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Abstract

Given a place from one field to another, the isotropy behaviour of Azumaya algebras with

involution over the valuation ring corresponding to the place is studied. In particular, it is shown

that isotropic right ideals specialise in an appropriate way. This provides a natural analogue to

the existing specialisation theory for symmetric bilinear spaces. We devote particular attention

to the case of a Henselian valuation ring in which 2 is invertible, where the specialisation results

can be strenghened. In turn, this allows us to show that isomorphism of Azumaya algebras with

involution over the Henselian valuation ring can be detected rationally. We use this to define a

notion of good reduction with respect to places for algebras with involution.

Keywords: Azumaya algebras with involution, central simple algebras with involution, Brauer

group, (skew–)hermitian spaces, bilinear spaces, (Henselian) valuation rings, value functions.

1. Introduction

In the 1970’s, M. Knebusch developed a specialisation theory for quadratic and symmetric

bilinear forms over fields with respect to places (cf. [13]). A comprehensive treatment of this

topic, and its applications in the generic splitting theory of quadratic forms, can be found in

[14]. The present article strives for an analogous treatment of specialisation for involutions on

central simple algebras over fields, which are closely related to quadratic and symmetric bilinear

forms (cf. [16]). We will assume basic knowledge of valuation theory over fields, bilinear form

theory, and the theory of central simple algebras and their involutions over fields. For valuation

theory, we refer to [9], for the other topics to [25] and [16].

In the rest of the introduction, λ denotes a place from a field F to a field L, and O its associated

valuation ring. A symmetric bilinear space (V,b) over F (by which we mean that (V,b) is non–

singular) is said to have good reduction with respect to λ if it is obtained by scalar extension

from a symmetric bilinear space over O. The latter is called a λ−unimodular representation

for (V,b). One can then associate a “residue” symmetric bilinear space over L to (V,b), by

extending scalars of a λ−unimodular representation for (V,b) from O to L. The Witt class of
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this bilinear space over L is independent of the choice of the λ−unimodular representation, by

[14, Theorem 1.15]. If the characteristic of L is different from 2, this implies that its isometry

class is independent of this choice. In that case, the residue bilinear space is denoted by λ∗(V,b).

1.1 Theorem. Suppose that char(L) ≠ 2. Let (V,b) be a symmetric bilinear space over F with

good reduction with respect to λ. If (V,b) is isotropic, then λ∗(V,b) is isotropic as well.

Proof. In [14, Theorem 1.26], it is shown that if an orthogonal sum of symmetric bilinear spaces

over F and one of its summands have good reduction with respect to λ, then the remaining

summand also has good reduction with respect to λ. Using this combined with the fact that

hyperbolic planes have good reduction with respect to λ yields the statement. �

It is well known that one can associate to a symmetric bilinear space over F its adjoint algebra

with involution. If the space has good reduction with respect to λ, then its adjoint algebra with

involution is obtained by scalar extension from an Azumaya algebra with involution with center

O. The isotropy behaviour of the bilinear space under λ then carries over to the adjoint algebra

with involution. In this article, we consider, not only in the split case, algebras with involution

over F that are obtained by scalar extension from Azumaya algebras with involution over O,

and we investigate their isotropy behaviour under λ.

Let (A, σ) be an O−algebra with involution, i.e. A is an Azumaya algebra with center O or a

separable quadratic O−algebra, and σ is an O−linear involution of the first or second kind on

A. In Theorem 5.7, we show that an isotropic right ideal I of (A, σ)F of a certain dimension

yields an isotropic right ideal of (A, σ)L of the same dimension. In particular, we have that

isotropy (resp. metabolicity) of (A, σ)F yields isotropy (resp. metabolicity) of (A, σ)L. The

statement on ideals can be rephrased in terms of the index of an algebra with involution. In this

formulation, Theorem 1.1 can be obtained as a corollary of Theorem 5.7. The main ingredient

of the proof of Theorem 5.7 is to show that for a right ideal I ofAF , we have that I∩A is free as

a Z(A)−module. This is done in a more general module theoretical setting in section 4, using

the theory of value functions on F−vector spaces (developed in [23, 26]).

Suppose that O is Henselian and that 2 is invertible in O. Then the result on the index can

be strenghtened. Namely, in Theorem 6.7, we show that for an O−algebra with involution,

isotropy (resp. hyperbolicity) can be lifted from the residue field of O back to F. This is an

analogue of a result for symmetric bilinear spaces overO. An important ingredient of the proof

of Theorem 6.7 is the existence of a special kind of value function, shown in Proposition 4.7.

In the last section, we use the lifting result from Theorem 6.7 in order to show that O−algebras

with involution that become isomorphic over F are already isomorphic over O. This allows us

to define a notion of good reduction with respect to places for algebras with involution.

In order to prove the aforementioned lifting result for isotropy and hyperbolicity, and the iso-

morphism result, we need to jump back and forth between Azumaya algebras with involution

and (skew–)hermitian spaces over Azumaya algebras with involution without zero divisors. The

preliminary results on Azumaya algebras with involution over valuation rings and the Brauer

group of a valuation ring, are given in section 2. (Skew–)hermitian spaces are treated in section

3. We expect that many of the results in those sections will look very natural to people who

are familiar with these concepts, but since we could not find proofs of the statements in the

specific setting of valuation rings, and to make the article more self–contained, we give explicit

arguments.

2



We set some general notation for the rest of this article. A ring will always mean an associative

ring with unit. Let C be a ring. We denote the set of invertible elements in C by C×. Let R

be a commutative ring. Let M be a finitely generated, free R−module. Every R−basis for M

has the same cardinality (see e.g. [17, (III.4.2)]). We will use the term dimension, denoted

by dimR(M), for this cardinality. (In the literature, one also uses the term rank). Let S be

a commutative R−algebra. If (ei)i∈I is an R−basis for M, then (ei ⊗ 1)i∈I is an S−basis for

MS = M ⊗R S by [17, (XVI.2.7)]. We will denote ei ⊗ 1 again by ei.

Let A be an R−algebra. Define a new multiplication on A by a ∗ b = ba, for all a,b ∈ A. The

R−module A with the new operation ∗ as multiplication is also an R−algebra, called the opposite

algebra of A, for which we use the standard notation Aop.

2. Azumaya algebras with involution over valuation rings and the Brauer group

We recall some basics on Azumaya algebras with involution over rings, with an emphasis on

valuation rings. The general theory of Azumaya algebras and their involutions can be found in

[15].

We fix a domain R, and denote its fraction field by F. We further fix a ring S , which is either

equal to R or to R[z], where z is an element that is not in R, and such that z2 = az + b, with

a,b ∈ R such that a2 + 4b ∈ R×. In the latter case, we set f (x) = x2 − ax − b ∈ R[x], and if S

is a domain, we denote its fraction field by K. If S = R[z], then S is in particular a separable

quadratic R−algebra, in the sense of [15, (I.1.3.6), (I.7.3.3)]. Furthermore, in that case, there is

a unique nontrivial R−automorphism ι of R[z], namely the one induced by mapping z to a − z.

If R is a local ring, then all separable quadratic R−algebras are of the form R[z] as above.

An associative S−algebra A is called an Azumaya algebra over S if A is finitely generated as

an S−module and for every maximal ideal m of S , we have that A /mA is a central simple

S /m−algebra. An Azumaya algebra over S has center S by [15, (III.5.1.1)], and is projective as

an S−module by [15, (III.5.1)]. If S is a field, then an Azumaya algebra over S is just a central

simple S−algebra.

An involution on a ring is an anti–autmorphism of order at most 2. Let A be an Azumaya

algebra over S and σ an R−linear involution on A such that, if S ≠ R, then σ restricts to ι on

S . If S = R, then σ is called an involution of the first kind; otherwise, it is called an involution

of the second kind. We call the pair (A, σ) an R−algebra with involution. If S is not a domain,

then we call (A, σ) degenerate.

Let R′ be a domain that is an R−algebra. We write (A, σ)R′ = (AR′ , σR′) = (A⊗R R′, σ⊗R idR′).

2.1 Proposition. Let (A, σ) be an R−algebra with involution and let R′ be a domain that is also

an R−algebra. Then (A, σ)R′ is an R′−algebra with involution.

Proof. We have thatAR′ ≅ A⊗S (S⊗RR′) is an Azumaya algebra over S⊗RR′ by [15, (III.5.1.9)].

The statement is then clear if σ is of the first kind. Suppose that σ is of the second kind. Then

S ⊗R R′ ≅ R′[z] and a2 + 4b ∈ R× ⊂ R′×. Furthermore, σR′ is an R′−linear involution on AR′ ,

which restricts to the nontrivial R′−automorphism of S ⊗R R′. �

Let (A, σ) and (A′, σ′) be R−algebras with involution. By an isomorphism of R−algebras with

involution (A, σ) → (A′, σ′), we mean an isomorphism ϕ ∶ A → A′ of R−algebras such that
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ϕ ○ σ = σ′ ○ ϕ. We call (A, σ) and (A′, σ′) R−isomorphic if there exists an isomorphism of

R−algebras with involution (A σ) → (A′, σ′), and denote this by (A, σ) ≅R (A′, σ′). Suppose

moreover that there exist R−isomorphisms f ∶ S → Z(A) and f ′ ∶ S → Z(A′), and an isomor-

phism of R−algebras with involution (A, σ) → (A′, σ′) that is S−linear with respect to f and

f ′. Then we say that (A, σ) and (A′, σ′) are S−isomorphic and we write (A, σ) ≅S (A′, σ′).

Let B be an Azumaya algebra over R. The map swB ∶ B ×Bop → B×Bop ∶ (a,b)↦ (b,a) defines

an involution of the second kind on B ×Bop, called the switch involution.

2.2 Proposition. Let A be an Azumaya algebra over R×R. Then there exist Azumaya algebras

A1 and A2 over R such that A ≅ A1 ×A2. Furthermore, if σ is an involution of the second kind

on A, then A2 ≅ A
op

1 and (A, σ) ≅R (A1 ×A
op

1 , swA1
).

Proof. LetA1 = A(1,0) andA2 = A(0,1). These are R−algebras and it is clear thatA ≅ A1×A2.

For each maximal ideal m of R, we have that A/A(m × R) is a central simple algebra over

(R × R)/(m × R). Using the natural isomorphisms, this gives A1/mA1 the structure of a central

simple algebra over R/m. Hence, A1 is an Azumaya algebra over R. Similarly, by considering

A/A(R ×m), we get that A2 is an Azumaya algebra over R.

Let σ be an involution of the second kind on A. Since σ restricts to the switch involution on

R × R, the map g ∶ Aop

1 → A2 defined by σ(x,0) = (0,g(x)) is an R−isomorphism. Under

the induced R−isomorphism A1 × A2 ≅ A1 × A
op

1 , the involution σ corresponds to the switch

involution swA1
. �

2.3 Proposition. Suppose that R is integrally closed in F. Then S is the integral closure of R

in S ⊗R F. Furthermore, S is a domain if and only if S ⊗R F is a field, and the latter is then the

fraction field of S . If S is not a domain, then S ≅ R × R.

Proof. If S is not a domain, then S ≅ R × R by [15, (III.4.4.3)], and R× R is the integral closure

of R in S ⊗R F ≅ F × F. Suppose that S is a domain. Since R is integrally closed in F, we have

that f (x) is irreducible in R[x] if and only if it is irreducible in F[x]. Since f (x) is monic, this

implies that, if f (x) is irreducible in R[x], then it generates a prime ideal in R[x]. If this is the

case, then S ≅ R[x]/( f (x)) is a domain, and S ⊗R F is a field. Furthermore, [10, (6.1.2)] yields

that S is the integral closure of R in S ⊗R F, since the discriminant of f (x) is in R×. �

We recall the following terminology. Two valuation rings of a field are called incomparable if

none of the two is contained in the other. Let F′/F be a field extension. We say that a valuation

ring O′ of F′ with maximal idealM′ is lying over R if R ⊂ O′ andM′ ∩R is a maximal ideal of

R. If R is a valuation ring of F, then we also say that O′ is an extension of R to F′.

2.4 Corollary. Suppose that R is integrally closed in F. If S is a domain, then it is the intersec-

tion of the valuation rings of K lying over R.

Proof. This follows immediately from Proposition 2.3 combined with [9, (3.1.3)]. �

In the rest of this section, we work with Azumaya algebras with involution over valuation rings.

2.5 Proposition. Assume that R is a valuation ring. Denote its maximal ideal by m and its

residue field by κ. Suppose that S is a domain. Then one of the following cases occurs:

4



(a) There is a unique valuation ring of K extending R. Then S is equal to this extension.

Furthermore, S has the same value group as R, has maximal idealmS and its residue field

is a separable quadratic extension of κ.

(b) There are two valuation rings of K extending R. These both have the same value group as

R and residue field κ. Furthermore, S is equal to their intersection, and S /mS ≅ κ × κ.

Proof. By Corollary 2.4, S is the intersection of the valuation rings of K extending R. By [9,

(3.2.9)], since K/F is a quadratic extension, S is either a valuation ring or the intersection of

two (incomparable) valuation rings. Let f̄ (x) = x2 − āx − b̄ ∈ κ[x]. Note that the discriminant

of f̄ (x) is nonzero, since a2 + 4b ∈ R×, and hence, f̄ (x) is separable. It is easy to see that S

is a valuation ring if and only if f̄ (x) is irreducible. If this is the case, then mS is the unique

maximal ideal of S . Then the residue field of S is a separable quadratic extension of κ, and

hence, by [9, (3.2.3)], R and S have the same value group.

Suppose that S is the intersection of two incomparable valuation rings. Both of these valuation

rings have the same value group and residue field as R by [9, (3.3.4)]. We have that S has two

maximal ideals by [9, (3.2.7)]. Now f̄ (x) is reducible over κ, and hence, S /mS ≅ κ × κ, since

f̄ (x) is separable. �

2.6 Proposition. Assume that R is a valuation ring. Let A be an Azumaya algebra over S . The

following hold:

(a) A is free as an R−module. If S is a domain, then A is also free as an S−module.

(b) Every S−automorphism of A is inner.

Proof. SinceA is an Azumaya algebra over S , it is finitely generated, projective as an S−module

by [15, (III.5.1)]. Since S is a finite–dimensional R−module, it follows that A is also finitely

generated, projective as an R−module.

Suppose that S is a domain. Then S has at most two maximal ideals by Proposition 2.5 and [9,

(3.2.7)]. The second part of (a) then follows from the main theorem of [11], which states that

finitely generated, projective modules over a semilocal domain are free. Combining the latter

with [1, (3.6)] then yields (b).

Suppose that S ≅ R × R. By Proposition 2.2, there exist Azumaya algebras A1 and A2 over S

such thatA ≅ A1×A2. Let ϕ ∈ AutS (A). For i = 1,2, one checks that the restriction of ϕ toAi is

an R−automorphism ofAi. By the first part of the proof, it follows that there exist u ∈ A×1 , v ∈ A
×
2

such that ϕ∣A1
= Int(u) and ϕ∣A2

= Int(v). Then ϕ = Int(u, v). �

2.7 Proposition. Assume that R is a valuation ring. Let A be an Azumaya algebra over S and

let σ and σ′ be two R−linear involutions of the same kind on A. Then there exists an element

s ∈ A× such that σ(s) = εs and σ′ = Int(s) ○ σ, where ε ∈ {1,−1} if σ and σ′ are of the first

kind, and ε = 1 if σ and σ′ are of the second kind.

Proof. Since σ′ ○ σ is an S−automorphism of A, Proposition 2.6 (b) yields that there exists

s ∈ A× such that σ′ = Int(s) ○ σ. It follows that idA = σ′2 = Int(sσ(s)−1). This implies that

sσ(s)−1 = λ−1, for some λ ∈ S ×. In other words, σ(s) = λs. It follows that s = σ2(s) = σ(λ)λs.

Since s ∈ A×, we get that σ(λ)λ = 1. If σ and σ′ are of the first kind, this implies that λ2 = 1

and hence, λ = ±1.

Suppose that σ and σ′ are of the second kind. Then σ(λ)λ = ι(λ)λ. It suffices to show a Hilbert
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90 type statement for S , namely that there exists µ ∈ S × such that µ = λι(µ), since this would

yield Int(s) = Int(µs) and σ(µs) = σ(s)ι(µ) = λι(µ)s = µs. If S is not a domain, then it is

clear that such µ exists. So, for the rest of the proof, we assume that S is a domain. Using the

Hilbert 90 theorem for K/F, there exists µ̃ ∈ K such that λι(µ̃) = µ̃. By Proposition 2.5, S is

either a valuation ring of K or the intersection of two valuation rings of K. Suppose first that S

is a valuation ring. Since, by Proposition 2.5, the value groups of S and R are equal, there exists

a ∈ F such that aµ̃ ∈ S ×, and furthermore λι(aµ̃) = aλι(µ̃) = aµ̃. Suppose that S = O1 ∩O2,

with O1 and O2 the valuation rings of K extending R. Then O2 = ι(O1) by [9, (3.2.14)]. By

the previous case, we may assume that µ̃ ∈ O×1 . Then ι(µ̃) ∈ O×2 , and since λ ∈ S × = O×1 ∩O
×
2 , it

follows that µ̃ ∈ O×2 as well. Hence, µ̃ ∈ S × and we are done. �

The concept of the Brauer group of a field has been extended to commutative rings in [1]. Let

T be a commutative ring. A T−module P is called faithful if whenever t ∈ T is such that tP = 0,

then t = 0. Let A and A′ be Azumaya algebras over T . Then A and A′ are called Brauer

equivalent, denoted by A ∼ A′, if there exist finitely generated, faithfully projective T−modules

P and P′ such that A⊗T EndT(P) ≅ A
′⊗T EndT(P′). The set of Brauer equivalence classes of

Azumaya algebras over T forms a group, where the group structure is induced by the tensor

product. This group is called the Brauer group of T , denoted by Br(T). It is well known that

Br(T) is a torsion group. Given an Azumaya algebra A over T , we denote its Brauer class in

Br(T) by [A], and refer to the order of [A] in Br(T) as the exponent of A.

We say that T has the Wedderburn property if the following holds:

Let A be an Azumaya algebra over T . Then there exists an up to isomorphism unique Azumaya

algebra ∆ over T without zero divisors, and a finite–dimensional right ∆−module V such that

A ≅ End∆(V) as T−algebras.

We show below that valuation rings and intersections of two valuation rings have the Wedder-

burn property. In order to do this, we first show that Azumaya algebras with such rings as

centers are so–called left and right Bézout rings, i.e. all finitely generated left or right ideals of

the algebra are principal.

2.8 Proposition. Let ∆ be an Azumaya algebra with center a valuation ring or the intersection

of two valuation rings. Then ∆ is a left and right Bézout ring. Assume that ∆ does not have zero

divisors. Then every finitely generated, torsion–free left or right ∆−module is free.

Proof. We denote Z(∆) by T and its fraction field by F. We first show that ∆ is a left and right

Bézout ring. If T is a valuation ring, then this follows immediately from [18, (5.6)], since ∆ is a

so–called Dubrovin valuation ring of ∆F , by [18, (7.13)]. So, suppose that T is the intersection

of two incomparable valuation rings O1 and O2 of F. For i = 1,2, letMi be the unique maximal

ideal of Oi. ThenM1 =M1 ∩ T andM2 =M2 ∩ T are the maximal ideals of T by [9, (3.2.7)],

and O1 = TM1
and O2 = TM2

by [9, (3.2.6)]. Let ∆1 = ∆⊗T O1 and ∆2 = ∆⊗T O2. Then ∆i is an

Azumaya algebra over Oi by [15, (III.5.1.9)], and therefore integral over Oi. One easily checks

that ∆ = ∆1 ∩ ∆2.

By [18, (7.13)], ∆1 and ∆2 are Dubrovin valuation rings of ∆F . If we show that ∆1 and ∆2 are

pairwise incomparable, i.e. ∆1 ⊊ ∆2 and ∆2 ⊊ ∆1, then it follows from [18, (15.5) and (15.7)]

that ∆ is a left and right Bézout ring, using that ∆i is integral over Oi, and that ∆i = ∆Oi inside

∆F, for i = 1,2. So, suppose for the sake of contradiction that ∆1 ⊂ ∆2. Then O1 ⊂ ∆2. Since
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∆2 is an Azumaya algebra over O2, it is free over O2 by Proposition 2.6 (a), and an O2 −basis

of ∆2 is an F−basis of ∆F. It follows that O2 = Z(∆2) = Z(∆F) ∩ ∆2 = F ∩ ∆2 ⊃ O1, but this

contradicts the fact that O1 and O2 are incomparable. Similarly, ∆2 ⊊ ∆1. Hence, ∆ is a left and

right Bézout ring.

Assume that ∆ does not have zero divisors. The fact that every finitely generated, torsion–free

right ∆−module is free is shown in [6, (2.3.19)]. The statement for left modules follows in an

analogous way. �

We thank M. Ojanguren for providing the main ideas for the proof of the following results.

2.9 Proposition. Let T be a valuation ring and denote its fraction field by F. Let ∆ be an

Azumaya algebra over T without nontrivial idempotents. Then ∆ does not have zero divisors,

and ∆⊗T F is a division algebra.

Proof. We have that D = ∆ ⊗T F is a central simple F−algebra by [15, (III.5.1.9)]. It is clear

that if D is a division algebra, then ∆ does not have zero divisors, and vice versa. In order to

show that D is a division algebra, it suffices to show that D only has trivial idempotents. So,

suppose for the sake of contradiction that D contains an idempotent x ≠ 0,1. Consider the right

ideal xD of D and let I = xD ∩ ∆. This is a right ideal of ∆ different from ∆ itself. If we can

show that ∆/I is projective as a ∆−module, then the exact sequence

0 // I // ∆ // ∆/I // 0

splits, which implies that ∆ ≅ I ⊕ ∆/I. The projection from ∆ to I then yields a nontrivial

idempotent in End∆(I ⊕ ∆/I) ≅ ∆, where the isomorphism ∆ → End∆(∆) is given by left mul-

tiplication. Clearly, ∆/I is finitely generated over ∆, and then also over T , and it is easily seen

that ∆/I is torsion–free over T . Proposition 2.8 yields that ∆/I is free over T and so in particular

projective. It follows from [15, (VII.8.2.6)] that ∆/I is projective as a ∆−module. �

2.10 Proposition. Let F be a field and T a valuation ring of F or the intersection of two valua-

tion rings of F. Then T has the Wedderburn property.

Proof. In [7, Corollary 1], it is shown that any Azumaya algebra over T is isomorphic to a ma-

trix algebra over an up to isomorphism uniquely determined Azumaya algebra over T without

zero divisors. The statement now follows from Proposition 2.9. �

2.11 Proposition. Let F be a field and T a valuation ring of F or the intersection of two valua-

tion rings of F. Then the following hold:

(a) The natural map Br(T)→ Br(F) is injective.

(b) Let A and A′ be Azumaya algebras over T . If AF ≅ A′F, then A ≅ A′.

Proof. We first show (a). Let A be an Azumaya algebra over T such that AF is split, i.e.

there exist a simple right AF−module V such that AF ≅ EndF(V). Note that dimF(V)2 =
dimF(AF) = dimT(A). Let u ∈ V ∖ {0} and consider the right A−module M = uA. Since

V is a simple right AF−module, it follows that MF = V . Since A is finitely generated as a

T−module, M is finitely generated as a T−module as well, and furthermore torsion–free, since
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V is free over T . Proposition 2.8 yields that M is free as a T−module. The T−homomorphism

ϕ ∶ A → EndT(M) mapping a ∈ A to right multiplication by a, induces an F−homomorphism

ϕF ∶ AF → EndF(V), which is a isomorphism. Hence, ϕ is injective and therefore, ϕ(A) ≅ A.

By [1, (3.3)], there is an Azumaya algebra B over T such that EndT(M) ≅ ϕ(A) ⊗T B. Since

dimT(A) = dimT(M)2 = dimT(EndT(M)), it follows that B ≅ T , and hence A ≅ EndT(M).

Let A and A′ be Azumaya algebras over T . By Proposition 2.10, there exist Azumaya algebras

∆ and ∆′ over T without zero divisors, and uniquely determined n,n′ ∈ N such that A ≅ Mn(∆)
and A′ ≅ Mn′(∆′). Suppose that AF ≅ A

′
F. Then [∆F] = [AF] = [A′F] = [∆

′
F] ∈ Br(F). By (a),

it follows that [∆] = [∆′] ∈ Br(T), and hence ∆ ≅ ∆′, by Proposition 2.10. Since AF ≅ A′F, this

implies that n = n′ and hence, we get that A ≅ A′, proving (b). �

2.12 Corollary. Let F be a field and T a valuation ring of F. LetA andA′ be Azumaya algebras

over T × T . If AF×F ≅ A′F×F , then A ≅ A′.

Proof. By Proposition 2.2, there exist Azumaya algebras A1,A2,A′1,A
′
2 over T such that A ≅

A1 × A2 and A′ ≅ A′1 ×A
′
2. Suppose that (A1)F × (A2)F ≅ (A′1)F × (A

′
2)F . Since the simple

components are unique up to isomorphism, we may assume that (A1)F ≅ (A′1)F and (A2)F ≅
(A′2)F . Invoking Proposition 2.11, it follows that A1 ≅ A′1 and A2 ≅ A′2, and hence, A ≅ A′. �

3. Hermitian and skew–hermitian spaces

We recall some preliminaries on (skew–)hermitian spaces over rings with involution, and more

specifically over Azumaya algebras with involution over valuation rings. In the latter case, we

prove a Witt decomposition result, which will be used in section 6. A standard reference for the

theory of (skew–)hermitian spaces over rings with involution is [15].

3.1. Preliminaries

Let C be a (not necessarily commutative) ring and θ an involution on C. Let V be a finitely

generated, projective right C−module. A sesquilinear form on V (with respect to θ) is a bi–

additive map h ∶ V × V → C such that for all x, y ∈ V and all α, β ∈ C, we have that h(xα, yβ) =
θ(α)h(x, y)β. Let ε = ±1. If in addition h(y, x) = εθ(h(x, y)) for all x, y ∈ V , then h is called

an ε−hermitian form and (V,h) an ε−hermitian module. Furthermore, h is called hermitian if

ε = 1 and skew–hermitian if ε = −1. If θ = idC, then h is clearly a bilinear form.

Let (V,h) be an ε−hermitian module. Let V∗ = HomC(V,C). This is a left C−module. Define

the right C−module θV∗ by θV∗ = {θϕ ∣ ϕ ∈ V∗} with the operations θϕ + θψ =θ (ϕ + ψ),
(θϕ)α =θ (θ(α)ϕ) for all ϕ,ψ ∈ V∗ and all α ∈ C. Then h is called non–singular if the adjoint

transformation

ĥ ∶ V →θV∗ ∶ x ↦θϕ, where ϕ(y) = h(x, y) for all y ∈ V ,

is an isomorphism of right C−modules. We call (V,h) an ε−hermitian space if h is non–singular.

If V is a free C−module, then ĥ is an isomorphism if and only if the matrix of h with respect to

any C−basis of V is invertible.
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Let ϕ ∶ (C, θ)→ (C′, θ′) be a homomorphism of rings with involution, i.e. ϕ is a ring homomor-

phism from C to C′ such that θ′ ○ ϕ = ϕ ○ θ. Consider C′ as a left C−module via ϕ. Let (V,h) be

an ε−hermitian module over (C, θ). Then the map hC′ ∶ VC′ × VC′ → C′ defined by

hC′(x⊗ a′, y⊗ b′) = θ′(a′)ϕ(h(x, y))b′ for all x, y ∈ V and all a′,b′ ∈ C′,

is an ε−hermitian form on VC′ with respect to θ′.

3.1 Notation. Let R be a domain. Let (C, θ) be an R−algebra with involution and (V,h) an

ε−hermitian module over (C, θ). Let R′ be a domain that is also an R−algebra. Then we denote

the ε−hermitian module (VCR′
,hCR′
) by (V,h)R′ .

Let U be a C−submodule of V . The orthogonal complement of U, which is equal to {x ∈
V ∣ h(x, y) = 0 for all y ∈ U}, is denoted by U⊥. The subspace U is called totally isotropic

if U ⊂ U⊥. The ε−hermitian module (V,h) is called isotropic if it contains a nonzero totally

isotropic subspace U, and anisotropic otherwise. Equivalently, (V,h) is isotropic if there exists

an element 0 ≠ x ∈ V such that h(x, x) = 0. (V,h) is called metabolic if it contains a direct

summand U such that U⊥ = U. There is also a notion of a hyperbolic ε−hermitian space (see

[15, (I.3.5)]), and if 2 ∈ C×, then these notions coincide (see [15, (I.3.7.3)]).

Let (V,h) and (V ′,h′) be two ε−hermitian modules over (C, θ). They are called isometric,

denoted by (V,h) ≃ (V ′,h′), if there is a C−linear bijection ϕ ∶ V → V ′ such that h(x, y) =
h′(ϕ(x), ϕ(y)) for all x, y ∈ V . They are called similar if there exists a ∈ C such that (V,h) ≃
(V ′,ah′). The orthogonal sum of (V,h) and (V ′,h′) is the ε−hermitian space (V ⊕ V ′,h ⊥ h′),
where (h ⊥ h′)(x + x′, y + y′) = h(x, y) + h′(x′, y′), for all x, y ∈ V and all x′, y′ ∈ V ′, denoted by

(V,h) ⊥ (V ′,h′).
Let α1, . . . , αn ∈ C× be elements such that θ(αi) = εαi. Then the matrix diag(α1, . . . , αn) de-

fines a non–singular ε−hermitian form on Cn with respect to θ. We denote the corresponding

ε−hermitian space by ⟨α1, . . . , αn⟩θ.
3.2 Proposition. Let ε = ±1. Let (V,h) be an ε−hermitian space over (C, θ) and let U be a

C−submodule of V that is finitely generated and projective over C. If h∣U is non–singular, then(V,h) ≃ (U,h∣U) ⊥ (U⊥,h∣U⊥), and h∣U⊥ is also non–singular.

Proof. See [15, (I.3.6.1), (I.3.6.2)]. �

In the rest of section 3, we work with (skew–)hermitian spaces over Azumaya algebras with

involution without zero divisors. We fix a field F and a valuation ring O of F.

Let (∆, θ) be an O−algebra with involution without zero divisors. Let ε = ±1 and let (V,h) be

an ε−hermitian space over (∆, θ). Then V is free as a ∆−module by Proposition 2.8. Using this,

it follows that hyperbolic ε−hermitian spaces of the same ∆−dimension are isometric.

3.3 Lemma. Let ∆ be an Azumaya algebra with center a valuation ring or the intersection of

two valuation rings. Let (a1, . . . ,am) be a unimodular row over ∆, i.e. there exist b1, . . . ,bm ∈
∆ such that ∑m

i=1 aibi = 1. Then there exists an invertible (m × m)−matrix U over ∆ having(a1, . . . ,am) as its first row, such that the inverse of U has (b1, . . . ,bm) as its first column.
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Proof. The statement holds for Hermite rings by [6, (0.4.1)]. Left and right Bézout rings with-

out zero divisors are Hermite rings by [6, (2.3.4), (2.3.17)]. So, the statement follows from

Proposition 2.8. �

3.4 Proposition. Let (∆, θ) be an O−algebra with involution without zero divisors. Let ε = ±1

and let (V,h) be an ε−hermitian space over (∆, θ). Then (V,h) is the orthogonal sum of an

anisotropic ε−hermitian space over (∆, θ) and a metabolic ε−hermitian space over (∆, θ).
Proof. If h is anisotropic, there is nothing to prove. So, suppose that there exists 0 ≠ x ∈ V such

that h(x, x) = 0. Let (e1, . . . , er) be a ∆−basis for V . Then x = ∑r
i=1 eixi, with x1, . . . , xr ∈ ∆. By

Proposition 2.8, ∆ is a left Bézout ring. Hence, there exists d ∈ ∆ such that ∆x1 + . . .+∆xr = ∆d.

It follows that there exist b1, . . . ,br, c1, . . . , cr ∈ ∆ such that xi = bid and ∑r
i=1 cixi = d. Let

y = ∑r
i=1 eibi. Then 0 = h(x, x) = θ(d)h(y, y)d. Since ∆ does not have zero divisors, it follows

that h(y, y) = 0. Since ∑r
i=1 cibi = 1, by Lemma 3.3, there exists an invertible matrix U over

∆ with (b1, . . . ,br) as its first column. Let ( f1, . . . , fr) = (e1, . . . , er)U. Then f1 = y. Since

U is invertible, this means that (y, f2, . . . , fr) is a ∆−basis for V . It follows that there exists

ϕ ∈ Hom∆(V,∆) such that ϕ(y) = 1. Since h is non–singular, there exists y′ ∈ V such that

1 = ϕ(y) = h(y′, y). Consider the right ∆−subspace U = y∆ + y′∆ of V , and note that in fact

U = y∆⊕ y′∆. The matrix of h∣U is given by

( 0 ε

1 h(y′, y′) ) .
This matrix is invertible over ∆. Hence, h∣U is non–singular and isotropic. It is a so–called

metabolic plane. Proposition 3.2 yields that (V,h) ≃ (U,h∣U) ⊥ (U⊥,h∣U⊥). Furthermore, by

Proposition 3.2, (U⊥,h∣U⊥) is also an ε−hermitian space over (∆, θ) and hence, U⊥ is free over∆.

If h∣U⊥ is anisotropic, we are done. If h∣U⊥ is isotropic, then we can repeat the above procedure.

Eventually we obtain a decomposition of the desired form. �

3.5 Remark. Note that Proposition 3.4 yields that an ε−hermitian space over (∆, θ) is isotropic

if and only if it contains a “unimodular” isotropic vector.

3.6 Proposition. Let (∆, θ) be an O−algebra with involution without zero divisors. Let ε = ±1.

Let (V,h) be an ε−hermitian space over (∆, θ). If (V,h)F is isotropic (resp. metabolic), then(V,h) is already isotropic (resp. metabolic).

Proof. Suppose that (V,h)F is isotropic. Let 0 ≠ x ∈ VF be such that hF(x, x) = 0. There

exists a nonzero r ∈ O such that rx ∈ V . Then rx ≠ 0 and h(rx, rx) = 0. Hence, (V,h) is

isotropic. Suppose that (V,h)F is metabolic, but (V,h) non–metabolic. By Proposition 3.4, we

can decompose (V,h) ≃ (V1,h1) ⊥ (V2,h2), with (V1,h1) anisotropic and (V2,h2) metabolic.

Then (V1,h1) remains anisotropic over F by the first part of the proof. But this means that(V,h)F is not metabolic, a contradiction. This proves the statement. �

In the situation of Proposition 3.4, suppose that O = F and char(F) ≠ 2. Then ∆ is a division

algebra, and the decomposition of (V,h) into an anisotropic and a hyperbolic ε−hermitian space

over (∆, θ) is unique up to isometry, by the Witt cancellation result of [15, (I.6.3.4)]. The Witt

index of (V,h) is then defined as half the ∆−dimension of the hyperbolic part of (V,h).
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3.2. Adjoint involutions

In this section, we zoom in on the “adjoint algebra with involution” of a (skew–)hermitian space

over an Azumaya algebra with involution over a valuation ring. We characterise isomorphic

involutions on a fixed Azumaya algebra in terms of (skew–)hermitian spaces they are adjoint

to. These results will be used in section 7, in order to prove that isomorphism of Azumaya

algebras with involution over a Henselian valuation ring in which 2 is invertible, can be detected

rationally.

3.7 Proposition. Let (C, θ) be an O−algebra with involution with center a domain. Let ε =
±1 and let (V,h) be an ε−hermitian space over (C, θ). There exists a unique involution σ on

EndC(V) such that σ(a) = θ(a) for all a ∈ Z(C), and for all x, y ∈ V and all f ∈ EndC(V) we

have that

h(x, f (y)) = h(σ( f )(x), y).
We denote this involution by adh. Then (EndC(V), adh) is an O−algebra with involution with

center Z(C), called the adjoint algebra with involution of h, and denoted by Ad(h). If θ is of

the first (resp. second) kind, then adh is of the first (resp. second) kind.

Proof. Let m be a maximal ideal of Z(C). Then EndC(V)/mEndC(V) ≅ EndC/mC(V/mV) by

[15, (III.5.1.8)]. Since V is a finitely generated, projective C−module and C is finite–dimensional

over Z(C) by Proposition 2.6 (a), V is finitely generated and faithful as a module over Z(C),
and hence, V/mV is nonzero. This implies that EndC/mC(V/mV) is a central simple algebra over

Z(C)/m. Hence, EndC(V) is an Azumaya algebra over Z(C). One easily checks that σ is an

involution on EndC(V) of the same kind as θ, and the uniqueness of adh follows from the fact

that h is non–singular. �

The converse of Proposition 3.7 also holds.

3.8 Proposition. Let (A, σ) be an O−algebra with involution with center a domain. Then the

following hold:

(a) Every Azumaya algebra over Z(A) Brauer equivalent to A carries an involution of the

same kind as σ.

(b) There exists an Azumaya algebra ∆ over Z(A) without zero divisors such that for every

involution θ on ∆ of the same kind as σ, there exists an ε−hermitian space (V,h) over(∆, θ), with ε ∈ {1,−1}, such that (A, σ) ≅Z(A) Ad(h).
Proof. We denote Z(A) by S and its fraction field by K. Let C be an Azumaya algebra over S

Brauer equivalent to A. If σ is of the first kind, then AF, and hence also CF, is of exponent 2

in Br(K) by [16, (3.1) (1)]. By Proposition 2.11, C is of exponent 2 in Br(S ). Suppose that σ

is of the second kind. Then the corestriction of AF is split by [16, (3.1) (2)] and hence, so is

the corestriction of CF. Invoking Proposition 2.11 once more, we obtain that the corestriction

of C is also split. Since S is a semilocal domain by Proposition 2.5, [24, (4.4)] yields that there

exists an involution θ on C of the same kind as σ. This proves (a).

Proposition 2.10 yields that there exists an Azumaya algebra ∆ over S without zero divisors,

and a finite–dimensional right ∆−module V such that A ≅ End∆(V) ≅ Mn(∆) as S−algebras,
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with n = dim∆(V). In the rest of the proof, we identify A with Mn(∆). By (a), there exists an

involution θ on ∆ of the same kind as σ. We define an involution ★ on A by (di j)★i j = (θ(di j))ti j,

where t denotes the transpose involution. By Proposition 2.7, there exists s ∈ A× such that

s★ = εs, with ε = ±1, and σ = Int(s) ○ ★. Let (e1, . . . , en) be a ∆−basis for V . Let h★ ∶ V × V → ∆
be the hermitian form over (∆, θ) defined by the (n×n) identity matrix with respect to the basis(e1, . . . , en). We have that ★ = adh★ and it is clear that h★ is non–singular. We define h ∶ V×V → ∆
by h(x, y) = h★(s−1(x), y). For all x, y ∈ V , we have that

h(y, x) = h★(s−1(y), x) = θ(h★(x, s−1(y))) = θ(h★((s−1)★(x), y))
= εθ(h★(s−1(x), y) = εθ(h(x, y)),

and it is clear that h(xα, yβ) = θ(α)h(x, y)β for all α, β ∈ ∆. Furthermore, h is non–singular

since s ∈ A×. So, (V,h) is an ε−hermitian space and

h(σ( f )(x), y) = h★(s−1σ( f )(x), y) = h★( f ★(s−1(x)), y) = h★(s−1(x), f (y)) = h(x, f (y)).
�

3.9 Proposition. Let (A, σ) be an O−algebra with involution with center a domain. Let fur-

thermore s ∈ A× be such that σ(s) = s and let σ′ = Int(s)○σ. Then the following are equivalent:

(i) (A, σ) ≅Z(A) (A, σ′).
(ii) There exist elements u ∈ O× and g ∈ A× such that us = σ(g)g.

Proof. Suppose that (i) holds. Let ϕ ∶ A→ A be a Z(A)−automorphism such that σ′ ○ϕ = ϕ○σ.

By Proposition 2.6 (b), there exists an element g ∈ A× such that ϕ = Int(σ(g)). We get that

Int(σ(g)) ○σ = Int(s) ○σ ○ Int(σ(g)) = Int(sg−1) ○σ.
This implies that Int(σ(g)) = Int(sg−1) and hence, there exists u ∈ Z(A)× such that σ(g) =
usg−1. In other words us = σ(g)g. It follows that σ(u)s = σ(s)σ(u) = σ(us) = us. Since

s ∈ A×, it follows that u ∈ O. Since u ∈ Z(A)×, we have that u is in fact an element of O×. This

proves (ii). For the converse, we can just go backwards through the proof of (i)⇒ (ii). �

3.10 Proposition. Let (∆, θ) be anO−algebra with involution without zero divisors. Let ε = ±1

and let (V,h) be an ε−hermitian space over (∆, θ). Let (A, σ) = Ad(h). Let furthermore s ∈ A×

be such that σ(s) = s and let σ′ = Int(s) ○ σ. Define h′ ∶ V × V → ∆ by h′(x, y) = h(s−1(x), y)
for all x, y, ∈ V . Then (V,h′) is an ε−hermitian space over (∆, θ) such that (A, σ′) = Ad(h′).
Let u ∈ O×. Then the following are equivalent:

(i) (V,h′) ≃ (V,uh).
(ii) There exists g ∈ A× such that us = σ(g)g.

Furthermore, if u ∈ O× is such that (i) and (ii) hold, then (A, σ) ≅Z(A) (A, σ′).
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Proof. Suppose that (V,h′) ≃ (V,uh). Then there exists a ∆−linear bijection ϕ ∶ V → V such

that h′(x, y) = uh(ϕ(x), ϕ(y)). Then ϕ ∈ End∆(V) = A and it follows that

h(s−1(x), y) = h′(x, y) = h(uσ(ϕ)ϕ(x), y)
for all x, y ∈ V . The non–singularity of h yields that s−1 = uσ(ϕ)ϕ, i.e. us = ϕ−1σ(ϕ−1).
Conversely, suppose that there exists g ∈ A× such that us = σ(g)g. Then

h′(x, y) = h(s−1(x), y) = uh(g−1σ(g−1)(x), y) = uh(σ(g−1)(x), σ(g−1)(y)).
This yields that (V,h′) ≃ (V,uh). The last statement of the proposition follows immediately

from Proposition 3.9. �

3.11 Proposition. LetA be an Azumaya algebra with centerO or a separable quadraticO−alge-

bra that is a domain. Let σ and σ′ be two O−linear involutions of the first or second kind on

A. Suppose that (A, σ)F ≅F (A, σ′)F . Then there exists s ∈ A× such that σ(s) = s and

σ′ = Int(s) ○σ.

Proof. By Proposition 2.7, there exists an element s ∈ A× such that σ(s) = ±s and σ′ = Int(s) ○
σ. Since σF and σ′F are isomorphic, they must be of the same kind and type. If char(F) = 2,

then we automatically get that σ(s) = s. If char(F) ≠ 2, then [16, (2.7) (3)] yields that we

necessarily have σ(s) = σF(s) = s. �

4. Valuations and value functions

In the sequel, we will work with non–commutative valuation rings. We recall below the defini-

tion and some basic facts, and in the commutative case, the equivalent concept of a place from

one field to another. We further include some basics of the theory of value functions on vector

spaces and algebras over a valued field, which was recently developed in [23, 26]. We will use

value functions in order to connect, for an algebra with involution over a valuation ring, the

induced structures over the fraction field and residue field of the valuation ring.

Throughout this section, we fix a field F. Let D be an F−division algebra. A valuation ring of

D is a subring Λ of D such that for all x ∈ D, we have that x ∈ Λ or x−1 ∈ Λ, and furthermore, Λ

is invariant under conjugation with elements of D. (In the literature, Λ is sometimes called an

invariant valuation ring of D.) Let Γ be a totally ordered abelian group and let∞ be a symbol of

a set strictly containing Γ, and satisfying γ < ∞ and∞ =∞+∞ =∞+γ = γ+∞ for all γ ∈ Γ. A

map 4 ∶ D → Γ∪{∞} is called a valuation on D if 4−1({∞}) = {0}, 4(a+b) ⩾ min(4(a),4(b))
and 4(ab) = 4(a) + 4(b), for all a,b ∈ D. The ring OD = {a ∈ D ∣ 4(a) ⩾ 0} is a valuation

ring of D. The valuation ring OD has a unique maximal left (and right) ideal MD, which is

equal to {a ∈ D ∣ 4(a) > 0}. One calls ΓD = 4(D×) the value group of 4, and one can show

that ΓD ≅ D×/OD
× (see e.g. [28, p. 388]). Given a valuation ring Λ of D, there exists a

valuation on D with valuation ring precisely Λ (see e.g. [28, p. 388]). So, there is a one-to-one

correspondence between valuations on D and valuation rings of D.

Let L be a field and let L∞ = L ∪ {∞}, with the field operations of L extended to L∞ by

∞+ x = x +∞ = ∞ for any x ∈ L, x ⋅ ∞ =∞ ⋅ x =∞ for any 0 ≠ x ∈ L∞, whereas∞+∞,0 ⋅ ∞
and ∞ ⋅ 0 are not defined. A place from F to L is a map λ ∶ F → L∞ such that λ(1) = 1,
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λ(xy) = λ(x)λ(y) and λ(x + y) = λ(x) + λ(y) for all x, y ∈ F, whenever the right hand sides are

defined.

Given a place λ ∶ F → L∞, the set Oλ = {x ∈ F ∣ λ(x) ≠ ∞} is a valuation ring of F with

maximal ideal mλ = {x ∈ F ∣ λ(x) = 0}. The place λ identifies the residue field Oλ /mλ with a

subfield of L. Conversely, let O be a valuation ring of F with residue field κ. Setting λ(a) = a

for all a ∈ O and λ(a) =∞ for all a ∈ F ∖O defines a place λ ∶ F → κ∞.

For the rest of this section, we fix a valuation 3 on F. We denote its valuation ring by O and its

maximal ideal by m.

For every γ ∈ 3(Γ), let F
⩾γ
3 = {a ∈ F ∣ 3(a) ⩾ γ} and F

>γ
3 = {a ∈ F ∣ 3(a) > γ}. We then set

gr
3
(F) = ⊕

γ∈3(Γ)

F⩾γ3 /F>γ3 .
Let V be a finite–dimensional F−vector space. A map α ∶ V → Γ ∪ {∞} is called a 3−value

function on V if α−1({∞}) = {0}, α(xa) = α(x) + 3(a) and α(x + y) ⩾ min(α(x), α(y)) for all

x, y ∈ V and all a ∈ F.

For every γ ∈ 3(Γ), let V
⩾γ
α = {x ∈ V ∣ α(x) ⩾ γ} and V

>γ
α = {x ∈ V ∣ α(x) > γ}. Then

grα(V) = ⊕
γ∈3(Γ)

V⩾γα /V>γα .
is a graded gr

3
(F)−module.

Let B be a finite–dimensional F−algebra. A 3−value function α on B is called surmultiplicative

if α(1) = 0 and α(ab) ⩾ α(a) + α(b) for all a,b ∈ B. In this case, grα(B) has the structure of a

graded gr
3
(F)−algebra.

4.1 Example. Let V be an finite–dimensional F−vector space and B = (b1, . . . ,bn) an F−basis

for V . It is an easy verification that the map

3B ∶
n

∑
i=1

bixi ↦ min
1⩽i⩽n
(3(xi)), for x1, . . . , xn ∈ F,

is a 3−value function on V .

We call a 3−value function on a finite–dimensional F−vector space V a 3−norm if there exists

an F−basis B for V such that α = 3B; the basis B is then called a splitting basis for α.

4.2 Remark. Since we work with value functions having the same value group as the underly-

ing valuation, our definition of 3−norm is the same as the one given in [23].

4.3 Proposition. Let V be a finite–dimensional O−module and let V = V ⊗O F. Then there is

a unique 3−norm α on V such that V⩾0
α = V .

Proof. Let B be an O −basis of V . Then it is an F−basis of V , and it is clear that V⩾0
3B
= V . Let α

be any 3−norm on V such that V⩾0
α = V . Let B′ be a splitting basis for α. Then B′ is an O −basis

of V . Using the matrix of base change from B to B′ (whose entries lie in O), one easily obtains

that 3B(x) ⩾ α(x) for all x ∈ V . Interchanging the roles ofB andB′ yields the other inequality.�
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4.4 Proposition. Let V be a finite–dimensional F−vector space andB = (b1, . . . ,bn) an F−basis

for V . Let x ∈ V be such that there exists an index i ∈ {1, . . . ,n} such that x − bi ∈ V>0
3B

. Then the

family obtained from B by replacing bi by x is also a splitting basis for 3B.

Proof. SinceB is a splitting basis for 3B and 3B(x−bi) > 0, we can write x−bi =∑n
j=1 b jx j, with

x1, . . . , xn ∈ m. It follows that 3B(x) = 0 = 3B(bi(1+ xi)). Hence, by [23, Corollary 2.3 (iii)], the

family obtained from B by replacing bi by x is also a splitting basis for 3B. �

4.5 Proposition. Let T be the intersection of finitely many valuation rings of F. Let V be a

finite–dimensional T−module and let V = V⊗T F. Let furthermore W be a nonzero F−subspace

of V . Then W ∩ V is free as a T−module and

dimF(W) = dimT(W ∩ V).
Proof. By assumption, there exist valuation rings O1, . . . ,Oℓ of F such that T = O1 ∩ . . . ∩
Oℓ, and we may assume that they are pairwise incomparable. Let 31, . . . , 3ℓ be corresponding

valuations on F. For i = 1, . . . , ℓ, let Mi be the unique maximal ideal of Oi andMi = Mi ∩ T .

By [9, (3.2.6), (3.2.7)] we have that Oi = TMi
for i = 1, . . . , ℓ, andM1, . . . ,Mℓ are the different

maximal ideals of T . Furthermore, T/Mi is naturally isomorphic to TMi
/MiTMi

= Oi /Mi via

a modMi ↦ a
1

modMiTMi
, for i = 1, . . . , ℓ.

Let B = (e1, . . . , en) be a T−basis for V . Let i ∈ {1, . . . , ℓ}. Then B is an Oi −basis for Vi =
V Oi ⊂ V . We consider the 3i−norm αi = (3i)B on V = ViF. We have that V⩾0

αi
= Vi. We set

W =W ∩ V . By [23, Proposition 2.5], αi∣W is a 3i−norm. Let (di
1, . . . ,d

i
r) be a splitting basis for

αi∣W . We prove that there is a common splitting basis for α1∣W , . . . , αℓ∣W .

SinceM1, . . . ,Mℓ are pairwise different maximal ideals of T , they are pairwise coprime. By

the Chinese Remainder Theorem, the natural isomorphisms T/Mi → Oi /Mi for i = 1, . . . , ℓ,

and [17, (XVI.2.7)], the T−homomorphism

ϕ ∶W →WO1 /WM1 × . . . ×WOℓ /WMℓ

is surjective. We show thatWOi =W⩾0
αi

for i = 1, . . . , ℓ. It is clear thatWOi ⊂W⩾0
αi

. Conversely,

let x ∈W⩾0
αi

. Then there exists t ∈ T ∖Mi such that xt ∈ W . Since 1/t ∈ TMi
= Oi, it follows that

x ∈ W Oi. MultiplyingWOi =W⩾0
αi

byMi, we obtain thatWMi =W>0
αi

. By the surjectivity of ϕ,

there exist f1, . . . , fr ∈ W such that

ϕ( f j) = (d1
j , . . . ,d

ℓ
j) ∈

ℓ

∏
i=1

W⩾0
αi
/W>0

αi
.

By Proposition 4.4, ( f1, . . . , fr) is a splitting basis for α1∣W , . . . , αℓ∣W . It follows that

W ⊂W⩾0
α1
∩ . . . ∩W⩾0

αℓ
= { r

∑
j=1

f jx j ∣ x1, . . . , xℓ ∈ O1 ∩ . . . ∩Oℓ} ⊂ W ,

since T = O1 ∩ . . . ∩Oℓ. Hence,W is free over T and dimT(W) = dimF(W). �

4.6 Remark. In the sequel, we wil only apply Proposition 4.5 in the case where T is the inter-

section of at most two valuation rings. Note furthermore that the statement of Proposition 4.5

can also be proved by using that an intersection of finitely many valuation rings of a field is a

so–called elementary divisor domain.
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In the previous results we only used value functions on vector spaces. In the last result of this

section, we prove the existence of a special value function on an F−algebra with involution,

obtained by scalar extension from an O−algebra with involution. This result will be used in

section 6 when we consider Azumaya algebras with involution under specialisation with respect

to a Henselian valuation ring.

Let B be a finite–dimensional F−algebra and α a surmultiplicative 3−norm on B. Then α is said

to be a 3−gauge if grα(B) is graded semisimple, i.e. grα(B) does not contain any nonzero nilpo-

tent homogeneous two–sided ideals. Let (B, τ) be an F−algebra with involution. A 3−gauge α

on B is called τ−invariant if α(τ(x)) = α(x) for all x ∈ B.

4.7 Proposition. Let (A, σ) be an O−algebra with involution. Then there exists a unique

σF−invariant 3−gauge α on AF such that (AF)⩾0
α = A and (AF)>0

α = mA.

Proof. By Proposition 2.6 (a), A is free over O. Let B = (e1, . . . , en) be an O−basis for A.

Then B is an F−basis for AF. It is clear that (AF)⩾0
3B
= A and (AF)>0

3B
= mA. We show that 3B

is a 3−gauge and that it is σF−invariant. The fact that 3B is the unique gauge with this property

follows from Proposition 4.3. Since 1 ∈ A, we have that 3B(1) ⩾ 0 and hence 3B(1) = 0 since

A ≠ mA. In order to show that 3B is surmultiplicative, by [26, Lemma 1.2], it suffices to show

that 3B(eie j) ⩾ 3B(ei) + 3B(e j) = 0 for all i, j ∈ {1, . . . ,n}. Since A = (AF)⩾0
3B

is multiplicatively

closed, this is clearly satisfied.

We next verify that 3B is σF−invariant. Let i ∈ {1, . . . ,n}. There exist di1, . . . ,din ∈ O such

that σ(ei) = ∑n
k=1 ekdik. Let (x1, . . . , xn) ∈ Fn be arbitrary. Then for k = 1, . . . ,n, we have that

3(∑n
i=1 xidik) ⩾ min1⩽i⩽n(3(xi)). Furthermore, σF(∑n

i=1 eixi) = ∑n
i=1σ(ei)xi = ∑n

k=1 ek(∑n
i=1 xidik),

and hence

3B (σF ( n

∑
i=1

eixi)) = min
1⩽k⩽n
(3( n

∑
i=1

xidik)) ⩾ min
1⩽i⩽n
(3(xi)) = 3B ( n

∑
i=1

eixi) .
This yields that 3B(x) = 3B(σ2

F(x)) ⩾ 3B(σF(x)) ⩾ 3B(x), for all x ∈ AF. This proves the

σF−invariance of 3B.

In order to have that 3B is a 3−gauge, all that remains to be shown is that the graded algebra

gr
3B
(AF) is semisimple. Suppose for the sake of contradiction that gr

3B
(AF) contains a nonzero

homogeneous two–sided nilpotent ideal I. Let I0 = I ∩ gr
3B
(AF)0 = I ∩A/mA. For a nonzero

x ∈ B, we write x̃ = x + (AF)>3B(x)3B
. Let a be a nonzero element of AF such that ã ∈ I. Since

3B has the same value group as 3, there exists u ∈ F such that 3B(a) = −3(u). Then 3B(au) =
3B(a) + 3(u) = 0 and since I is an ideal of gr

3B
(AF), we have that ãũ ∈ I, and furthermore,

ãũ = ãu. Since ãu ≠ 0, this implies that I0 ≠ 0. However, this is not possible since A/mA is

semisimple. Hence, 3B is a 3−gauge. �

5. Specialisation of involutions and the index

In this section, we prove the first main specialisation result of this article. We fix fields F and

L, a place λ ∶ F → L∞, and we denote the valuation ring of F associated to λ by O. We don’t

make any assumptions on the characteristic of F and L.
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Let (A, σ) be an O −algebra with involution. By Proposition 2.1, (A, σ)F is an F−algebra with

involution and (A, σ)L an L−algebra with involution. We show in Theorem 5.7 that isotropic

right ideals of (A, σ)F specialise under λ to isotropic right ideals of (A, σ)L, in a way that

preserves the dimension.

In order to treat the isotropy behaviour of first and second kind involutions in a uniform way,

we introduce the notion of “balanced ideals” and extend some notions and results from [16] to

balanced ideals.

Throughout this section, we fix an F−algebra with involution (B, τ). We first extend the notions

of degree and Schur index of a central simple algebra to B. As in [16], we let deg(B) be the

square root of dimF(B)/dimF(Z(B)). If B is simple, we let ind(B) be the usual Schur index of

B as a central simple Z(B)−algebra. If B is not simple, then by Proposition 2.2, there exists a

central simple F−algebra E such that B ≅ E × Eop. In that case we set ind(B) = ind(E).
Suppose that there exists a central simple F−algebra E such that B ≅ E × Eop. Let I be a right

ideal of B. Then I corresponds to a right ideal I1 × I
op

2 of E × Eop, with I1 a right ideal of E and

I2 a left ideal of E.

We call a right ideal I of B balanced if it is free as a Z(B)−module. If Z(B) is a field, then all

right ideals of B are balanced. If Z(B) ≅ F × F, then the following lemma describes what the

balanced ideals of B look like.

5.1 Lemma. Let T be a domain and let M and N be finite–dimensional T−modules. Then

M × N is free as a (T × T)−module if and only if dimT(M) = dimT(N), and in that case

dimT×T(M × N) = dimT(M) = dimT(N).
Proof. This follows from the fact that (T ×T)n ≅ T n ×T n as (T ×T)−modules for all n ∈ N, and

that T n × T m is not a free (T × T)−module if n ≠ m. �

Let I be a balanced right ideal of B. Then dimZ(B)(I) is divisible by deg(B) ind(B), by Propo-

sition 5.1 and [16, pp. 5–6]. We call

rdim(I) = dimZ(B)(I)
deg(B)

the reduced dimension of I. It extends the notion of reduced dimension for right ideals of central

simple algebras from [16] to cover the semisimple case as well. If B ≅ E × Eop for a central

simple F−algebra E, and I is a balanced right ideal of B that corresponds to the ideal I1 × I
op

2 of

E × Eop, then rdim(I) = dimF(I1)
deg(E) = rdim(I1) by Lemma 5.1.

Replacing ‘right’ by ‘left’ in the above, we get analogous results for left ideals of B. Applying

the general results for modules from section 4 to right ideals, we obtain the following theorem.

5.2 Theorem. Let A be an Azumaya algebra with center either O or a separable quadratic

O−algebra. If Z(A) is not a domain, assume that there exists an Azumaya algebra B over O
such that A ≅ B × Bop. Then deg(AF) = deg(AL). Let furthermore I be a balanced right ideal

of AF. Then I ∩A is free as a Z(A)−module and (I ∩A)⊗O L is a balanced right ideal of AL

of the same reduced dimension as I.
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Proof. Since A is free as an O−module by Proposition 2.6 (a), we have that dimF(AF) =
dimO(A) = dimL(AL). This clearly implies that deg(AF) = deg(AL).
We now prove the statement on the ideals. If I = 0, then there is nothing to prove. So, in the

rest of the proof, we may assume that I ≠ 0. It is clear that (I ∩ A) ⊗O L is a right ideal of

AL. Suppose first that Z(A) is a domain. Then Z(A) is a valuation ring or the intersection of

two valuation rings of Z(AF), by Proposition 2.5. Furthermore, A is free as a Z(A)−module

by Proposition 2.6 (a). We have that A⊗Z(A)Z(AF) ≅ A⊗OF as Z(AF)−modules. Since I

is a Z(AF)−subspace of AF, we can apply Proposition 4.5 to obtain that I ∩ A is free as a

Z(A)−module and

dimZ(A)(I ∩A) = dimZ(AF)(I).
Assume that Z(A) is not a domain. By assumption, there exists an Azumaya algebra B over O
such that A ≅ B × Bop. Then B is free as an O−module by Proposition 2.6 (a). We have that

AF ≅ (B ⊗O F) × (B ⊗O F)op. Under this isomorphism, we identify I with a right ideal I1 × I
op

2

of (B⊗O F)×(B⊗O F)op, where I1 is a right ideal of B⊗O F and I2 a left ideal of B⊗O F. Then

I ∩A = (I1 ∩ B) × (I2 ∩ B)op. Since I is balanced, Lemma 5.1 yields that dimF(I1) = dimF(I2).
By Proposition 4.5, we have that I1 ∩ B and I2 ∩ B are free as O−modules and

dimO(I1 ∩ B) = dimF(I1) = dimF(I2) = dimO(I2 ∩ B).
Applying Lemma 5.1 to T = O yields that I∩A is free as a Z(A)−module and dimZ(A)(I∩A) =
dimZ(AF)(I).
We have the following isomorphisms of Z(AL)−modules:

(I ∩A)⊗Z(A) Z(AL) ≅ ((I ∩A)⊗Z(A) Z(A))⊗O L ≅ (I ∩A)⊗O L.

Since I ∩A is free as a Z(A)−module, it follows that (I ∩A)⊗O L is free as a Z(AL)−module.

In other words, (I ∩A)⊗O L is a balanced right ideal of AL.

It remains to prove the claim about the reduced dimensions. It follows from the above that

dimZ(AF)(I) = dimZ(A)(I ∩A) = dimZ(AL)[(I ∩A)⊗O L]

Since deg(AF) = deg(AL), this yields that rdim(I) = rdim((I ∩A)⊗O L). �

For a right ideal I of B, the left ideal I0 = {x ∈ B ∣ xI = 0} is the annihilator of I. Similarly, for

a left ideal J of B, the right ideal J0 = {x ∈ B ∣ Jx = 0} is the annihilator of J.

5.3 Proposition. Let I be a balanced right (resp. left) ideal of B. Then I0 is a balanced left

(resp. right) ideal of B and rdim(I) + rdim(I0) = deg(B).

Proof. If Z(B) is a field, this is the statement of [16, (1.14)]. Assume that Z(B) ≅ F × F and

B ≅ E × Eop, for some central simple F−algebra E. Let I be a right ideal of B. The proof for

left ideals is analogous. We identify I with a right ideal I1 × I
op

2 of E ×Eop, where I1 (resp. I2) is

a right (resp. left) ideal of E. It is easily seen that I0 ≅ I0
1 × (I

0
2)

op, and using this together with

[16, (1.14)] yields the statement. �
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A right (resp. left) ideal I of B is called isotropic with respect to τ if I ⊂ τ(I)0. The algebra with

involution (B, τ), or τ itself, is called isotropic if B contains a nonzero isotropic right ideal, and

anisotropic otherwise. Note that τ is isotropic if and only if there is a nonzero element x ∈ B

such that τ(x)x = 0. The algebra with involution (B, τ), or τ itself, is called hyperbolic if there

exists an idempotent x ∈ B such that τ(x) = 1 − x, and is called metabolic if (B, τ) contains an

isotropic balanced right ideal I of reduced dimension deg(B)/2. By Proposition 5.3, the latter

is equivalent to I = τ(I)0.

5.4 Proposition. Let I be an isotropic balanced right ideal of (B, τ). Then rdim(I) ⩽ deg(B)/2.

Proof. If Z(B) is a field, this follows from [16, (6.2)]. Let us consider the case (B, τ) ≅ (E ×
Eop, swE), with E a central simple F−algebra. We identify I with a right ideal I1 × I

op

2 of

E × Eop, where I1 (resp. I2) is a right (resp. left) ideal of E. Since I is balanced, we have that

rdim(I) = rdim(I1) = rdim(I2). Since I is isotropic, it follows that I2 ⊂ I0
1 . By Proposition 5.3,

2 rdim(I) = rdim(I1) + rdim(I2) ⩽ rdim(I1) + rdim(I0
1) = deg(B),

whence the statement. �

5.5 Proposition. Suppose that (B, τ) is degenerate. Then τ is hyperbolic, and for any ℓ ∈ N

such that 0 ⩽ ℓ ⩽ deg(B)
2 ind(B) , there exists an isotropic balanced right ideal of (B, τ) of reduced

dimension ℓ ⋅ ind(B).

Proof. We have that (B, τ) ≅ (E×Eop, swE), for some central simple F−algebra E. The element

(1,0) ∈ E × Eop is idempotent and swE(1,0) = (0,1) = (1,1) − (1,0). Hence, τ is hyperbolic.

Let ℓ ∈ N be such that 0 ⩽ ℓ ⩽ deg(B)
2 ind(B) . By the characterisation of left and right ideals of E in [16,

(1.12)] there exists a right ideal I1 of E with rdim(I1) = ℓ ⋅ ind(B) = ℓ ⋅ ind(E) ⩽ deg(B)/2 and

a left ideal I2 of E inside I0
1 of the same reduced dimension as I1. Then I1 × I

op

2 is an isotropic

balanced right ideal of E × Eop of reduced dimension ℓ ⋅ ind(B). �

5.6 Proposition. Let (D, θ) be an F−algebra with involution and assume that D is a division

algebra. Let ε = ±1 and let (V,h) be an ε−hermitian space over (D, θ). Let I be a right ideal of

EndD(V). Then I = HomD(V,W), for some right D−subspace W of V , and the following hold:

(a) I is isotropic for adh if and only if W is totally isotropic for h.

(b) adh is isotropic (resp. metabolic) if and only if h is isotropic (resp. metabolic).

Proof. See [16, (1.13)] for the fact that every right ideal I of EndD(V) is of the form HomD(V,W),
for some right D−subspace W of V . For (a) see [2, (1.6)], and for the statement on metabolicity

in (b), see [8, (4.8)]. �

We can now prove the first specialisation theorem for isotropic right ideals. Almost all the work

was done in Theorem 5.2, so the proof is now very short.

5.7 Theorem. Let (A, σ) be anO−algebra with involution. Let I be an isotropic balanced right

ideal of (A, σ)F . Then I∩A is free as a Z(A)−module and (I∩A)⊗O L is an isotropic balanced

right ideal of (A, σ)L of the same reduced dimension as I.
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Proof. It is clear that if I is an isotropic right ideal of (A, σ)F , then (I ∩A)⊗O L is an isotropic

right ideal of (A, σ)L. The rest of the statement follows from Theorem 5.2. �

The following corollary is now immediate.

5.8 Corollary. Let (A, σ) be anO−algebra with involution. IfσF is isotropic (resp. metabolic),

then σL is isotropic (resp. metabolic) as well.

We define the index of (B, τ) to be

ind(B, τ) = {rdim(I) ∣ I an isotropic balanced right ideal of (B, τ)}.

This definition coincides with the one given in [16, p. 73]. This is clear if Z(B) is a field and the

degenerate case follows from Proposition 5.5. Using the definition of the index together with

[16, (6.7)] yields, if char(F) ≠ 2, that τ is metabolic if and only if it is hyperbolic.

5.9 Proposition. Let (D, θ) be an F−algebra with involution and assume that D is a division

algebra. Let ε = ±1 and let (V,h) be an ε−hermitian space over (D, θ). Then

ind(Ad(h)) = {ind(D) ⋅ d ∣ 0 ⩽ d ⩽ iw(h)}.

Proof. Using the fact that for every D−subspace W of V , we have that rdim(HomD(V,W)) =
dimD(W)deg(D), the statement follows immediately from Proposition 5.6. �

We recast the result of Theorem 5.7 in terms of the index.

5.10 Corollary. Let (A, σ) be an O−algebra with involution. Then

ind((A, σ)F) ⊂ ind((A, σ)L).

Proof. Let 0 ≠ i ∈ ind((A, σ)F) and let I be an isotropic balanced right ideal of (A, σ)F of

reduced dimension i. By Theorem 5.7, (I ∩ A) ⊗O L is an isotropic balanded right ideal of

(A, σ)L and rdim((I ∩A)⊗O L) = i. It follows that i ∈ ind((A, σ)L). �

5.11 Remark. If the characteristic of the fields involved in the place is different from 2, and

we are in the “geometric setting”, then there is another proof of Corollary 5.10. Let k be a field

with char(k) ≠ 2, and (C, ρ) a k−algebra with involution with deg(C) ⩾ 3. Let k1/k and k2/k be

field extensions and λ ∶ k1 → k∞2 a k−place. Let Oλ be the valuation ring of k1 corresponding to

λ. Then (C, ρ)Oλ
is an Oλ −algebra with involution. The inclusion ind((C, ρ)k1

) ⊂ ind((C, ρ)k2
)

can then be shown using certain k−varieties associated to (C, ρ), studied in [19, 20]. The rational

points of these varieties over a field extension M/k are isotropic balanced right ideals of (C, ρ)M

of a certain reduced dimension. The inclusion ind((C, ρ)k1
) ⊂ ind((C, ρ)k2

) then translates into

a statement of “rational points that carry over under places”.
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6. Henselian valuation rings

Throughout this section, we fix a field F and a valuation ring O of F. We further assume that

O is Henselian, i.e. O extends uniquely to a valuation ring in any separable closure of F. We

denote the maximal ideal of O by m, its residue field by κ, and we let 3 be a valuation on F with

valuation ring O.

If 2 ∈ O×, then a symmetric bilinear space over O that is isotropic (resp. hyperbolic) over the

residue field of O, is already isotropic (resp. hyperbolic) over F. This is shown in the proof of

[25, (6.2.4)], where the statement assumes that O is discrete, but the proof does not. We prove

an analogue of this result for O−algebras with involution. This complements the statement on

the index in Corollary 5.10, and will be an important ingredient of the proof of the isomorphism

result for Azumaya algebras over Henselian valuation rings in Theorem 7.3.

6.1 Proposition. Let (A, σ) be an O−algebra with involution with center a domain S . We

denote the fraction field of S by K. The following hold:

(a) S is the unique extension ofO in K, its value group is equal to the one ofO and its residue

field is a separable quadratic extension of κ.

(b) Suppose that A does not have zero divisors. Then A is a valuation ring of AF. Further-

more, the value groups of O and A are equal.

Proof. Since O is Henselian, there is a unique valuation ring of K extending O. Proposition

2.5 then yields (a). Suppose that A does not have zero divisors. Then AF does not have zero

divisors either and hence, it is a division algebra with center K. By (a), S is a valuation ring.

Note that S is also Henselian. By [28, Corollary 2.2], S extends to a valuation ring V of AF. It

follows from [12, (2.5)] that V = A (and in this case, the proof of [12, (2.5)] in fact simplifies).

The equality of the value groups follows from (a) together with [28, Theorem 3.2]. �

6.2 Corollary. Let (A, σ) be an O −algebra with involution with center a domain S . There

exists an Azumaya algebra ∆ without zero divisors over S that is a valuation ring of ∆F , an

O−linear involution θ on ∆ of the same kind as σ, and an ε−hermitian space (V,h) over (∆, θ),
with ε ∈ {1,−1}, such (A, σ) ≅S Ad(h). Furthermore, the value groups of ∆ and O are equal.

Proof. This follows immediately from Proposition 3.8 together with Proposition 6.1. �

6.3 Proposition. LetA be an Azumaya algebra with centerO or a separable quadraticO−alge-

bra that is a domain. Then ind(AF) = ind(Aκ).

Proof. The result follows from the fact that A is Brauer equivalent to a valuation ring ∆ of a

division algebra Brauer equivalent to AF , by Corollary 6.2, and that ∆κ ≅ ∆/m∆ is a division

algebra, since m∆ is the unique maximal left and right ideal of ∆. �

Using the previous proposition, we can already treat the degenerate case.

6.4 Corollary. Let (A, σ) be a degenerate O −algebra with involution. Then ind((A, σ)F) =
ind((A, σ)κ).
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Proof. Since Z(A) is not a domain, we have that Z(A) ≅ O×O by Proposition 2.3. By Propo-

sition 2.2, there exists an Azumaya algebra B over O such that (A, σ) ≅O (B × Bop, swB). By

Proposition 6.3, we have that ind(AF) = ind(BF) = ind(Bκ) = ind(Aκ). Since deg(AF) =
deg(Aκ) by Theorem 5.2, the equality ind((A, σ)F) = ind((A, σ)κ) now follows from Proposi-

tion 5.5. �

6.5 Proposition. Assume that 2 ∈ O×. Let (A, σ) be an O −algebra with involution with center

a domain. Then σF is isotropic if and only σκ is isotropic.

Proof. We denote Z(A) by S and its fraction field by K. Let ∆ be as in Corollary 6.2. Let 4

be a valuation on D with valuation ring ∆ and let 3S be the restriction of 4 to K. Then S is the

valuation ring of 3S . By Proposition 6.1, 3, 3S and 4 have the same value group.

The statement of the proposition follows from [27, Corollary 2.3], provided that AF is tame

over F in the sense of [27, p. 121], and that there exists a σF−invariant 3−gauge α on AF such

that (AF)⩾0
α = A and (AF)>0

α = mA. The existence of the gauge follows from Proposition 4.7.

The tameness condition for AF means that K/F is tame and AF splits over the maximal tamely

ramified extension of K. The fact that K/F is tame follows from the equality of the value groups

of 3 and 3S , which even implies that (K, 3S ) is an unramified extension of (F, 3). Since the value

groups of 3 and 4 are equal, any maximal subfield of D yields an unramified, and therefore also

tamely ramified, extension of (K, 3S ) splitting AF. It follows that AF is tame over F. �

6.6 Corollary. Assume that 2 ∈ O×. Let (∆, θ) be an O −algebra with involution without zero

divisors. Let ε = ±1 and let (V,h) be an ε−hermitian space over (∆, θ). Then iw(hF) = iw(hκ).
In particular, hF is isotropic (resp. hyperbolic) if and only if hκ is isotropic (resp. hyperbolic).

Proof. Let (A, σ) = Ad(h). By Proposition 6.5, we have that σF is isotropic if and only if σκ is

isotropic. Proposition 5.6 yields that hF is isotropic if and only if hκ is isotropic. Suppose that

hF is not hyperbolic. Then, by Proposition 3.4, we can write (V,h) ≃ (V1,h1) ⊥ (V2,h2), with

(V1,h1) (resp. (V2,h2)), an anisotropic (resp. hyperbolic) ε−hermitian space over (∆, θ). Since

h1 is anisotropic, (h1)F is also anisotropic, by Proposition 3.6. By the first part of the proof, we

obtain that (h1)κ is anisotropic. It follows that iw(hF) = iw(hκ), as desired. �

6.7 Theorem. Assume that 2 ∈ O×. Let (A, σ) be an O −algebra with involution. Then

ind((A, σ)F) = ind((A, σ)κ).

In particular, σF is isotropic (resp. hyperbolic) if and only if σκ is isotropic (resp. hyperbolic).

Proof. If Z(A) is not a domain, this is the statement of Corollary 6.4. So, assume that Z(A)
is a domain. Let (∆, θ) and (V,h) be as in Corollary 6.2. In order to prove the statement, by

Proposition 5.9, it suffices to show that ind(AF) = ind(Aκ) and iw(hF) = iw(hκ). The claim

about the Schur indices follows from Proposition 6.3 and the claim about the Witt indices from

Corollary 6.6. �

We can use Theorem 6.7 to prove a hyperbolicity result for ε−hermitian spaces overO−algebras

with involution without zero divisors, which will in turn be used in the proof of the isomorphism

result in Theorem 7.3.
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6.8 Proposition. Assume that 2 ∈ O×. Let (∆, θ) be an O −algebra with involution without

zero divisors. Let ε = ±1 and let (V,h) be an ε−hermitian space over (∆, θ). Excluding the case

θ = id∆ and ε = −1, there exists x ∈ V such that h(x, x) ∈ ∆×.

Proof. Let B = (e1, . . . , en) be a ∆−basis for V . If one of h(e1, e1), . . . ,h(en, en) ∈ ∆×, then we

are done. So, suppose that h(e1, e1), . . . , h(en, en) ∈ ∆ ∖ ∆×. Note that ∆ ∖ ∆× = m∆, since ∆

is a valuation ring by Proposition 6.1 (b). By the same result, the value groups of ∆ and O are

equal, and since θ ≠ id∆ if ε = −1, this implies that there exists d ∈ ∆× such that θ(d) = εd. Let C

be the matrix of h with respect to B. Since h is non–singular, there exist λ1, . . . , λn ∈ ∆ such that

the first entry of (dλ1, . . . ,dλn)C is d. It follows that d = ∑n
i=1 dλih(ei, e1) = h(∑n

i=1 eiθ(dλi), e1).
Let x =∑n

i=1 eiθ(dλi). If h(x, x) ∈ ∆×, then we are done. Otherwise, h(e1+ x, e1+ x) = h(e1, e1)+
h(x, x) + 2d ∈ ∆×, and we are also done. �

6.9 Corollary. Assume that 2 ∈ O×. Let (∆, θ) be an O −algebra with involution without zero

divisors. Let ε = ±1 and let (V,h) and (V ′,h′) be two ε−hermitian spaces over (∆, θ). Suppose

that there exists a scalar e ∈ O such that (V, eh)F ≃ (V ′,h′)F. If e ∉ F×2O×, then h and h′ are

hyperbolic.

Proof. If θ = id∆ and ε = −1, then h and h′ are hyperbolic by Proposition 3.4, since a skew–

hermitian space over (∆, id∆) is necessarily isotropic. So, for the rest of the proof, we assume

that ε = 1 if θ = id∆. Let B′ = (e′1, . . . , e
′
n) be a ∆−basis for V ′. Then B′ is a ∆F−basis for V ′F. By

assumption, there exists a bijective ∆F−linear map ϕ ∶ VF → V ′F such that for all x ∈ VF, we have

that ehF(x, x) = h′F(ϕ(x), ϕ(x)). By Proposition 6.8, there exists x ∈ V such that h(x, x) ∈ ∆×.
We write ϕ(x) = ∑n

i=1 e′iyi, with y1, . . . , yn ∈ D. Since ∆ is a valuation ring with the same value

group as O, by Proposition 6.1 (b), there exist a1, . . . ,an ∈ F such that aiyi ∈ ∆×. We may

assume that 3(a1) = max1⩽i⩽n(3(ai)). Then y = ϕ(x)a1 ∈ V ′. Since (ē′1, . . . , ē
′
n) is a ∆κ−basis

for V ′κ ≅ V ′/mV ′, and a1y1 ∉ m∆, we have that ȳ ∈ V ′/mV ′ is nonzero. Since e ∉ F×2O× and

h(x, x) ∈ ∆×, it follows that ea2
1 ∈ m∆, which implies that h′κ is isotropic.

Since 2 ∈ O×, it follows from Corollary 6.6 that h′F is isotropic as well. Suppose that h′F is non–

hyperbolic. Then hF is also non–hyperbolic, and by Proposition 3.4, we can decompose (V,h) ≃
(V1,h1) ⊥ (V2,h2) and (V ′,h′) ≃ (V ′1,h

′
1) ⊥ (V ′2,h′2), with (V1,h1) and (V ′1,h

′
1) anisotropic

ε−hermitian spaces over (∆, θ), and (V2,h2) and (V ′2,h
′
2) hyperbolic ε−hermitian spaces over

(∆, θ). It follows that

(V ′1,h
′
1)F ⊥ (V ′2,h′2)F ≃ (V1, eh1)F ⊥ (V2, eh2)F .

We have that (h′1)F and e(h1)F anisotropic by Proposition 3.6, and (h′2)F and e(h2)F hyper-

bolic. The Witt cancellation property for ε−hermitian spaces over division rings (see [15,

(I.6.3.4)]) yields that (V ′1,h
′
1)F ≃ (V1, eh1)F . However, the reasoning above now yields that

(h′1)F is isotropic, a contradiction. Hence, h′F is hyperbolic, and then clearly hF is hyperbolic as

well. Proposition 3.6 yields that h′ and h are already hyperbolic. �

6.10 Remark. J.–P. Tignol has suggested a different proof of Theorem 6.9, using results on

hermitian forms on graded algebras induced by value functions on algebras. This proof is

written out in [3, (4.26)–(4.28)].

We can use Proposition 6.8 to prove that, for ε−hermitian spaces over an O −algebra with invo-

lution without zero divisors, isometry can be detected rationally.

23



6.11 Proposition. Assume that 2 ∈ O×. Let (∆, θ) be an O −algebra with involution without

zero divisors. Let ε = ±1 and let (V,h) and (V ′,h′) be two ε−hermitian spaces over (∆, θ). If

(V ′,h′)F ≃ (V,h)F , then (V ′,h′) ≃ (V,h).

Proof. If θ = id∆ and ε = −1, then (V,h) and (V ′,h′) are both hyperbolic by Proposition 3.4.

Since (V ′,h′)F ≃ (V,h)F implies that dim∆(V) = dim∆(V ′), it follows that (V ′,h′) ≃ (V,h).
So, for the rest of the proof, we assume that θ ≠ id∆ if ε = −1. It follows from Proposi-

tions 6.8 and 3.2 that there exist α1, . . . , αn, α
′
1, . . . , α

′
n ∈ ∆

× such that h ≃ ⟨α1, . . . , αn⟩θ and

h′ ≃ ⟨α′1, . . . , α
′
n⟩θ. By assumption, we have that ⟨α1, . . . , αn⟩θF

≃ ⟨α′1, . . . , α
′
n⟩θF

. By mimicking a

proof of M. Kneser of a representation result for quadratic forms (see [5, (4.5)]), one can show

that there exist β′2, . . . , β
′
n ∈ ∆

× such that h′ ≃ ⟨α1, β
′
2, . . . , β

′
n⟩θ. The proof of this representation

result is written out in [3, (2.50)]. Since ∆F is a division algebra, the Witt cancellation prop-

erty of [15, (I.6.3.4)] yields that ⟨α2, . . . , αn⟩θF
≃ ⟨β′2, . . . , β

′
n⟩θF

. The statement now follows by

induction on dim∆(V). �

6.12 Remark. If we drop the Henselian assumption on O, then one can still show that (skew–)

hermitian spaces over an O−algebra with involution without zero divisors, that become isome-

tric over F, are already isometric over O. This follows from a general Witt cancellation result

by B. Keller (see [15, (VI.5.7.2)]), the proof of which is a lot more involved than the one above.

7. Good reduction

We fix fields F and L and a place λ ∶ F → L∞. We denote the valuation ring of F associated to

λ by O and its residue field by κ.

As mentioned in the introduction, if a symmetric bilinear space over F has good reduction with

respect to λ, then its adjoint algebra with involution is obtained by scalar extension from an

O−algebra with involution. Therefore, it is natural to make the following definition. Let (B, τ)
be an F−algebra with involution. Then we say that (B, τ) has good reduction with respect to λ

if there exists an O−algebra with involution (A, σ) such that (B, τ) ≅ (A, σ)F . We call (A, σ)
a λ−unimodular representation of (B, τ).
We can consider (A, σ)L as a residue algebra with involution for (B, τ). The question then na-

turally arises whether this residue algebra with involution is determined up to L−isomorphism.

We show that this is the case if char(L) ≠ 2, i.e. 2 ∈ O×. To this end, it suffices to show in

the case where O is Henselian and 2 ∈ O×, and given two O−algebras with involution (A, σ)
and (A′, σ′), that (A, σ)F ≅F (A

′, σ′)F implies (A, σ)κ ≅κ (A
′, σ′)κ. In fact, we will prove

something stronger in that case, namely that (A, σ)F ≅F (A
′, σ′)F implies (A, σ) ≅ (A′, σ′).

Using the results for Henselian valuation rings from section 6, we will extend the aforemen-

tioned isomorphism result to the case of general valuation rings in which 2 is invertible in the

forthcoming article [4], together with J. Van Geel. This type of isomorphism problems has been

studied in the literature for other kinds of rings as well (see Remark 7.4).

We start with a reduction of the isomorphism problem to the case of one algebra with two

involutions.

7.1 Proposition. Suppose that for allO−algebras with involution (A, σ) the following holds: if

σ′ is anO −linear involution onA such that there is a Z(AF)−isomorphism (A, σ)F → (A, σ′)F ,
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then (A, σ) ≅O (A, σ′). Then for all pairs ((A, σ), (A′, σ′)) of O−algebras with involution,

we have that (A, σ)F ≅F (A
′, σ′)F implies (A, σ) ≅O (A

′, σ′).

Proof. Let ϕ ∶ (A, σ)F → (A′, σ′)F be an isomorphism of F−algebras with involution. Then

ϕ restricts to an F−isomorphism Z(AF) → Z(A′F). Since Z(A) is the integral closure of R in

Z(AF), and Z(A′) is the integral closure of R in Z(A′F), by Proposition 2.3, and since ϕ is an

R−isomorphism, it follows that Z(ϕ(A)) = ϕ(Z(A)) = Z(A′). If we considerA′ as an Azumaya

algebra over Z(A) via ϕ, then ϕ ∶ AF → A′F is a Z(AF)−isomorphism. By Proposition 2.11 and

Corollary 2.12, it follows that there exists an isomorphism of Z(A)−algebras ψ ∶ A → A′. Let

σ̃ = ψ−1 ○ σ′ ○ ψ. Then ψ is an isomorphism of R−algebras with involution from (A, σ̃) to

(A′, σ′). We have that ϕ−1 ○ ψF ∶ (A, σ̃)F → (A, σ)F is an isomorphism of F−algebras with

involution that is Z(AF)−linear. The hypothesis now yields that (A, σ̃) ≅O (A, σ), and hence,

(A, σ) ≅O (A
′, σ′). �

Using the reduction in Proposition 7.1, it is easily seen that degenerate rationally isomorphic

O−algebras with involution are isomorphic.

7.2 Proposition. Let (A, σ) and (A′, σ′) be degenerate O −algebras with involution. Suppose

that (A, σ)F ≅F (A
′, σ′)F . Then (A, σ) ≅ (A′, σ′).

Proof. By Proposition 7.1, in order to show the claim we may assume that A′ = A. Since

Z(A) ≅ O×O by assumption, all involutions of the second kind on A are isomorphic over O
by Proposition 2.2. This yields the statement. �

We now prove the main theorem of this section.

7.3 Theorem. Assume that O is Henselian and that 2 ∈ O×. Let (A, σ) and (A′, σ′) be

O−algebras with involution. If (A, σ)F ≅F (A
′, σ′)F , then (A, σ) ≅O (A

′, σ′).

Proof. By Proposition 7.1, in order to show that (A, σ) ≅O (A
′, σ′), we may assume that

A′ = A and that (A, σ)F ≅Z(AF) (A, σ
′)F. If Z(A) is not a domain, then we are done by

Proposition 7.2. So, suppose that Z(A) is a domain. By Proposition 3.11, there exists s ∈ A×

such that σ(s) = s and σ′ = Int(s) ○ σ. By Proposition 3.9, there exist elements e ∈ F×

and g ∈ A×F such that es = σF(g)g. Let (∆, θ) and (V,h) be as in Corollary 6.2 such that

(A, σ) ≅Z(A) Ad(h). Identifying (A, σ) and Ad(h) through this isomorphism, we consider

s as element of End∆(V)× and g as element of End∆F
(VF)×. Then (A, σ′) = Ad(h′), where

h′ ∶ V ×V → ∆ is defined by h′(x, y) = h(s−1(x), y) for all x, y ∈ V . By Proposition 3.10, we have

that (V,h′)F ≃ (V, eh)F . Suppose that e ∉ F×2O×. Then Corollary 6.9 yields that h and h′ are

hyperbolic. It follows that (V,h)F ≃ (V,h′)F. Suppose that e ∈ F×2O×. Since (V,h′)F ≃ (V, eh)F
and (V,h)F ≃ (V,a2h)F , for all a ∈ F×, we get that (V,h′)F ≃ (V,uh)F for some u ∈ O×. So, in

both cases, there exists an element v ∈ O× such that (V,h′)F ≃ (V, vh)F . By Proposition 6.11, it

follows that (V,h′) ≃ (V, vh). Proposition 3.10 now yields that (A, σ) ≅O (A, σ′). �

7.4 Remark. Theorem 7.3 holds in particular for complete discrete valuation rings in which 2

is invertible. This result is not new. It is an (unpublished) result of J. Tits, see [21]. There, it is

used by Y. Nisnevich to prove a result on algebraic groups which implies, in the case where O
is a discrete valuation ring with 2 ∈ O×, that isomorphism of O−algebras with involution can

be detected over F. The latter result is in turn used by I. Panin to prove that isomorphism of

algebras with involution over a regular local ring containing a field of characteristic different

from 2, can be detected rationally (see [22]).
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Let F s be a separable closure of F and let Os be an extension of O to F s. Let G = {ρ ∈
Gal(F s/F) ∣ ρ(Os) = Os}. Then ((F s)G,Os ∩ (F s)G) is Henselian by [9, (3.2.15)]. We denote

it by (Fh,Oh); it is called a Henselisation of (F,O). By [9, (5.2.5)], (F,O) ⊂ (Fh,Oh) is an

immediate extension, i.e. (F,O) and (Fh,Oh) have isomorphic value groups and residue fields.

7.5 Corollary. Assume that 2 ∈ O×. Let (A, σ) and (A′, σ′) be O−algebras with involution. If

(A, σ)F ≅F (A′, σ′)F, then (A, σ)κ ≅κ (A
′, σ′)κ.

Proof. Let (Fh,Oh) be a Henselisation of (F,O). Since (A, σ)F ≅F (A′, σ′)F , it follows that

(A, σ)Fh ≅Fh (A′, σ′)Fh as well. Theorem 7.3 then yields that (A, σ)Oh ≅Oh (A′, σ′)Oh . Since

(F,O) ⊂ (Fh,Oh) is an immediate extension, the residue field of Oh is isomorphic to κ and

hence, by scalar extension to κ, we get that (A, σ)κ ≅κ (A′, σ′)κ. �

7.6 Corollary. Assume that 2 ∈ O×. Let (A, σ) and (A′, σ′) be O−algebras with involution. If

(A, σ)F ≅F (A′, σ′)F, then (A, σ)L ≅L (A′, σ′)L.

Proof. We have that L contains up to isomorphism the residue field of O. The statement now

follows immediately from Corollary 7.5. �

Let (B, τ) be an F−algebra with involution with good reduction with respect to λ. Let (A, σ)
be a λ−unimodular representation of (B, τ). If 2 ∈ O×, we set λ∗(B, τ) = (A, σ)L. By Corollary

7.6, λ∗(B, τ) is well defined up to L−isomorphism, and we call it the residue algebra with

involution of (B, τ).

We can now formulate Corollary 5.10 as follows.

7.7 Corollary. Assume that 2 ∈ O×. Let (B, τ) be an F−algebra with involution with good

reduction with respect to λ. Then ind(B, τ) ⊂ ind(λ∗(B, τ)).

7.8 Remark. The good reduction definition for algebras with involution does not completely

generalise the one for symmetric bilinear spaces, but it does so up to similarity. Namely, let

(V,b) be a symmetric bilinear space over F. Then Ad(b) has good reduction with respect to

λ if and only if (V,b) has up to similarity good reduction with respect to λ. The sufficient

condition is clear. Suppose conversely that there exists an O−algebra with involution (A, σ)
such that (A, σ)F ≅F Ad(b). Then A is split by Proposition 2.11, and by Proposition 3.8, there

exists a symmetric bilinear space (V , ϕ) over O such that (A, σ) ≅O Ad(ϕ). It follows from

[16, p. 1] that there exists u ∈ F× such that (V,ub) ≃ (V , ϕ)F .

Using Remark 7.8 together with Proposition 5.6, it is now easily seen that Theorem 1.1 also

follows from Corollary 7.7.
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