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Abstract. Let p be a prime, F a field of characteristic different from p. We prove
triviality of the divided power operations on central simple cyclic algebras of exponent

p.

Introduction

Let F be a field, Br(F ) the Brauer group of F , α ∈ Br(F ). A natural question
arises whether α can be represented by a cyclic algebra. For instance, if indα =
2, then the answer is always positive, since, as is well-known, in this case α is
represented by a quaternion algebra. If charF 6= 2, expα = 2, indα = 4, and√
−1 ∈ F , then α = (a, b) + (c, d) is represented by a cyclic algebra of degree 4 if

and only if the Pfister form 〈〈a, b, c, d〉〉 is hyperbolic, or, in other words, {a, b, c, d} =
0 ∈ K4(F )/2K4(F ) ([RST], Th.3). However, the question of representation of α
by a cyclic algebra of higher degree was not investigated in [RST]. In the present
paper we give necessary conditions for an element α ∈ Br(F ) of arbitrary prime
exponent p to be cyclic, provided all p-primary roots of unity are contained in F .

A few words about the notation. If n is a positive integer, a, b ∈ F ∗, charF 6 |n,
and ξn is a fixed primitive root of unity lying in F , then by (a, b)n we denote the
symbol algebra of degree n with the generators i and j, and the relations in = a,
jn = b, and ij = ξnji. (If n = 2, then we write just (a, b) instead of (a, b)2). Slightly
abusing notation, by the same symbol we also denote the corresponding element in
the Brauer group. If n = km and ξn ∈ F , then k(a, b)n = (a, b)m ∈ Br(F ), where
the roots of unity ξn and ξm are related by the equality ξkn = ξm.

Given m ≥ 0, by Km(F ) we denote the mth Milnor K-group of the field F . Let
n be a fixed positive integer and −1 ∈ F ∗n. By γk : K2(F )/n → K2k(F )/n we
denote the divided power operation of degree k on K2(F )/n well defined by the
following rule:

γk(
∑

i

αi) =
∑

i1<i2<···<ik

αi1αi2 . . . αik ,
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where all αj are symbols ([K], [Vi]). Obviously, the divided power operations
commute with field extension homomorphisms.

Given n ≥ 2, by nBr(F ) we denote the n-torsion of Br(F ). If ξn ∈ F , then
the norm residue map K2(F )/n → nBr(F ), taking {a, b} to (a, b)n is an isomor-
phism([MS], Th. 11.5), which allows us to define in the obvious way the divided
power operations γi : nBr(F ) → K2i(F )/n (provided that −1 ∈ F ∗n). These oper-
ations depend on the choice of ξn, and change of ξn multiplies γi by mi, where m
is a positive integer coprime to n.

We outline briefly the main results from Milnor’s K-theory used in the paper.
All of them except the norm residue isomorphism theorem (see below) can be found
in [GS], Ch.7. One of the main tools is the exact sequence

0 → Km(F )/n
res−−→ Km(F (t))/n

⊕∂f−−→
∐

f

Km−1(Ff )/n → 0, (∗)

where f runs over all monic irreducible polynomials over F , and Ff = F [t]/(f). The
residue homomorphism ∂f here is well defined by the following rule: if vf (gi) =
0 for all 2 ≤ i ≤ m, then ∂f{g1, g2, . . . gm} = vf (g1){g2, . . . , gm}, where vf is
the valuation of F (t) associated with f , and gi is the image of gi in Ff . This

sequence splits by ”the leading coefficient map” Km(F (t))/n
l−→ Km(F )/n, where

l({f1, . . . , fm}) = {l(f1), . . . , l(fm)}, fi ∈ F [t] and l(fi) is the leading coefficient of
fi. In particular, the sequence

0 → nBr(F )
res−−→ nBrF (t)

⊕∂f−−→
∐

f

Ff
∗/Ff

∗n → 1,

is split exact, provided ξn ∈ F and charF 6 |n.
To make some computations in the second part of the paper shorter we apply

the Weyl reciprocity law for Km(F (t))/2, namely the exact sequence

0 → km(F )
res−−→ km(F (t))

⊕∂f−−→ ⊕km−1(Ff )
⊕NFf/F

−−−−−→ km−1(F ) → 0,

where km = Km/2, f runs over all monic irreducible polynomials over F together
with the infinity point, and NFf/F are norm maps. Also we need the projection
formula NL/F (resL/F α ·β) = α ·NL/F (β) for a finite extension L/F , α ∈ K∗(F )/p,
β ∈ K∗(L)/p. In particular, if L/F is a quadratic extension, and α ∈ K∗(F ), then
setting β = 1 ∈ K0(L)/2, we get NL/F (resL/F α) = 0.

The only ”nonelementary” and indeed, very deep result applied in the paper is
the exact sequence

K∗(F )/p
mult.by{a}−−−−−−−→ K∗+1(F )/p

res−−→ K∗+1(F ( p
√
a))/p,

for a cyclic extension F ( p
√
a)/F provided µp ∈ F ∗. Exactness of this sequence can

be inferred from the norm residue isomorphism K∗(F )/p ≃ H∗(F, µp), proven by
Rost and Voevodsky, ([V], [W]).
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1. Cyclic algebras of prime exponent

The first part of the paper deals with cyclic algebras of prime exponent. We
show that all divided power operations are trivial on them, provided the ground
field contains all p-primary roots of unity. More precisely we have the following

Theorem 1.1. Let p be a prime, F a field, charF 6= p, m positive integer, ξpm ∈ F ,
α ∈ pBr(F ). Suppose a ∈ F ∗ is such that F ( pm

√
a) is a splitting field for α, i.e.

αF ( pm
√
a) = 0. Then γi(α) = 0 for any i ≥ 2.

Proof. We will induct on m, the case m = 1 being trivial, since α corresponds
then to a symbol in K2(F )/p. By the hypothesis α = (a, b)pm for some b ∈ F ∗

([P], §§ 13.3, 15.1 ). Since expα = p, we get (a, b)pm−1 = 0, which means that

b = N
F ( pm−1√

a)/F
(c) for some c ∈ F ( pm−1

√
a) ([P], § 15.1). Consider first the

generic case, where x0, . . . xpm−1−1, a are indeterminates over a prime field k, F =

k(x0, . . . , xpm−1−1, a) and b = N
F ( pm−1√

a)/F
(
pm−1−1∑

j=0

xj
pm−1√

aj) ∈ k[x0, . . . , xpm−1−1, a]

is the norm polynomial of the generic element of F ( pm−1
√
a). SetK = k(x0, . . . , xpm−1−1),

so that F = K(a). The commutative diagram

pBrK(a)
∐

∂f−−−−→
∐
f

Kf
∗/Kf

∗p

id

y pm−1

y

pmBrK(a)
∐

∂f−−−−→
∐
f

Kf
∗/Kf

∗pm

shows that α has nonzero residues at the same polynomials independently of whether
it is considered as an element of pBrK(a) or of pmBrK(a). Hence, α ∈ pBrK(a)
can have nonzeros residues only at the monic polynomials a and b′ = l(b)−1b, where
l(b) is the leading coefficient of b. Moreover, the similar argument shows that the
image of α under ”the leading coefficient” map l : pBrK(a) → p BrK is zero.

In view of the exact sequence (∗) the assertion that γi(α) = 0 is equivalent to
that ∂f (γi(α)) = 0 for any monic polynomial f ∈ K[a], and l(γi(a)) = 0. This is
just what we are going to prove.

Lemma 1.2. Let i ≥ 2. Then
1) ∂f (γi(α)) = 0 for any monic irreducible polynomial f ∈ K[a] distinct from a

and b′.
2) l(γi(α)) = 0.

Proof. 1) The element α ∈ pBr(K(a)) can be written as α = (f, g)p +
∑
j
(fj , gj)p

where g, fj, gj ∈ K[a] are polynomials not divisible by f . Since ∂f (α) = 0, we have
g ∈ Ff

∗p, which makes the assertion obvious.
2) This follows from the facts that l(a) = 1 and the commutative diagram

K2(K(a))/p
l−−−−→ K2(K)/p

γi

y γi

y

K2i(K(a))/p
l−−−−→ K2i(K)/p
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The lemma is proved. �

It remains to show that ∂a(γi(α)) = 0 and ∂b′(γi(α)) = 0. To do this represent α
as α = (a, x)p+α1, where x = ∂a(α) ∈ K, and ∂f (α1) = 0 for any monic polynomial
f 6= b′. Obviously, α1F ( pm

√
a) = αF ( pm

√
a) = 0, hence γi−1(α1)F ( pm

√
a) = 0. Since by

the projection formula

{a}γi−1(α1) = NF ( pm
√
a)/F (

pm
√
a)γi−1(α1)F ( pm

√
a) = NF ( pm

√
a)/F (0) = 0,

we have
γi(α) = {a, x}γi−1(α1) + γi(α1) = γi(α1).

Since ∂a(α1) = 0, it follows that ∂a(γi(α)) = ∂a(γi(α1)) = 0. Furthermore, by the
induction hypothesis applied to the element αF ( p

√
a), we have

γi(α)F ( p
√
a) = γi(αF ( p

√
a)) = 0.

By the result of Voevodsky mentioned in the introduction ([V], [W]), we conclude
that γi(α) = {a}β for some β ∈ K2i−1(F )/p.

Therefore,
∂b′(γi(α)) = ∂b′({a}β) = {a}∂b′(β) = 0,

since a ∈ Kb′
∗p in view of the equality (a, b)p = 0.

Thus, we have proved the theorem in the generic case. In the general case con-

sider any element α̃ ∈ pBr(F ). We have α̃ = (ã, b̃)pm , where b̃ = N
F (

pm−1√
ã)/F

(
pm−1−1∑

j=0

x̃j
pm−1√

ãj),

and ã, x̃j ∈ F . Interpreting the groups p Br and pmBr as K2/p and K2/p
m respec-

tively, we obtain the following commutative diagrams

p Br(k(x0, . . . , xpm−1−1, a))
sp−−−−→ pBr(F )

id

y id

y

pmBr(k(x0, . . . , xpm−1−1, a))
spm−−−−→ pmBr(F )

and

pBr(k(x0, . . . , xpm−1−1, a))
sp−−−−→ p Br(F )

γi

y γi

y

K2i(k(x0, . . . , xpm−1−1, a))/p
sp−−−−→ K2i(F )/p

where sp and spm are specialization maps taking xj to x̃j and a to ã. Looking at
the first diagram we see that α̃ = sp(α), where α is the element considered in the
generic case. Then the second diagram yields

γi(α̃) = γi(sp(α)) = sp(γi(α)) = sp(0) = 0.

This finishes the proof of Theorem 1.1. �

Remark. We do not know how to avoid using the higher norm residue isomor-
phism to obtain equality γi(α) = {a}β, which is essential in the proof of Theorem
1.1. Notice also that this proof can not be generalized straightforwardly to the case
of an arbitrary p-primary exponent.

We will call an element α ∈ Br(F ) cyclic if αL = 0 for some cyclic field extension
L/F .
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Corollary 1.3. Let F be a field, p a prime, charF 6= p. Suppose all p-primary
roots of unity are contained in F , and α ∈ p BrF is cyclic. Then γi(α) = 0 for any
i ≥ 2.

Proof. By the hypothesis αL = 0 for some cyclic field extension L/F . Then αK = 0
for some intermediate field K between F and L such that [K : F ] = pm and [L : K]
is not divisible by p. Then K = F ( pm

√
a) for some a ∈ F ∗ and the result follows

from Theorem 1.1. �

Corollary 1.4. Let charF 6= 2, D a biquaternion division algebra over F , m a
positive integer, ξ2m ∈ F , a ∈ F ∗. Suppose DF ( 2

m√
a) = 0 ∈ Br(F ). Then D is a

cyclic algebra.

Proof. By Theorem 1.1 we have γ2(D) = 0, which, on the other hand, is equivalent
to the assertion that the algebra D is cyclic ([RST], Th.3). �

The statement converse to Theorem 1.1 is not true, as the following counterex-
ample shows.

Proposition 1.5. Let p be a prime, k a field, containing all p-primary roots of
unity, char k 6= p. Suppose that a, b, c ∈ k∗ are such that [k( p

√
a,

p
√
b, p
√
c) : k] = p3.

Let further F = k((x))((y))((z)) be the iterated Laurent series field over k. Then
the following holds:

1) The element D = (a, x)p + (b, y)p + (c, z)p is not cyclic.
2) If, in addition, (a, b)p = (a, c)p = (b, c)p = 0 (this condition holds, in par-

ticular, for any field k with cdp k = 1; for instance, one can put k = C(t), a = t,
b = t+ 1, c = t+ 2), then γi(D) = 0 for any i ≥ 2.

Proof. 1) Assume the converse. The p-primary component of any cyclic element
is cyclic as well. Furthermore, for any field L of characteristic not p there is a
natural isomorphism of groups L∗/L∗p⊕Z/pZ ≃ L((t))

∗
/L((t))

∗p
given by the rule

(l, i) → lti (0 ≤ i ≤ p− 1). Therefore, we may assume that

D = (ap
m−1

, x)pm + (bp
m−1

, y)pm + (cp
m−1

, z)pm = (αxi1yj1zk1 , βxi2yj2zk2)pm

for some α, β ∈ k∗. Taking the residue at z we get

(−1)
k1k2(αxi1yj1)

k2

(βxi2yj2)
−k1

= cp
m−1

fpm

for some f ∈ k((x))((y)). It follows that (−1)
k1k2αk2β−k1 = cp

m−1

upm

for some
u ∈ k∗, which gives us, in particular, that p

√
c ∈ k( pm

√
α, pm

√
β). Moreover,

(ap
m−1

, x)pm + (bp
m−1

, y)pm = (αxi1yj1 , βxi2yj2)pm . Applying the above argument

again, we subsequently get p
√
b ∈ k( pm

√
α, pm

√
β) and p

√
a ∈ k( pm

√
α, pm

√
β), i.e. we

obtain a field embedding k( p
√
a, p

√
b, p
√
c) ⊂ k( pm

√
α, pm

√
β). This is a contradic-

tion, since the Galois group of the extension k( pm
√
α, pm

√
β)/k is generated by two

elements, but the Galois group of the extension k( p
√
a, p

√
b, p
√
c)/k is not.

2) This part of the proposition is obvious in view of the equalities

γ2(D) = {a, b, x, y}+ {a, c, x, z}+ {b, c, y, z} ∈ K4(F )/p
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and γ3(D) = {a, b, c, x, y, z} ∈ K6(F )/p. �

A natural question arises whether it is possible to generalize Theorem 1.1 to
arbitrary primary exponent and corresponding divided power operations. We do
not know the answer, but the following statement shows that at least this is the
case for cyclic algebras of degree 2n and exponent 2n−1.

Proposition 1.6. Suppose an elementD ∈ Br(F ) is represented by a cyclic algebra
of degree 2n and exponent 2n−1, and ξ2n ∈ F . Then γi(D) = 0 for any i ≥ 2, where
γi : K2(F )/2n−1 → K2i(F )/2n−1 are the corresponding divided power operations.

Proof. By the hypothesis D = (a, x2 − ay2)2n . We have

D = (a, x2 − ay2)2n = (a, x2)2n + (a, 1− ax−2y2)2n = (a, x2)2n + (x2y−2, 1− ax−2y2)2n+

(ax−2y2, 1− ax−2y2)2n = (a, x)2n−1 + (xy−1, 1− ax−2y2)2n−1 .

Therefore,

γ2(D) = {a, x, xy−1, 1− ax−2y2} = {x2y−2, x, xy−1, 1− ax−2y2}+
{ax−2y2, x, xy−1, 1− ax−2y2} = {x2y−2, x, xy−1, 1− ax−2y2} =

2{xy−1, x, xy−1, 1− ax−2y2} = 2{−1, x, xy−1, 1− ax−2y2} = 0 ∈ K4(F )/2n−1

since −1 ∈ F ∗2n−1

, and, moreover, γi(D) = 0 if i ≥ 3, since D = (a, x)2n−1 +
(xy−1, 1− ax−2y2)2n−1 . The proposition is proved. �

2. Division algebras of index 8 and exponent 2

In the second part of the paper we apply the division power operations γ2 and
γ3 to studying the structure of a central division algebra D of exponent 2 and index
8 over F . Theorem 1.1 shows that the condition γ2(D) = γ3(D) = 0 is necessary
for existense of a specific (cyclic) maximal subfield of D. It turns out that the
condition γ3(D) = 0 is necessary for existence of a specific subfield of D of degree
4. The key point is a certain relationship between γ2(D) and γ3(D).

In the sequel we denote K∗/2 by k∗, and all symbols are supposed to be in k∗.
The isomorphism k2 ≃2 Br allows us to multiply elements from 2 Br by elements
from k∗. We start with the following

Theorem 2.1. Let F be a field, charF 6= 2,
√
−1 ∈ F ∗. Suppose D ∈2 Br(F ),

indD = 8, and a ∈ F ∗ is such that indDF (
√
a) = 4. Then

1) {a}γ2(D) ∈ k5(F ) is a symbol.
2) There exists s ∈ F ∗ such that γ3(D) = {a, s}γ2(D) ∈ k6(F ). In particular,

γ3(D) is a symbol.

Proof. 1) It follows from the proof of Theorem 6.2 in [R] that there exist b, c ∈ F ∗

such that DF (
√
a,
√
b,
√
c) = 0. Hence

DF (
√
a) = (b, ω1) + (c, ω2),
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where ω1, ω2 ∈ F (
√
a) ([ELW]), and, consequently, since NF (

√
a)/FDF (

√
a) = 0, we

get (b, NF (
√
a)/Fω1) = (c, NF (

√
a)/Fω2). Therefore,

NF (
√
a)/F {b, c, ω1} = {b, c, NF (

√
a)/Fω1} = {c, c, NF (

√
a)/Fω2} = 0.

By the transfer principle ([EL], 2.2) and the isomorphism k3 ≃ I3/I4 it can be
easily seen that {b, c, ω1} = {b, c, r}F (

√
a) for some r ∈ F ∗. Similarly, {b, c, r, ω2} =

{b, c, r, t}F (
√
a) for some t ∈ F ∗. Hence

γ2(D)F (
√
a) = {b, c, ω1, ω2}F (

√
a) = {b, c, r, t}F (

√
a).

It follows that γ2(D) = {b, c, r, t}+{a}θ for some θ ∈ k3(F ). Therefore, {a}γ2(D) =
{a, b, c, r, t}, which proves part 1).

2) The proof of the second part of the theorem was proposed by the referee.
Let B be the centralizer of F (

√
a) in D. The trace form qB(x) = Trd(x2) is a

4-fold Pfister form over F (
√
a) corresponding to γ2(B) = γ2(DF (

√
a)) under the

isomorphism k4(F (
√
a)) ≃ I4(F (

√
a))/I5(F (

√
a)). As was shown in the first part

of Theorem 2.1, we have γ2(DF (
√
a)) = {b, c, r, t} for some b, c, r, t ∈ F ∗. Hence

TF (
√
a)/F (qB) = 〈2〉〈〈a, b, c, r, t〉〉, where

TF (
√
a)/F : W (F (

√
a)) → W (F )

is the transfer, corresponding to the trace for the extension F (
√
a)/F . It was

shown ([BM], proof of Th. 2.10) that the trace form qD(x) = Trd(x2) contains
TF (

√
a)/F (qB) as a subform, and that qD is a multiple of a 6-fold Pfister form. It

follows that qD = 〈2〉〈〈a, b, c, r, t, s〉〉 for some s ∈ F ∗. By [BM], Th. 2.10 the form qD
corresponds to γ3(D) under the isomorphism k6(F ) ≃ I6(F )/I7(F ), hence γ3(D) =
{a, b, c, r, t, s}. Since by the first part of Theorem 2.1 {a}γ2(D) = {a, b, c, r, t}, we
conclude that γ3(D) = {a, s}γ2(D), proving the second part of Theorem 2.1.

Remarks. 1) The assertion that γ3(D) is a symbol was also proven in [BM]
(Th. 2.10) by quite a different method.

2) If the division algebra corresponding to DF (
√
a) is defined over F , then The-

orem 2.1 becomes trivial. Indeed, in this case D ≃ (a, s) ⊗F (b, r) ⊗F (c, r) for
some b, c, r, s, t ∈ F ∗, hence γ3(D) = {a, b, c, s, r, t} and {a}γ2(D) = {a, b, c, r, t}.
However, in general an algebra of exponent 2 and index 8 is not a tensor product
of three quaternion algebras ([ART], [Ka], [S1]).

3) It is easy to see that modulo Lemma 2.4 Theorem 2.1 is equivalent to the
equation {a, c, s}D = γ2(D){c}, which looks similar to the equation in Lemma 2.3.
However, we do not know any direct proof of it.

In the following corollary of Theorem 2.1 we give a necessary condition for the
existence of subfields ofD of certain type (here we consider D as a division algebra).

Corollary 2.7. Let F be a field, charF 6= 2,
√
−1 ∈ F ∗, D ∈2 BrF , indD = 8.

Then
1) Suppose that there exist α, β, a ∈ F such that indD

F (
√

(α+β
√
a)2−√

a)
= 2.

(In other words, D contains the field F (

√
(α+ β

√
a)

2 −√
a). Then γ3(D) = 0.
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2) Suppose that L/F is a field extension of degree 8, decomposing into a tower
of two cyclic extensions, such that DL = 0. Then γ3(D) = 0.

Proof. 1) Obviously, indDF (
√
a) = 4 and γ2(D)

F (
√

(α+β
√
a)2−√

a)
= 0. Hence

γ2(D)F (
√
a) = {(α+ β

√
a)

2 − √
a, ω1, ω2, ω3} for some ω1, ω2, ω3 ∈ F (

√
a). This

implies

aγ2(D) = NF (
√
a)/F {

√
a, (α+ β

√
a)

2 −
√
a, ω1, ω2, ω3} = NF (

√
a)/F (0) = 0,

since {√a, (α+ β
√
a)

2 −√
a}=0. By Theorem 2.1 we are done.

2) If K = F ( 4
√
a) and L/K is a quadratic extension, we are done by part 1),

setting α = β = 0. If a ∈ F ∗ and L/F (
√
a) is a cyclic extension of degree 4,

then ind(D)F (
√
a) = 4. Moreover, by [RST] or Theorem 1.1 we have γ2(D)F (

√
a) =

γ2(DF (
√
a)) = 0. Hence

{a}γ2(D) = NF (
√
a)({

√
a}γ2(D)F (

√
a)) = NF (

√
a)(0) = 0.

Again the proof is finished by Theorem 2.1. �

Corollary 2.8. Under the previous notation suppose that D is a crossed product
for a group G different from (Z/2Z)3. Then γ3(D) = 0.

Proof. We will give two proofs of this statement. The first one is based on the
obvious observation that G contains an element, say σ, of order 4. Let L/F be a
subfield of D with the Galois group G and K = G<σ>. Then the extensions K/F
and L/K are cyclic, so we are done by Corollary 2.7.

The second proof was proposed by the referee. As was mentioned in the proof of
Theorem 2.1, the quadratic form qD(x) = TrdD(x2) is similar to the 6-fold Pfister
form, corresponding to γ3(D) under the isomorphism k6(F ) ≃ I6(F )/I7(F ) ([BM],
Th. 2.10). Hence it suffices to prove that qD is isotropic. To do this choose as
in the first proof an element σ ∈ G of order 4, and l ∈ L∗ such that σ2(l) = −l.
There exists xσ ∈ D∗ such that xσl

′ = σ(l′)xσ for any l′ ∈ L. It follows that
l−1x2

σl = −x2
σ, hence

qD(xσ) = Trd(x2
σ) = Trd(l−1x2

σl) = Trd(−x2
σ) = −qD(xσ),

which implies qD(xσ) = 0. �

Finally we pose a few related problems, which seem to be interesting:

Open questions.

1) Can one extend Theorem 1 to cyclic elements of arbitrary exponent ?

2) Suppose expα = p, indα = pn. Is it true that γi(α) = 0 if i > n ? (Even in
the case p = 2 the answer is unknown).

3) Given an odd prime number p, are the conditions ξp ∈ F and {a, b, c, d} =
0 ∈ K4(F )/p sufficient for the algebra (a, b)p ⊗F (c, d)p to be cyclic ?

4) Suppose that D is a division algebra, whose image in the Brauer group is
cyclic. Is D a cyclic algebra ? (In view of Corollary 1.4 the answer is positive for
biquaternion algebras if all 2-primary roots of unity are contained in F ).
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5) Suppose that expD = 2, indD = 8, γ3(D) = 0. Is {a}γ2(D) = 0 for some
a ∈ F ∗ such that indDF (

√
a) = 4 ?

Acknowledgement. I am grateful to Professor A.S. Merkurjev for very useful
discussion concerning the questions considered in this paper.
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