪ −S for any subset S ⊆ K. If S ⊆ K is
multiplicatively closed and K×2 ⊆ S, we write S× = S ∩K×. A preordering of

K is a subset T ⊆ K such that K2 ⊆ T , T + T ⊆ T , TT ⊆ T , and −1 /∈ T ; if in
addition K = ±T , then T is called an ordering of K. The set of all orderings of K
is denoted by X(K). For a preordering T of K we write T× = T \{0}, which is a
subgroup of K×, and XT (K) = {P ∈ X(K) | T ⊆ P}. By [10, Chap. VIII, (9.6)]
any preordering T of K satisfies T =

⋂

P∈XT (K) P . If K is real, then
∑

K2 ∪ {0}
is the smallest preordering of K. (If K is nonreal then

∑

K2 = K× and K has
no preordering.)

A semiordering of K is a subset S ⊆ K such that 1 ∈ S, S+S ⊆ S, K2S ⊆ S,
S ∩ −S = 0, and K = ±S. Hence, an ordering is a semiordering that is closed
under multiplication.

2.1. Proposition. Let T be a preordering of K. The following are equivalent:

(i) For any subgroup H in K× of index 2 containing T× and with −1 /∈ H, the

set H ∪ {0} is an ordering of K.
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(ii) For any subgroup H of K× containing T× and with −1 /∈ H, the set H∪{0}
is a preordering of K.

(iii) For any a ∈ K× \ ±T we have T + aT = T ∪ aT .
(iv) Any set M ⊆ K with T ·M ⊆M and M ∩ −M = {0} is additively closed.

(v) Any set S ⊆ K such that T ·S ⊆ S, S ∩−S = {0}, K = S ∪−S and 1 ∈ S
is a semiordering.

Proof: See [2, Satz 20] or [9, (5.1) and (5.5)] for the equivalence of (i), (ii), and
(iii). The implications (iv) ⇒ (v) ⇒ (i) are obvious. To finish the proof we show
(iii) ⇒ (iv). Consider a subset M ⊆ K satisfying TM ⊆M andM ∩−M = {0}.
For b, c ∈ M we want to show that b+ c ∈ M . We can assume that bc 6= 0. Set
a = bc. If a ∈ T , then bT = cT and b + c ∈ b(T + T ) = bT ⊆ M . Assume that
a /∈ T . Since M ∩ −M = {0} we have a /∈ ±T . Assuming (iii) we obtain that
T + aT = T ∪ aT , so b+ c ∈ b(T + aT ) = b(T ∪ aT ) = bT ∪ cT ⊆M . �

A fan of K is a preordering T of K for which the equivalent conditions (i)–(v)
in (2.1) hold.

2.2. Corollary. Let T be a fan of K and let H be subgroup of K× containing T×

and with −1 /∈ H. Then H ∪ {0} is a fan of K.

Proof: Let T ′ = H ∪ {0}. By condition (ii) in (2.1), T ′ is a preordering.
Furthermore, it is clear that T ′ inherits property (ii) from T . �

2.3. Proposition. Let n ∈ N and T a preordering of K with [K× : ±T×] = 2n.
Then n+ 1 ≤ |XT (K)| ≤ 2n. Moreover, T is a fan if and only if |XT (K)| = 2n.

Proof: We have [K× : T×] = 2 · [K× : ±T×] = 2n+1. By [10, Chap. VIII, (9.6)]
we have T× =

⋂

P∈XT (K) P
×. As [K× : P×] = 2 for any P ∈ X(K), it follows

that |XT (K)| ≥ n + 1. There are 2n subgroups of K× containing T× and not
containing −1. Therefore |XT (K)| ≤ 2n and equality holds if and only if T is a
fan, by Condition (i) in (2.1). �

For a fan T we put deg T = dimF2
(K×/± T×) and call this the degree of T ; if

deg T is finite, it is equal to log2 |XT (K)| by (2.3). Note that orderings are fans
of degree 0. Any preordering T of K with [K× : T×] = 4 is a fan of degree 1.
Fans of degree 0 or 1 are called trivial.

2.4. Lemma. Let T be a preordering of K. Assume that [K× : ±T×] = 2n and

fix a1, . . . , an ∈ K× such that (−T×, a1T
×, . . . , anT

×) is an F2-basis of K×/T×.

Let Pn denote the power set of {1, . . . , n}. For any function σ : Pn −→ {±1}
with σ(∅) = 1, the set

S =
⋃

I∈Pn

(

σ(I)
∏

i∈I

ai

)

T

satisfies TS ⊆ S, S ∩−S = {0}, K = S ∪−S and 1 ∈ S. Conversely, any subset

S ⊆ K with these properties is given by such a function σ.
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Proof: This is straightforward to verify. �

Given a preordering T , a semiordering S of K is called a T -semiordering if
TS ⊆ S.

2.5.Corollary. Let n ∈ N and let T be a preordering of K with [K× : ±T×] = 2n.
The number of T -semiorderings of K is at most 22

n−1. Moreover, this number

equals 22
n−1 if and only if T is a fan.

Proof: Let S denote the set of subsets S ⊆ K such that TS ⊆ S, S ∩−S = {0},
K = S ∪−S and 1 ∈ S. By (2.4) we have |S| = 22

n−1. Any T -semiordering of K
belongs to S. Moreover, by Condition (v) in (2.1), T is a fan if and only if every
element of S is a T -semiordering. �

2.6. Proposition. Let L = K((t)). Any ordering P of K has exactly two ex-

tensions to an ordering of L, given by (P ∪ tP )L2 and (P ∪ −tP )L2. For any

preordering T of K, the set T ′ = TL2 is a preordering of L with T ′ ∩K = T and

|XT ′(L)| = 2|XT (K)|. Moreover, if T is a fan of K, then T ′ = TL2 is a fan of L
with deg(T ′) = deg(T ) + 1.

Proof: See [10, Chap. VIII, (4.11)] for the statement on the extension of orderings
from K to L. Consider a preordering T of K. We define T ′ to be the intersection
of all orderings of L that contain T . Since each ordering of K extends to L, we
have that T ′ ∩K = T . Since each ordering of K extends in exactly two ways to
L, it follows that T ′ is a preordering of L and |XT ′(L)| = 2|XT (K)|.

We need to show that T ′ = TL2. Note that KL2∪tKL2 = L. Since no element
of tKL2 is contained in both orderings of L that extend a given ordering of K,
we obtain that T ′ ⊆ KL2. For x ∈ KL2 \ TL2, there exists P ∈ XT (K) such
that x ∈ −PL2, and then x is not contained in either of the two orderings of L
that extend P , showing that x /∈ T ′. This shows that T ′ ⊆ TL2. As the opposite
inclusion is straightforward, we obtain that TL2 = T ′.

Assume now that T is a fan of K. Consider any subgroup H ′ of L× of index
2 with T ′× ⊆ H ′ and −1 /∈ H ′. Then H = H ′ ∩ K× is a subgroup of K× of
index 2 with T× ⊆ H and −1 /∈ H. Choose ε ∈ {±1} such that εt ∈ H ′.
Since L× = (K× ∪ tK×)L×2 we have that H ′ = (H ∪ εtH)L×2. As T is a fan,
P = H ∪ {0} is an ordering of K. Hence, H ′ ∪ {0} = (H ∪ εtH)L×2 ∪ {0} is
an ordering of L, by the first part of the proof. By Condition (i) in (2.1), this
argument shows that T ′ is a fan of L. Finally, as |X ′

T (L)| = 2|XT (K)| we obtain
that deg(T ′) = deg(T ) + 1. �

2.7. Corollary. Let n ∈ N and L = K((t1)) . . . ((tn)). If T is a fan of K, then

T ′ = TL2 is a fan of L with deg(T ′) = deg(T ) + n.

Proof: This follows by induction on n from (2.6). �
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2.8. Example. Let n ∈ N. Consider the field K = Q((t1)) . . . ((tn)) and its qua-
dratic extension L = Q(

√
2)((t1)) . . . ((tn)) = K(

√
2). It follows from (2.7) that

T =
∑

K2 ∪ {0} is a fan of K with deg(T ) = n and that T ′ = TL2 =
∑

L2 ∪ {0}
is a fan of L with deg(T ′) = n + 1. Note that t1, . . . , tn are representatives of
an F2-basis of K

×/± T×, and
√
2, t1, . . . , tn are representatives of an F2-basis of

L×/ ± T ′×. By (2.5) K has 22
n−1 semiorderings and L has 22

n+1−1 semiorder-
ings. Moreover, any semiordering of K has exactly 22

n

extensions to L, because
any choice of signs for the 2n elements

√
2 · tε11 · · · tεnn with (ε1, . . . , εn) ∈ {0, 1}n

determines one such extension.

We need the following result in Section 5.

2.9. Proposition. Let L/K be a field extension and let T ′ be a fan of L. Then

T ′ ∩K is a fan of K.

Proof: Note that T = T ′ ∩K is a preordering of K. To prove that T is a fan,
consider a ∈ K×\±T×. Since T ′ is a fan and a /∈ ±T ′, we have T ′+aT ′ = T ′∪aT ′,
which implies that T + aT ⊆ (T ′ + aT ′) ∩ K = (T ′ ∪ aT ′) ∩ K = T ∪ aT , and
therefore T + aT = T ∪ aT . We finish by applying Condition (iii) of (2.1). �

3. Extensions of orderings and semiorderings

In this section we consider an arbitrary field extension L/K. Following [1,
Sect. 3] we say that L/K is totally positive if every semiordering of K extends to
a semiordering of L. We say that L/K preserves orderings if every ordering of
K extends to an ordering of L.

We rely on [10] for basic results and terminology in quadratic form theory. We
will often say ‘form’ or ‘quadratic form’ to mean a regular quadratic form. If ϕ
and ψ are forms over K we denote by ϕ ⊥ ψ their orthogonal sum. Given a form
ϕ over K we denote by DK(ϕ) the set of nonzero elements of K represented by
ϕ, and for n ∈ N by n × ϕ the n-fold orthogonal sum ϕ ⊥ · · · ⊥ ϕ. A form ϕ
over K is called weakly isotropic if n × ϕ is isotropic for some n ≥ 1, otherwise
strongly anisotropic.

3.1. Proposition. The extension L/K is totally positive if and only if every

strongly anisotropic form over K stays strongly anisotropic over L.

Proof: See [1, (3.1)]. �

3.2. Corollary. If every finitely generated subextension of L/K is totally positive,

then L/K is totally positive.

Proof: This is immediate from (3.1). �

3.3. Lemma. Any ordering of K that extends to a semiordering of L also extends

to an ordering of L.
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Proof: Consider an ordering P of K. If P extends to a semiordering of L, then
the additive closure of PL2 does not contain −1 and thus is a preordering of L.
Hence PL2 ⊆ P ′ for an ordering P ′ of L, by [10, Chap. VIII, (9.4)], and then
P ′ ∩K = P . �

3.4. Proposition. Any totally positive extension preserves orderings.

Proof: This is straightforward from (3.3). �

As observed in [1, (3.6)] an extension preserving orderings need not be totally
positive. We will now compare the two properties for algebraic extensions.

3.5.Proposition. Assume that L/K is a finite extension and let P be an ordering

of K. The number of extensions of P to an ordering of L is bounded by [L : K],
and the two numbers are congruent modulo 2. If L/K is a Galois extension and

P extends to L, then P has [L : K] different extensions to an ordering of L.

Proof: Let R denote the real closure of K with respect to P . Fix an irreducible
polynomial f ∈ K[X ] such that L is K-isomorphic to K[X ]/(f). The extensions
of P to an ordering of L are given by the roots of f in R (cf. [13, (3.12)]). As
[L : K] is the number of roots of f in the algebraically closed field R(

√
−1)

and as the roots in R(
√
−1) \ R are pairwise conjugate under the nontrivial

automorphism of R(
√
−1)/R, the first part of the statement follows.

Assume now that P extends to L, so that f has a root in R. If L/K is a Galois
extension, then it follows that all K-embeddings of L in R(

√
−1) lie in R, so that

f has [L : K] roots in R, which shows the second part. �

In contrast to the situation for orderings described in (3.5), there is no general
bound in terms of [L : K] on the number of extensions to L that a semiordering
of K may have, as illustrated by the quadratic extension in (2.8).

3.6. Proposition. Any finite extension of odd degree is totally positive.

Proof: By Springer’s Theorem [10, Chap. VII, (2.7)] every strongly anisotropic
form stays strongly anisotropic over any finite field extension of odd degree.
Hence, the statement follows from (3.1). �

Note that one may now either use (3.6) and (3.4) or alternatively (3.5) to
conclude that every finite extension of odd degree preserves orderings.

3.7. Proposition. Assume that L = K(
√
d) where d ∈ K×. Then L/K is totally

positive if and only if L/K preserves orderings, if and only if d ∈∑K2.

Proof: It is shown in [1, (3.2)] that L/K is totally positive if and only if d ∈∑K2.
Furthermore, an arbitrary ordering of K extends to an ordering of L if and only
if it contains d. Hence, L/K preserves orderings if and only if d ∈∑K2. �
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3.8. Theorem. Assume that L/K is a finite extension such that every ordering

of K extends in [L : K] different ways to an ordering of L. Then L/K is totally

positive.

Proof: For any quadratic extension K ′′/K ′ with K ⊆ K ′ ⊆ K ′′ ⊆ L it follows
easily from the hypothesis using (3.5) that any ordering of K ′ extends in two
ways to an ordering of K ′′, and thus by (3.7) K ′′/K ′ is totally positive. The
statement follows from this when L/K is a 2-extension.

In the general case, write L = K(θ) and let f ∈ K[X ] be the minimal poly-
nomial of θ over K. The hypothesis means that f splits over any real closure
of K. Let M/K be the normal closure of L/K. Basic Galois theory shows that
there exists an extension of odd degree K ′/K inside M/K such that LK ′/K ′ is
a 2-extension. Let L′ = LK ′ = K ′(θ). The minimal polynomial of θ over K ′

divides f and therefore splits over every real closure of K ′. Hence, every ordering
of K ′ has [L′ : K ′] extensions to L′. As L′/K ′ is a 2-extension, we conclude that
L′/K ′ is totally positive. As the extension K ′/K has odd degree, it is totally
positive by (3.6). Therefore L′/K is totally positive. As L ⊆ L′ we conclude that
L/K is totally positive. �

A finite extension L/K may be totally positive without satisfying the hypoth-
esis of (3.8) that every ordering of K extends to L in [L : K] different ways. For
example, the extension Q( 3

√
2)/Q has degree 3 and therefore is totally positive

by (3.6), but Q( 3
√
2) is uniquely ordered.

3.9. Theorem. A Galois extension is totally positive if and only if it preserves

orderings.

Proof: By (3.4) one implication is clear. For the other implication, by (3.2) we
only need to consider finite Galois extensions. For a finite Galois extension L/K,
by (3.5) an ordering of K has either no extension or exactly [L : K] extensions
to an ordering of L. Hence, if L/K preserves orderings, it follows by (3.8) that
L/K is totally positive. �

Note that (3.9) generalizes (3.7). We next give an example of an extension of
degree 16 that preserves orderings but is not totally positive.

3.10. Example. Let α and β denote the positive square roots of 2 and 3 in R. Let
K = Q((X))((Y )) and L = K(α, β,

√
αX,

√
βY ). Then each of the four orderings

of K extends to an ordering of L, so L/K preserves orderings. The quadratic
form 〈1, X, Y,−XY 〉 is strongly anisotropic over K. Since Q(α, β) is a number
field, the totally indefinite form 〈1, α, β,−αβ〉 over Q(α, β) is weakly isotropic.
Over L this form becomes isometric to 〈1, X, Y,−XY 〉. Hence, 〈1, X, Y,−XY 〉
is weakly isotropic over L and thus L/K is not totally positive by (3.1).

We shall now show that certain quartic extensions preserve orderings while not
being totally positive.
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3.11. Proposition. Assume that L = K(
√

a + b
√
d) with a, b ∈ K and d ∈

K× \K×2. Let P be an ordering of K such that d ∈ P and a2− b2d ∈ −P . Then
P extends to an ordering of L in exactly two different ways.

Proof: As d ∈ P , there are exactly two different orderings P1 and P2 of K(
√
d)

extending P . As (a + b
√
d)(a − b

√
d) = a2 − b2d ∈ −P , we may assume that

a + b
√
d ∈ P1 ∩ (−P2) and a − b

√
d ∈ (−P1) ∩ P2. Then P1 has exactly two

extensions to L whereas P2 does not extend to L. �

3.12. Corollary. Let d ∈ ∑K2 \ K×2 and a, b ∈ K with a2 − b2d ∈ −∑K2.

Then K(
√

a+ b
√
d)/K preserves orderings.

Proof: This is clear from (3.11). �

3.13. Theorem. Let k be a field and d ∈ k× \ k×2 and let a, b ∈ k× such that

a+ b
√
d /∈∑k(

√
d)

2
. Let K = k(X) and L = K(

√

a+ b
√
d). Then the form

τ = 〈1, (X2 − d),−X(aX − bd),−X(aX − bd)(a2 − b2d)(X2 − d)〉
is strongly anisotropic over K and becomes isotropic over L. In particular, L/K
is not totally positive.

Proof: Over K(
√
d), we have 〈X +

√
d,X −

√
d〉 = 2X · 〈1, X2 − d〉 and

〈(a−b
√
d)(X+

√
d), (a+b

√
d)(X−

√
d)〉 = 2(aX−bd) · 〈1, (a2−b2d)(X2−d)〉, so

that both forms represent X −
√
d over L. Thus 2X · τ and hence τ are isotropic

over L.
To show that τ is strongly anisotropic over K, we consider the two residue

forms of τ with respect to the irreducible polynomial X2−d, which are the forms

〈1,−(a ± b
√
d)〉 over k(

√
d). As a ± b

√
d /∈ ∑k(

√
d)

2
, these residue forms are

strongly anisotropic. Thus τ is strongly anisotropic over K. �

3.14. Corollary. Let k be a real field, and let a, b ∈ k and d ∈ ∑

k2 \ k×2

be such that a2 − b2d ∈ −∑k2. Let K = k(X) for a variable X over k and

L = K(
√

a + b
√
d). Then L/K preserves orderings but is not totally positive.

Proof: By (3.12) L/K preserves orderings. As a2 − b2d /∈ ∑k2, we have that

a+ b
√
d /∈∑k(

√
d)

2
, so L/K is not totally positive by (3.13). �

By (3.14), for example the extension Q( 4
√
2)(X)/Q(X) preserves orderings but

is not totally positive.

4. The stability index

The stability index of K is defined to be

st(K) = sup {deg T | T fan of K} ∈ N ∪ {∞}.
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By [5, (2.11)], this equals the reduced stability index introduced in [4]. Note that
st(K) = 0 if and only if K is either nonreal or uniquely ordered.

For a Pfister form π over K, let π′ denote its pure part, which is defined as the
quadratic form over K (unique up to isometry) satisfying π = 〈1〉 ⊥ π′.

4.1. Proposition (Bröcker). Let n ≥ 1. We have st(K) ≥ n if and only if there

exists an n-fold Pfister form π over K such that 〈−1〉 ⊥ π′ is strongly anisotropic.

Proof: Using that by [5, (2.11)] the above definition of the stability index is
equivalent to the definition in [4], the statement is contained in [4, (3.17)]. We
give an alternative, more direct proof.

Assume first that st(K) ≥ n. It follows easily from (2.2) that there exists a fan
T of K of degree n. We choose a1, . . . , an ∈ K× such that (−T×, a1T

×, . . . , anT
×)

is an F2-basis of K×/T×. Let Pn be the power set of {1, . . . , n}. Let S denote
the T -semiordering determined as in (2.4) by the function σ : Pn −→ {±1} with
σ(∅) = 1 and σ(M) = −1 for any M ∈ Pn \{∅}. Consider the n-fold Pfister form
π = 〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉 over K. Then the form 〈−1〉 ⊥ π′ over K represents
only elements in −S. In particular 〈−1〉 ⊥ π′ is strongly anisotropic.

Assume now that st(K) < n. Consider an n-fold Pfister form π over K. By [9,
(13.1)] there exists an (n−1)-fold Pfister form ρ over K such that (2× ρ) ⊥ −π
is a torsion form. Since 〈1, 1〉 ⊥ −π′ is a subform of (2 × ρ) ⊥ −π of greater
than half the dimension, we conclude that 〈1, 1〉 ⊥ −π′ is weakly isotropic, and
therefore 〈−1〉 ⊥ π′ is weakly isotropic. �

4.2. Proposition. Let L/K be a field extension. If L/K is totally positive then

st(L) ≥ st(K).

Proof: Suppose that π is a Pfister form over K such that 〈−1〉 ⊥ π′ is strongly
anisotropic. Assuming that L/K is totally positive, 〈−1〉 ⊥ π′ remains strongly
anisotropic over L by (3.1). Using this, the statement follows from (4.1). �

Recall that K is pythagorean if
∑

K2 = K×2.

4.3. Theorem. Assume that K is a real field. There exists an extension L/K
that preserves orderings such that L is pythagorean and st(L) = 1.

Proof: If K is uniquely ordered then let L = R((t)) where R is a real closure of
K. Assume now that K has more than one ordering and let K0 = K. For n ∈ N,
let Kn+1 be the compositum over Kn of the function fields Kn(ϕ) where ϕ runs
over the isometry classes of all totally indefinite anisotropic quadratic forms over
Kn; it follows with [6, (3.5)] that any ordering of Kn has an extension to Kn+1.
Let L =

⋃

n∈NKn. Then every ordering of K extends to an ordering of L. In
particular L has more than one ordering, whence st(L) ≥ 1. By the construction
of L every totally indefinite quadratic form over L is isotropic. In particular,
〈−1〉 ⊥ π′ is isotropic for any 2-fold Pfister form π over L. Hence, st(L) ≤ 1 by
(4.1). Moreover, 〈1,−s〉 is isotropic for all s ∈∑L2, hence L is pythagorean. �
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A valuation ring is said to be real if its residue field is real.

4.4. Lemma. Let L/K be a field extension that preserves orderings. Let O be

a real valuation ring of K. Then there exists a real valuation ring O′ of L such

that O′ ∩K = O. Moreover, given an ordering P0 on the residue field of O, the

valuation ring O′ of L can be chosen such that P0 extends to an ordering of the

residue field of O′.

Proof: Let κ be the residue field of O. By the hypothesis κ is real. Let P0

be an ordering of κ. By [7, (2.2.5)], there exists an ordering P of K such that
P0 = {x | x ∈ P ∩ O×} ∪ {0} and O is convex in K with respect to the order
relation induced by P . By the hypothesis, P extends to an ordering P ′ of L. Let
O′ denote the convex hull of O in L with respect to the order relation given by
P ′. By [7, Sect. 2.2.2] O′ is a valuation ring of L. Since O ⊆ O′ and O is convex
in K with respect to P = P ′ ∩ K, we obtain that O′ ∩ K = O. Let κ′ be the
residue field of O′. By [7, (2.2.4)] the set P ′

0 = {x | x ∈ P ′ ∩ O′×} ∪ {0} is an
ordering of κ′ such that P ′

0 ∩ κ = P0. �

4.5. Theorem. Let L/K be a finite field extension that preserves orderings. Then

st(K) ≤ st(L) ≤ st(K) + 1.

Proof: The second inequality is shown in [4, (4.3)]. To prove the first inequality,
we may suppose that K is real and that st(L) < ∞. It suffices to show that
deg(T ) ≤ st(L) for any fan T of K. Consider a fan T of K. By [5, (2.7)] there
exists a real valuation ring O of K such that T = {x | x ∈ O× ∩ T×} ∪ {0}
is a trivial fan of the residue field κ. By (4.4) there exists a real valuation ring
O′ of L such that O′ ∩ K = O. Let κ′ denote the residue field of O′. Let
Γ = K×/O× and Γ′ = L×/O′×. Note that Γ is the natural value group of
a valuation on K with valuation ring O and, similarly, Γ′ is the natural value
group of a valuation on L with valuation ring O′. Since st(L) < ∞, we obtain
using [3, (4.2)] that |Γ′/2Γ′| = 2r for some r ∈ N with r ≤ st(L). As L/K is
a finite extension, the natural image of Γ in Γ′ has finite index, so we obtain
using [3, (3.4)] that |Γ/2Γ| = |Γ′/2Γ′| = 2r. Using that Γ ≃ K×/O× and further

O×T×/T× ≃ O×/(O× ∩ T×) ≃ κ×/T
×
, we obtain that

[K× : T×] = [K× : O×T×] · [O×T× : T×] ≤ |Γ/2Γ| · [κ× : T
×
]

and thus deg(T ) ≤ r + deg(T ). As the extension κ′/κ is finite, if κ′ is uniquely
ordered, then so is κ. Since deg(T ) ≤ 1 it follows that st(κ′) ≥ deg(T ). Using [3,
(4.2)] we conclude that deg(T ) ≤ r + st(κ′) ≤ st(L). �

In [11, (2.7)] it is shown that, if L/K is a finite field extension and L is uniquely
ordered, then K is uniquely ordered. In other terms, for a finite real extension
L/K the stability index ‘cannot drop to zero’: if st(L) = 0 then also st(K) = 0.
We shall see in (5.7) that for quadratic extensions this gives the only constraint
for the decrease of the stability index.
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5. Stability index of a quadratic field extension

In this section we provide a construction for a quadratic field extension having
exactly two orderings where the base field has many orderings and any given
stability index. This will allow us to determine in (5.7) the possible pairs of
values for the stability indices in a quadratic field extension. The results in this
section are inspired by results due to Prestel [12] related to other field invariants
and their behavior under quadratic extensions. We recover in particular Prestel’s
corresponding result on the pythagoras number. Recall that the pythagoras num-

ber of K, denoted p(K), is defined as the least positive integer n such that any
element of

∑

K2 can be written as a sum of n squares in K, with the convention
that p(K) = ∞ if no such integer exists.

Our construction given in (5.1) below is more explicit and simpler than the one
in [12]. We only need to construct a base field (as an extension of a given field)
containing a certain element and then derive the conclusions for the quadratic
extension from there.

5.1. Theorem. Given a field k and an ordering P0 of k, there is a field extension

K/k of transcendence degree 1 and an element d ∈ K× such that K2−dK2 is an

ordering of K extending P0, (K
×2∪dK×2)∩k× = k×2, and DK〈1, a〉DK〈1, ad〉 =

(K×2 ∪ dK×2)Dk〈1, a〉 for every a ∈ k×.

Proof: Let k̂ = k((t))( n
√
t | n ∈ N \ {0}) and let v : k̂ −→ Q ∪ {∞} be the

k-valuation with v(t) = 1. This valuation is henselian. Let H denote the relative

algebraic closure of k(t) inside k̂. The restricted valuation v|H : H −→ Q ∪ {∞}
is henselian by [7, (4.1.5)] , and it also has value group Q and residue field k. It
follows easily that H× = k×H×2 and k× ∩ H×2 = k×2, and further that every
anisotropic quadratic form over k stays anisotropic over H . In particular, the
inclusion k ⊆ H induces an isomorphism k×/k×2 −→ H×/H×2.

There is a unique ordering P ′
0 of k(t) such that P ′

0 ∩ k = P0 and t − a ∈ P ′
0

for all a ∈ k. We set d = 1 − t. Since −d ∈ P ′
0 and d ∈ H ∩ k̂2 = H2, we

have −1 ∈ P ′
0 ·H2. Hence P ′

0 does not extend to an ordering of H . Using Zorn’s
Lemma, we choose a maximal extension of ordered fields (K,P ) of (k(t), P ′

0) with
K ⊆ H . The choice implies that P× ∩H×2 = K×2. Note that K is an algebraic
extension of k(t) and therefore has transcendence degree one over k.

Let G = K× ∩ H×2. Then G ∩ P× = K×2 and the inclusions k ⊆ K ⊆ H
induce natural isomorphisms

k×/k×2 −→ K×/G −→ H×/H×2 .

As d ∈ G \P× we have K× = GP×, hence K×/P× ≃ G/(G∩P×) = G/K×2 and
thus [G : K×2] = 2 and G = K×2 ∪ dK×2. Hence (K×2∪ dK×2)∩ k× = G∩ k× =
k×2. Moreover, H× = k×H×2 and any anisotropic form over k stays anisotropic
over H . For any a ∈ k× we obtain that DH〈1, a〉 = H×2Dk〈1, a〉 and thus

DK〈1, a〉DK〈1, ad〉 ⊆ K× ∩DH〈1, a〉 = (K× ∩H×2)Dk〈1, a〉 = GDk〈1, a〉 ,
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and as the opposite inclusion is obvious, we have equality.
As d ∈ G we have K× = k×G = (P×

0 ∪ −P×

0 )G = (P×

0 ∪ −dP×

0 )G. Since
P×

0 ∪ −dP×

0 ⊆ P× we obtain that

P× = ((P×

0 ∪ −dP×

0 )G) ∩ P× = (P×

0 ∪ −dP×

0 )(G ∩ P×) = (P×

0 ∪ −dP×

0 )K×2 .

For a ∈ P×

0 we have −da(t − a−1) = d(1 − at) ∈ P× ∩ H×2 = K×2, so
that 1 − at ∈ dK×2 and thus at ∈ K2 − dK2, and since t ∈ K×2, we obtain
that a ∈ K2 − dK2. This shows that P0K

2 ⊆ K2 − dK2. It follows that
P = (P0∪−dP0)K

2 ⊆ K2− dK2. Since −d ∈ P we thus have P = K2− dK2. �

5.2. Lemma. Let K/k be a field extension and G a subgroup of K× such that

K×2 ⊆ G, Gk× = K×, and G+ aG = G ·Dk〈1, a〉 for any a ∈ k× \ −k×2. Then

the following hold:

(a) If n ∈ N and a1, . . . , an ∈ k× are such that 〈a1, . . . , an〉 is anisotropic over k,
then for any g1, . . . , gn ∈ G the form 〈a1g1, . . . , angn〉 over K is anisotropic.

(b) If T is preordering of k, then TG is the unique preordering T ′ of K with

G ⊆ T ′× and T ′ ∩ k = T . In particular, if k is real, then so is K.

(c) If T is a fan of k, then TG is a fan of K with deg(TG) = deg(T ).
(d) One has p(K) ≥ p(k). Moreover, if k is real and G ∩∑K2 = K×2, then

p(K) = p(k).

Proof: Consider n ∈ N and a1, . . . , an ∈ k× such that 〈a1, . . . , an〉 is anisotropic.
We claim that a1G + · · ·+ anG ⊆ G ·Dk〈a1, . . . , an〉. As 0 /∈ G ·Dk〈a1, . . . , an〉,
showing this claim will in particular prove (a). The claim is trivial for n ≤ 1 and
clear from the hypothesis for n = 2. We proceed by induction on n. Suppose
that n ≥ 3. Let c ∈ a1G + · · ·+ anG be given. As by the induction hypothesis
we have a1G + · · · + an−1G ⊆ G · Dk〈a1, . . . , an−1〉, we have that c = bG + anG
for some b ∈ Dk〈a1, . . . , an−1〉. Being a subform of 〈a1, . . . , an〉, the form 〈b, an〉
over k is anisotropic, so that c ∈ bG+anG ⊆ G ·Dk〈b, an〉 ⊆ G ·Dk〈a1, . . . , an−1〉.
This shows the claim and therefore part (a).

Before proving (b) and (c) we need several observations. For c ∈ k× \ k×2 the
hypothesis yields that G− cG = G ·Dk〈1,−c〉, and as this set does not contain
0, we obtain that c /∈ G. This shows that k× ∩ G = k×2 and the inclusion
k× ⊆ K× induces a group isomorphism k×/k×2 −→ K×/G. Furthermore, a
bijection between the subgroups H of k× containing k×2 and the subgroups H ′

of K× containing G is given by H 7→ GH , with inverse given by H ′ 7→ H ′ ∩ k×.
To prove part (b), consider a preordering T of K. Using the isomorphism

k×/k×2 −→ K×/G, we obtain that S = TG is the unique multiplicatively closed
subset S ofK with G ⊆ S and S∩k = T . In particular −1 /∈ TG. For any a ∈ T×

we have G+ aG = GDk〈1, a〉 ⊆ G(T× + T×) = GT×, whence G+ T×G ⊆ GT×.
Therefore T×G + T×G = T×(G + T×G) ⊆ T×G. Hence, TG is a preordering.
Finally, if k is real, then T =

∑

k2∪{0} is a preordering of k, and thus the above
argument yields that K is real as well.
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To prove (c), assume now that T is a fan of k. By Condition (ii) in (2.1),
every multiplicatively closed subset of k containing T and not containing −1 is a
preordering of k. Consider a multiplicatively closed subset S of K with TG ⊆ S
and −1 /∈ S. Then T ⊆ S ∩ k, so S ∩ k is a preordering of k. By part (b),
then S = (S ∩ k)G is a preordering of K. In view of Condition (ii) in (2.1),
this argument shows that TG is a fan. The isomorphism k×/k×2 −→ K×/G now
shows that deg(TG) = [K× : ±(TG)×] = [k× : ±T×] = deg(T ).

For (d), as any anisotropic form over k stays anisotropic over K by part (a),
we have that p(K) ≥ p(k). Assume finally that k is real. Then by part (c),
G
∑

k2 ∪ {0} is a preordering, thus
∑

K2 ⊆ G
∑

k2. From this it follows that
∑

K2 = (G ∩∑K2)
∑

k2. Hence, if G ∩∑K2 = K×2, then p(K) = p(k). �

5.3. Theorem. Let K/k be a field extension and d ∈ K× such that K2 − dK2 is

an ordering of K, (K×2∪dK×2)∩k× = k×2, and such that DK〈1, a〉DK〈1, ad〉 =
(K×2∪dK×2)Dk〈1, a〉 for every a ∈ k×. Then K× = (k×∪dk×)K×2, and for any

two forms ϕ and ψ over k such that ϕ ⊥ ψ is anisotropic, the form ϕK ⊥ dψK

over K is anisotropic. Furthermore, L = K(
√
−d) is a quadratic extension of K

such that the following hold:

(a) |X(K)| = |X(k)|+ 1 and |X(L)| = 2.
(b) st(K) = max {st(k), 1} and st(L) = 1.
(c) |K×/K×2| = 2 · |k×/k×2| and |L×/L×2| = 2 · |k×/k×2| · |Dk(〈1, 1〉)/k×2|.
(d) p(K) = p(k), and if |k×/k×2| = 2 then p(L) = 1, otherwise p(L) = 2.

Proof: LetG = K×2∪dK×2 and P = K2−dK2. For a = −1 the hypothesis yields
thatK× = DK〈1,−1〉 = G·Dk〈1,−1〉 = G·k×. For a ∈ k×\−k×2, the hypotheses
yield that −a /∈ G and G + aG ⊆ DK〈1, a〉DK〈1, ad〉 = G · Dk〈1, a〉 ⊆ G + aG,
and therefore G+aG = G ·Dk〈1, a〉. Hence, the hypotheses of (5.2) are satisfied.

The statements on anisotropy of quadratic forms over k and K follow directly
from part (a) of (5.2).

As d ∈ G \ P× we have K× = GP×, hence K×/P× ≃ G/(G ∩ P×) = G/K×2

and [G : K×2] = [K× : P×] = 2. Therefore |K×/K×2| = 2·|K×/G| = 2·|k×/k×2|.
Since G ∩ P× = K×2 we have G ∩∑K2 = K×2, so that p(K) = p(k) by (5.2).
Furthermore, by (5.2) for any fan T of k the set TG = (T ∪ dT )K2 is a fan of K
with deg(TG) = deg(T ), and conversely any fan of K containing d is obtained
in this way. For fans of degree zero this means that every ordering of k extends
uniquely to an ordering of K containing d. Since P is the only ordering of K
containing −d, we conclude that |X(K)| = |X(k)|+ 1. In particular, st(K) ≥ 1.
For any fan T ′ of K with d /∈ T ′, we have that T ′ − dT ′ is a fan of K containing
K2 − dK2 = P , hence T ′ − dT ′ = P and therefore [P× : T ′×] ≤ 2, showing that
deg(T ′) ≤ 1. For a fan T ′ of K with d ∈ T ′, we have that T = T ′ ∩ k is a fan
of k by (2.9), and as T ′ = (T ∪ dT )K2 the natural map k×/T× −→ K×/T ′× is
an isomorphism, so that deg(T ′) = deg(T ). Since st(K) ≥ 1 we conclude that
st(K) = max{st(k), 1}.
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Since −1 /∈ k×2 = k× ∩ (K×2 ∪ dK×2) we have −d /∈ K×2, so L = K(
√
−d)

is a quadratic extension of K. The only orderings of L are the two extensions
of P . In particular |X(L)| = 2 and st(L) = 1. As DK〈1, 1〉 ⊆ P× = DK〈1,−d〉
we obtain that DK〈1, 1〉 ⊆ DK〈1, d〉, using e.g. [10, Chap. I, Ex. 24]. Since
DK〈1, d〉 ⊆ G + G = GDk〈1, 1〉, we obtain that DK〈1, d〉 = GDk〈1, 1〉. Since
G ∩ k× = k×2 we conclude that

DK〈1, d〉/G ≃ GDk〈1, 1〉/G ≃ Dk〈1, 1〉/k×2

and thus |DK〈1, d〉/K×2| = 2 · |Dk〈1, 1〉/k×2|. By [10, Chap. VII, (3.8)] we obtain
that

|L×/L×2| = 1
2
· |K×/K×2| · |DK〈1, d〉/K×2| = |k×/k×2| · 2 · |Dk(〈1, 1〉)/k×2| .

Since NL/K(
∑

L2) ⊆ ∑

K2 ⊆ P× = DK〈1,−d〉 where NL/K : L −→ K is the
norm map, the Norm Principle [10, Chap. VII, (5.10)] shows that

∑

L2 ⊆ K×DL〈1,−d〉 = K×DL〈1, 1〉 .
SinceK×∩∑L2 ⊆ P× = DK〈1,−d〉 ⊆ DL〈1, 1〉, we obtain that

∑

L2 = DL〈1, 1〉,
whence p(L) ≤ 2. Finally, p(L) = 1 if and only if P× = K×2 ∪ −dK×2, if and
only if |K×/K×2| = 4, if and only if |k×/k×2| = 2. �

5.4. Remark. It follows from (5.3) that the construction of (5.1) gives a par-
ticularly explicit realization of a Witt product of two Witt rings of fields as the
Witt ring of another field. Starting with a real field k, in the proof of (5.1) an
extension H/k was constructed such that the scalar extension from k to H yields
an isomorphism of Witt rings Wk −→ WH . Then an intermediate field K and
an ordering P of K were found such that the scalar extension from K to H and
the signature at P together yield an isomorphism of the Witt ring WK with the
Witt product of Wk with Z (which can be interpreted as the Witt ring of the
real closure of K at P ). More generally, it was shown in [8] (though in terms of
quadratic form schemes) that any Witt ring product of two Witt rings of fields is
the Witt ring of another field, but the general construction is more involved and
not as explicit.

5.5. Corollary. Let n, r ∈ N ∪ {∞} with r > 0. There exists a quadratic field

extension L/K such that K is pythagorean, st(K) = n + r and st(L) = n + 1,
|X(K)| = 2n(2r + 1) and |X(L)| = 2n+1, and |K×/K×2| = |L×/L×2| = 2n+r+2.

Proof: Assume first that n and r are finite. Let k = R((t1)) . . . ((tr)). By (2.7) k2

is a fan of degree r, so k is pythagorean with st(k) = r and |k×/k×2| = 2r+1. Let
K0/k be a field extension obtained together with an element d ∈ K×

0 by using

(5.1), and let L0 = K0(
√
d). Using the properties of the extension L0/K0 that

follow by (5.3), it follows by induction on n from (2.6) thatK = K0((X1)) . . . ((Xn))
and L = L0((X1)) . . . ((Xn)) have the desired properties. The same argument works
in case n or r are infinite when passing to infinitely iterated power series fields
where necessary. �
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As noted in [14, (3.2)], alternatively, the theory of spaces of orderings can be
used to obtain the part of the statement of (5.5) concerning the stability index.

5.6. Remark. Part of (5.5) also holds for r = 0, by a different argument. For
n ∈ N we gave in (2.8) an easy example of a quadratic extension L/K where
∑

K2 ∪ {0} is a fan of degree n of K and
∑

L2 ∪ {0} is a fan of degree n + 1 of
L, thus in particular with st(K) = n and st(L) = n+ 1.

5.7. Corollary. The possible pairs of values (st(K), st(L)) for real quadratic ex-

tensions L/K are (n+ r, n + 1) with n, r ∈ N ∪ {∞}.

Proof: For any algebraic extension L/K one has st(L) ≤ st(K)+1 by [4, (4.3)].
For a real quadratic extension L/K one has st(L) ≥ 1 as L cannot be uniquely
ordered. This together with (5.5) and (5.6) shows the statement. �
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[2] E. Becker, E. Köpping. Reduzierte quadratische Formen und Semiordnungen reeller
Körper. Abh. Math. Sem. Univ. Hamburg 46 (1977): 143–177.

[3] K.J. Becher, D.B. Leep. Real fields, valuations, and quadratic forms. Preprint 2011,
http://www.mathematik.uni-bielefeld.de/lag/man/434.html.
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