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Abstract. The radical of a field consists of all nonzero elements that are
represented by every binary quadratic form representing 1. Here, the radical
is studied in relation to local-global principles, and further in its behaviour
under quadratic field extensions. In particular, an example of a quadratic field
extension is constructed where the natural analogue to the square-class exact
sequence for the radical fails to be exact. This disproves a conjecture of Kijima
and Nishi.
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1. Introduction

Let K be a field of characteristic different from 2. Let K× denote the multi-
plicative group of K,

∑
K×2 the subgroup of nonzero sums of squares in K, and

DK〈1, a〉 the subgroup of K× consisting of the nonzero elements represented by
the binary quadratic form X2+aY 2, for any a ∈ K×. The object of study in this
article is the subgroup

R(K) =
⋂

a∈K×

DK〈1, a〉

of K×, called the (Kaplansky) radical of K. This object was first studied by
I. Kaplansky for fields over which there exists a unique quaternion division algebra
[7]. It was investigated in more generality by C.M. Cordes [4], who baptized it the
Kaplansky radical and observed that in several statements about quadratic forms
over K one can replace K×2 by R(K). We refer to [11, Chap. XII, Sect. 6 & 7]
for an introduction to the Kaplansky radical. By [11, Chap.XII, (6.1)] the radical
is further characterized as R(K) = {c ∈ K× | DK〈1,−c〉 = K×}.

In this article we continue the study of the radical. In Section 2 we consider the
position of the radical within the inclusions K×2 ⊆ R(K) ⊆ ∑

K×2. In Section 3
we study fields satisfying a local-global principle for quadratic forms and derive
a determination of the radical as the set of elements that are locally squares. In
Section 4 we revisit the behavior of the radical under quadratic field extensions
and disprove a conjecture by D. Kijima and M. Nishi discussed in [8], [9], and [6].
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2. Position of the radical

We have the inclusions K×2 ⊆ R(K) ⊆ DK〈1, 1〉 ⊆ ∑
K×2. We first con-

sider the two extremal cases for the position of the radical with respect to these
inclusions. We say that K is radical-free if R(K) = K×2.

2.1. Proposition. Assume that |K×/K×2| ≥ 4 and there exists t ∈ K× such that

DK〈1, t〉 = K×2 ∪ tK×2 and DK〈1,−t〉 = K×2 ∪−tK×2. Then K is radical-free.

Proof. We may choose an element a ∈ K× \ (K×2 ∪ tK×2). Then a /∈ DK〈1, t〉
and thus −t /∈ DK〈1,−a〉, whereby R(K) ⊆ DK〈1,−t〉 ∩DK〈1,−a〉 = K×2. �

By a Z-valuation we mean a valuation with value group Z. For a Z-valuation
v on K we denote by Kv the corresponding completion.

2.2. Corollary. Assume that K is henselian with respect to a Z-valuation whose

residue field is of characteristic different from 2 and not quadratically closed.

Then K is radical-free.

Proof. It follows from the hypotheses that |K×/K×2| ≥ 4. Moreover, any t ∈
K× that has odd value with respect to the given valuation will be such that
DK〈1, t〉 = K×2 ∪ tK×2 and DK〈1,−t〉 = K×2 ∪ −tK×2. Hence, the statement
follows from (2.1). �

By [11, Chap. XII, Sect. 6], if K is a finite extension of the field of p-adic
numbers Qp for a prime number p, then K is radical-free; for p 6= 2 this can be
seen from (2.2).

2.3. Proposition. The following are equivalent:

(i) R(K) =
∑

K×2;

(ii) R(K) = DK〈1, 1〉;
(iii) I2t K = 0;
(iv) every torsion 2-fold Pfister form over K is hyperbolic.

Proof. This follows from [11, Chap. XI, (4.1) and (4.5)] for n = 2. �

Condition (iv) corresponds to Property (A2) in the terminology of [5], treated
also in [11, Chap. XI, Sect. 4]. Following [9] we say that the field K is quasi-

pythagorean if it satisfies the equivalent conditions in (2.3). By [11, [Chap. XI,
(6.26)] this is further equivalent to having that the u-invariant of K is at most 2.
For example, by [11, Chap. XI, (4.10)], any extension of transcendence degree
one of a real closed field is quasi-pythagorean.

In [4] Cordes gave an example of a field K with K×2 ( R(K) (
∑

K×2 and
asked whether one can have such examples where K×/K×2 is finite. M. Kula [10]
and L. Berman [2] independently constructed such examples. We give another
example where K is a nonreal algebraic extension of Q having 8 square classes.
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2.4. Example. The integers −2,−5 and 7 are squares in Q3. Hence, Q3 contains
the field Q(

√
−2,

√
−5). Moreover, 7 is not a square in Q(

√
−2,

√
−5). Consider

the set of subfields of Q3 that are algebraic extensions of Q(
√
−2,

√
−5) and in

which 7 is not a square. By Zorn’s Lemma, we may choose a maximal element
K in this set. Then K is a field whose unique quadratic extension contained in
Q3 is K(

√
7). As the four square classes of Q3 are represented by 1, 2, 3 and 6,

it follows that the classes of 2, 3, 7 form an F2-basis of the square class group
K×/K×2. In particular |K×/K×2| = 8.

As Q×

3 = K×Q×2
3 we conclude that R(K) ⊆ R(Q3). As Q3 is radical-free,

we obtain that R(K) ⊆ K× ∩ Q×2
3 = K×2 ∪ 7K×2. Since 2 = 32 − 7, 3 =

(
√
−2 ·

√
−5)2−7 and 2 · 3 · 7 = 72−7, we see that DK〈1,−7〉 = K×. This shows

that R(K) = K×2 ∪ 7 K×2.

The number of square classes in (2.4) is minimal for having a nontrivial radical,
by the following statement.

2.5. Proposition. If K×2 ( R(K) (
∑

K×2 then |K×/K×2| ≥ 8.

Proof. By [11, Chap. XII, (6.10)], if R(K) has index two in K×, then K is real
and thus R(K) =

∑
K×2. Hence, if R(K) (

∑
K×2 then |K×/R(K)| ≥ 4. �

3. The radical as the group of local squares

In certain fields satisfying a local-global principle for isotropy of quadratic
forms, the radical consists of the elements that are squares locally.

3.1. Proposition. Let (K℘)℘∈P be a family of extension fields of K such that

K×
℘ = K×K×2

℘ for every ℘ ∈ P. Then

R(K) ⊆
⋂

℘∈P

(K× ∩ R(K℘)) .

This inclusion is an equality if every 3-dimensional anisotropic quadratic form ϕ
over K stays anisotropic over K℘ for some ℘ ∈ P.

Proof. For c ∈ R(K) and ℘ ∈ P, one has K×
℘ = K×K×2

℘ = DK〈1,−c〉K×2
℘ and

thus c ∈ R(K℘). This shows that R(K) ⊆ ⋂
℘∈P(K

× ∩ R(K℘)).

Consider now c ∈ K× \ R(K). As DK〈1,−c〉 ( K× there exists b ∈ K× such
that the form 〈1,−c,−b〉 over K is anisotropic. If ℘ ∈ P is such that 〈1,−c,−b〉
stays anisotropic over K℘, then we conclude that c /∈ R(K℘). Therefore, if every
3-dimensional anisotropic quadratic form ϕ over K stays anisotropic over K℘ for
some ℘ ∈ P, we obtain that R(K) =

⋂
℘∈P(K

× ∩ R(K℘)). �

3.2. Proposition. Let Ω be a set of Z-valuations of K whose residue fields are of

characteristic different from 2 and not quadratically closed. The following hold:

(a) One has R(K) ⊆ ⋂
v∈Ω(K

× ∩K×2
v ) .

(b) If
⋂

v∈Ω(K
× ∩K×2

v ) = K×2, then K is radical-free.
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(c) If for every 3-dimensional anisotropic quadratic form ϕ over K there exists

v ∈ Ω such that ϕ stays anisotropic over Kv, then R(K) =
⋂

v∈Ω(K
×∩K×2

v ).

Proof. For v ∈ Ω, we have K×
v = K×K×2

v as well as R(Kv) = K×2
v by (2.2).

Therefore (3.1) applies and yields (a) and (c). Moreover (a) implies (b). �

Using (3.2) we retrieve the well-known fact that any number field is radical-free:

3.3. Example. Let K be a global field of characteristic different from 2 and let Ω
denote the set of all non-dyadic Z-valuations of K. As K has only finitely many
archimedean and non-archimedean dyadic places, the Global-Square-Theorem (cf.
[13, (65:15)]) implies that

⋂
v∈Ω(K

× ∩K×2
v ) = K×2. Hence, (3.2) yields that K

is radical-free.

3.4. Proposition. Assume that K is a rational function field in one variable over

a field k. Let Ω denote the set of Z-valuations on K that are trivial on k. Then
⋂

v∈Ω

(K× ∩K×2
v ) = K×2 .

Moreover, if k(
√
−1) is not quadratically closed then K is radical-free.

Proof. Let T ∈ K be such that K = k(T ). Any square class of K is given by
a square-free polynomial f ∈ k[T ]. Note that v(f) is 0 or 1 for every v ∈ Ω
corresponding to an irreducible monic polynomial in k[T ]. If v(f) = 1 for one
such v, then f /∈ K×2

v . If v(f) = 0 for all such v, then f ∈ k. Finally, if
f ∈ k× \ k×2, then f /∈ K×2

v where v is the valuation given by T . This together
yields the claimed equality.

Assume now that k(
√
−1) is not quadratically closed. It follows that no finite

extension of k is quadratically closed. In fact, if there were a finite field extension
k′/k such that k′ is quadratically closed, then k′ would contain k(

√
−1) and

[11, Chap. VIII, (5.11)] would imply that k(
√
−1) is quadratically closed. In

particular, for v ∈ Ω, the residue field of v is not quadratically closed. Thus K
is radical-free, by (3.2). �

3.5. Corollary. Assume that K contains a subfield k such that K/k is purely

transcendental of transcendence degree at least two. Then K is radical-free.

Proof. Let X be a transcendence basis of K/k with K = k(X ). Choose x ∈ X
and put X ′ = X \ {x} and K0 = k(X ′). Then K = K0(x). As X ′ 6= ∅ by the
hypothesis, we have that K0(

√
−1) = k(

√
−1)(X ′) is not quadratically closed.

Hence, we conclude from (3.4) that R(K) = K×2. �

3.6. Question. Assume that K is a finitely generated field extension of transcen-

dence degree at least two of another field k. Is then K radical-free? Is every

non-square in K a non-square in the completion of a Z-valuation on K that is

trivial on k and whose residue-field is an algebraic function field over k?
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3.7. Theorem. Assume that K = k((X1, . . . , Xn)) for a field k of characteristic

different from 2. Let Ω denote the set of Z-valuations on K corresponding to the

localizations of k[[X1, . . . , Xn]] at its height one prime ideals. Then
⋂

v∈Ω

(K× ∩K×2
v ) = K×2 .

In particular, K is radical-free unless k is quadratically closed and n = 1.

Proof. Let A = k[[X1, . . . , Xn]]. Note that A is a unique factorization domain
by [12, (20.3) and (20.8)], and noetherian by [1, (10.27)]. In particular, by [12,
(20.1)] any height one prime ideal in A is principal.

Consider an arbitrary element a ∈ K×. We may write a = u · p1 . . . pr · x2

where u ∈ A×, x ∈ K×, r ≥ 0, and where p1, . . . , pr are pairwise non-associate
prime elements of A. Let c denote the constant term of u as a power series. Then
c−1u is a 1-unit in A, and therefore a square in A. Note that, for v ∈ Ω, we
have that v(a) is odd if v is associated to one of the prime elements p1, . . . , pr,
and v(a) is even otherwise. Assume now that a ∈ ⋂

v∈Ω(K
× ∩K×2

v ). Then v(a)
is even for every v ∈ Ω, whereby r = 0, a = ux2, and aK×2 = cK×2. Let w
be the Z-valuation associated to the irreducible element Xn in A. Note that
Kw = k((X1, . . . , Xn−1))((Xn)). It follows that c ∈ k× ∩ K×2

w = k×2, whereby
a ∈ K×2. This argument shows that

⋂
v∈Ω(K

× ∩K×2
v ) = K×2.

Furthermore, if n = 1, then K = k((X1)) and it follows by (2.2) that K is
radical-free unless k is quadratically closed. Assume now that n ≥ 2. The
residue field of any valuation v ∈ Ω is k-isomorphic to a finite extension of
k((X1, . . . , Xn−1)) and therefore is not quadratically closed. Using (3.2) the proven
equality yields that K is radical-free. �

4. The radical complex for a quadratic extension

We consider a finite field extension L/K and ask about the relations between
R(K) and R(L). After a first general result, we shall focus on the case of a
quadratic extension. Let NL/K : L× −→ K× be the group homomorphism given
by the norm map.

4.1. Proposition. We have NL/K(R(L)) ⊆ R(K).

Proof. For a ∈ K×, as R(L) ⊆ DL〈1, a〉 we have that NL/K(R(L)) ⊆ DK〈1, a〉,
by [11, Chap. VII, (4.3)]. Hence, NL/K(R(L)) ⊆

⋂
a∈K× DK〈1, a〉. �

For the remainder of this section we consider the case where L/K is a quadratic
field extension. We denote by ιL/K the inclusion homomorphism K× −→ L×.

4.2. Proposition. Assume that L ≃ K(
√
a) where a ∈ K×. For any b ∈ K× we

have that

DL〈1,−b〉 ∩K× = DK〈1,−b〉 ·DK〈1,−ab〉 .
Proof. See e.g. [3, (2.4)]. �
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The following was shown in [4, Cor. of Prop. 3; Prop. 5] as a partial analogue
to the square-class exact sequence in [11, Chap. VII, (3.8)].

4.3. Proposition. We have R(K) ⊆ R(L) and NL/K(K
×R(L)) ⊆ R(K). In

particular, the maps ιL/K and NL/K induce a complex

K×/R(K) −→ L×/R(L) −→ K×/R(K) ,

which is exact if and only if K×R(L) = N−1

L/K(R(K)).

Proof. Consider b ∈ K×. By the Norm Principle [11, Chap. VII (5.10)] we have
that

N−1

L/K(DK〈1,−b〉) = K×DL〈1,−b〉 .
Hence, ifDK〈1,−b〉 = K×, then DL〈1,−b〉 = L×. This shows that R(K) ⊆ R(L).

Since NL/K(R(L)) ⊆ R(K) by (4.1) and NL/K(K
×) ⊆ K×2, it follows that

NL/K(K
×R(L)) ⊆ R(K). The statement follows from this. �

There are examples of quadratic field extensions L/K where K is radical-
free whereas L is not. For example, in [2, Section 2], for any positive integer
n a real pythagorean field K is constructed such that L = K(

√
−1) satisfies

|L×/R(L)| = 4 and |R(L)/L×2| = 2n.
D. Kijima and M. Nishi [8] raised the question whether the complex in (4.3) is

always exact. We will show that the answer is negative by providing a construc-
tion that produces counter-examples. To simplify the discussion of the problem,
we say that the quadratic field extension L/K is radical-exact if the equality
K×R(L) = N−1

L/K(R(K)) holds, that is, if the complex in (4.3) is exact.

4.4. Corollary. Let L/K be a quadratic field extension such that NL/K is surjec-

tive. Then R(K) = K× ∩ R(L) and the maps ιL/K and NL/K induce a complex

1 −→ K×/R(K) −→ L×/R(L) −→ K×/R(K) −→ 1 ,

which is exact on the left and on the right. In particular, this is an exact sequence

provided that L/K is radical-exact.

Proof. Let a ∈ K× be such that L = K(
√
a). As NL/K is surjective, the norm

form 〈1,−a〉 of L/K is universal over K, whereby a ∈ R(K). This further shows
that the complex is exact on the right.

Consider an arbitrary element b ∈ K×. As a ∈ R(K), by [11, Chap. XII,
(6.3)] we have that DK〈1,−b〉 = DK〈1,−ab〉. Using (4.2) we thus obtain that
DK〈1,−b〉 = K× ∩ DL〈1,−b〉. Therefore, if the form 〈1,−b〉 is universal over
L, it is also universal over K. This shows that K× ∩ R(L) ⊆ R(K). Since by
(4.3) the opposite inclusion also holds, we obtain that R(K) = K× ∩ R(L). In
particular, the complex is exact on the left.

The rest follows from (4.3). �

The following recovers [9, (2.13)].
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4.5. Proposition. Assume that L ≃ K(
√
d) with d ∈ ∑

K×2. Then K is quasi-

pythagorean if and only if L quasi-pythagorean, and in this case L/K is radical-

exact.

Proof. This claimed equivalence is [5, (4.10); (4.5)] for n = 2. Assume now thatK
and L are quasi-pythagorean. Using the Norm Principle [11, Chap. VII, (5.10)],
we obtain that

N−1

L/K(R(K)) = N−1

L/K(DK〈1, 1〉) = K×DL〈1, 1〉 = K×R(L) ,

showing that L/K is radical-exact. �

4.6. Proposition. Let L/K be a quadratic field extension with R(L) = L×2.

Then R(K) ⊆ K× ∩ L×2 and K×R(L) ⊆ N−1

L/K(R(K)), and exactly one of the

two inclusions is strict.

Proof. Since R(L) = L×2 we have that

K×R(L) = K×L×2 = N−1

L/K(K
×2) .

By (4.3) we obtain that R(K) ⊆ K× ∩ R(L) = K× ∩ L×2. Let a ∈ K× be such
that L = K(

√
a). Then K× ∩L×2 = K×2 ∪ aK×2. Hence, either R(K) = K×2 or

R(K) = K×2 ∪ aK×2.
If R(K) = K×2, then R(K) ( K× ∩ L×2 and from the above we obtain that

K×R(L) = N−1

L/K(R(K)). Assume now that R(K) = K×2 ∪ aK×2. Then in

particular a ∈ DK〈1,−a〉 = NL/K(L
×). Hence, we obtain that

K×R(L) = N−1

L/K(K
×2) ( N−1

L/K(K
×2 ∪ aK×2) = N−1

L/K(R(K)) .
�

4.7. Lemma. Let a ∈ K× \ K×2. Let C be the set of isomorphism classes of

smooth conics over K having a K(
√
a)-rational point. For C ∈ C let K(C)

denote the corresponding function field, determined by C up to K-isomorphism.

Let K ′ be a field composite of all K(C) with C ∈ C. Then K× ⊆ DK ′〈1,−a〉 and
the extension K ′(

√
a)/K(

√
a) is purely transcendental.

Proof. The field K ′(
√
a) is the compositum of the function fields K(

√
a)(C) for

all C ∈ C. Since every C ∈ C is rational over K(
√
a), the field K ′(

√
a) is a

compositum of rational function fields in one variable over K(
√
a), thus a purely

transcendental extension of K(
√
a).

By construction, every smooth conic over K that has a K(
√
a)-rational point

has a K ′-rational point. Hence, for any b ∈ K× the ternary quadratic form
〈1,−a,−b〉 becomes isotropic over K ′. Thus K× ⊆ DK ′〈1,−a〉. �

4.8. Theorem. Let L/K be a quadratic field extension. There exists a field

extension K ′/K that is linearly disjoint to L/K and such that LK ′ is radical-

free, R(K ′) = K ′× ∩ (LK ′)×2, and LK ′/K ′ not radical-exact.
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Proof. Let L = K(
√
a) with a ∈ K×. We define a tower of extension fields (Ki)i∈N

of K by letting K0 = K and, Ki+1 the field composite over Ki of all Ki(C) where
C runs over the isomorphism classes of conics over Ki having a Ki(

√
a)-rational

point. Let K ′ denote the direct limit of the tower of fields (Ki)i∈N. For i ∈ N,
then K ′/Ki is linearly disjoint to any algebraic extension of Ki and, moreover,
by (4.7) Ki+1(

√
a)/Ki(

√
a) is purely transcendental and every element of K×

i is
represented overKi+1 by the form 〈1,−a〉. It follows thatK ′/K is linearly disjoint
to L/K, that the form 〈1,−a〉 is universal over K ′, and that K ′L = K ′(

√
a) is a

purely transcendental extension of K(
√
a), whereby K ′L is radical-free by (3.5).

Note that K ′×∩ (K ′L)×2 = K ′×2∪aK ′×2 ⊆ R(K ′). Using (4.6) we conclude that
R(K ′) = K ′× ∩ (K ′L)×2 and that K ′L/K ′ is not radical-exact. �
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