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ABSTRACT. The radical of a field consists of all nonzero elements that are
represented by every binary quadratic form representing 1. Here, the radical
is studied in relation to local-global principles, and further in its behaviour
under quadratic field extensions. In particular, an example of a quadratic field
extension is constructed where the natural analogue to the square-class exact
sequence for the radical fails to be exact. This disproves a conjecture of Kijima
and Nishi.
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1. INTRODUCTION

Let K be a field of characteristic different from 2. Let K* denote the multi-
plicative group of K, >_K*? the subgroup of nonzero sums of squares in K, and
Dk (1,a) the subgroup of K* consisting of the nonzero elements represented by
the binary quadratic form X2+ aY?, for any a € K*. The object of study in this
article is the subgroup

R(K) = () Dx(l,a)
acK*
of K*, called the (Kaplansky) radical of K. This object was first studied by
I. Kaplansky for fields over which there exists a unique quaternion division algebra
[7]. Tt was investigated in more generality by C.M. Cordes [4], who baptized it the
Kaplansky radical and observed that in several statements about quadratic forms
over K one can replace K*? by R(K). We refer to [11, Chap. XII, Sect. 6 & 7]
for an introduction to the Kaplansky radical. By [11, Chap.XII, (6.1)] the radical
is further characterized as R(K) = {c € K* | Dg (1, —c) = K*}.

In this article we continue the study of the radical. In Section 2 we consider the
position of the radical within the inclusions K** C R(K) C > K*?. In Section 3
we study fields satisfying a local-global principle for quadratic forms and derive
a determination of the radical as the set of elements that are locally squares. In
Section 4 we revisit the behavior of the radical under quadratic field extensions
and disprove a conjecture by D. Kijima and M. Nishi discussed in [8], [9], and [6].
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2. POSITION OF THE RADICAL

We have the inclusions K*? C R(K) C Dg(1,1) C S K*2. We first con-
sider the two extremal cases for the position of the radical with respect to these
inclusions. We say that K is radical-free if R(K) = K*2.

2.1. Proposition. Assume that |K*/K*?| > 4 and there exists t € K* such that
Dg(1,t) = K*2UtK*? and Dy (1, —t) = K** U —tK*?. Then K is radical-free.

Proof. We may choose an element a € K* \ (K*? UtK*?). Then a ¢ Dg(1,t)
and thus —t ¢ Dy (1, —a), whereby R(K) C D (1, —t) N D (1, —a) = K*2. O

By a Z-valuation we mean a valuation with value group Z. For a Z-valuation
v on K we denote by K, the corresponding completion.

2.2. Corollary. Assume that K is henselian with respect to a Z-valuation whose
residue field is of characteristic different from 2 and not quadratically closed.
Then K s radical-free.

Proof. It follows from the hypotheses that |K*/K*?| > 4. Moreover, any t €
K> that has odd value with respect to the given valuation will be such that
Dg(1,t) = K**UtK*?* and Dg(l,—t) = K*? U —tK*%. Hence, the statement
follows from (2.1). O

By [11, Chap. XII, Sect. 6], if K is a finite extension of the field of p-adic
numbers QQ, for a prime number p, then K is radical-free; for p # 2 this can be
seen from (2.2).

2.3. Proposition. The following are equivalent:

(i) R(K) = > K>
(i7) ( ) DK<1 1);
(i l;

(iv) every torswn 2-fold Pfister form over K 1is hyperbolic.
Proof. This follows from [11, Chap. XI, (4.1) and (4.5)] for n = 2. O

Condition (iv) corresponds to Property (Ay) in the terminology of [5], treated
also in [11, Chap. XI, Sect. 4]. Following [9] we say that the field K is quasi-
pythagorean if it satisfies the equivalent conditions in (2.3). By [11, [Chap. XI,
(6.26)] this is further equivalent to having that the u-invariant of K is at most 2.
For example, by [11, Chap. XI, (4.10)], any extension of transcendence degree
one of a real closed field is quasi-pythagorean.

n [4] Cordes gave an example of a field K with K** C R(K) C Y. K** and
asked whether one can have such examples where K*/K*? is finite. M. Kula [10]
and L. Berman [2] independently constructed such examples. We give another
example where K is a nonreal algebraic extension of (Q having 8 square classes.
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2.4. Example. The integers —2, —5 and 7 are squares in Q3. Hence, Q3 contains
the field Q(v/—2,+v/—5). Moreover, 7 is not a square in Q(v/—2,v/—5). Consider
the set of subfields of Q5 that are algebraic extensions of Q(v/—2,+/—5) and in
which 7 is not a square. By Zorn’s Lemma, we may choose a maximal element
K in this set. Then K is a field whose unique quadratic extension contained in
Qs is K(v/7). As the four square classes of Qs are represented by 1,2,3 and 6,
it follows that the classes of 2,3,7 form an Fy-basis of the square class group
K*/K*% In particular |[K*/K*?| = 8.

As QF = K*Q3? we conclude that R(K) C R(Qs). As Qs is radical-free,
we obtain that R(K) € K* N Q% = K*2UT7K*?. Since 2 = 32 -~ 7, 3 =
(V=2-v/=5)2—Tand 2-3-7=T7>—17, we see that Dg(1,—7) = K*. This shows
that R(K) = K*2U7 K*2

The number of square classes in (2.4) is minimal for having a nontrivial radical,
by the following statement.

2.5. Proposition. If K** C R(K) C Y K*? then |[K*/K*?| > 8.

Proof. By [11, Chap. XII, (6.10)], if R(K) has index two in K*, then K is real
and thus R(K) = >_K*2. Hence, if R(K) C Y. K*? then |K*/R(K)| > 4. O

3. THE RADICAL AS THE GROUP OF LOCAL SQUARES

In certain fields satisfying a local-global principle for isotropy of quadratic
forms, the radical consists of the elements that are squares locally.

3.1. Proposition. Let (K,),cp be a family of extension fields of K such that
K; = KXKg2 for every o € P. Then

R(K) C () (K" NR(K,)).
peP
This inclusion is an equality if every 3-dimensional anisotropic quadratic form ¢
over K stays anisotropic over K, for some o € P.

Proof. For ¢ € R(K) and o € P, one has K = K*K)* = Dg (1, —c¢)K* and
thus ¢ € R(K,). This shows that R(K) C () cp(K* NR(K)).

Consider now ¢ € K* \ R(K). As Dg(1,—c) C K* there exists b € K* such
that the form (1, —c, —b) over K is anisotropic. If p € P is such that (1, —c, —b)
stays anisotropic over K, then we conclude that ¢ ¢ R(K,). Therefore, if every

3-dimensional anisotropic quadratic form ¢ over K stays anisotropic over K, for
some p € P, we obtain that R(K) = (), cp(K* NR(K)). O

3.2. Proposition. Let () be a set of Z-valuations of K whose residue fields are of
characteristic different from 2 and not quadratically closed. The following hold:
(a) One has R(K) C (yeq(K* N K1?).

() If Nyea (KX N K%)= K*2, then K is radical-free.



4 KARIM JOHANNES BECHER AND DAVID B. LEEP

(¢) If for every 3-dimensional anisotropic quadratic form ¢ over K there exists
v € Q such that ¢ stays anisotropic over K,, then R(K) = (),eq (KX NK1?).

Proof. For v € Q, we have KX = K*K ? as well as R(K,) = K)? by (2.2).
Therefore (3.1) applies and yields (a) and (¢). Moreover (a) implies (b). O

Using (3.2) we retrieve the well-known fact that any number field is radical-free:

3.3. Example. Let K be a global field of characteristic different from 2 and let €2
denote the set of all non-dyadic Z-valuations of K. As K has only finitely many
archimedean and non-archimedean dyadic places, the Global-Square-Theorem (cf.
[13, (65:15)]) implies that (), o(K* N K}?) = K*%. Hence, (3.2) yields that K
is radical-free.

vES)

3.4. Proposition. Assume that K is a rational function field in one variable over
a field k. Let Q) denote the set of Z-valuations on K that are trivial on k. Then

(VKX NK;?) =K.

vES)

Moreover, if k(~/—1) is not quadratically closed then K is radical-free.

Proof. Let T € K be such that K = k(7). Any square class of K is given by
a square-free polynomial f € k[T]. Note that v(f) is 0 or 1 for every v € Q
corresponding to an irreducible monic polynomial in k[7]. If v(f) = 1 for one
such v, then f ¢ KX?. If v(f) = 0 for all such v, then f € k. Finally, if
f € k*\ k*% then f ¢ K)? where v is the valuation given by T. This together
yields the claimed equality.

Assume now that k(y/—1) is not quadratically closed. It follows that no finite
extension of k is quadratically closed. In fact, if there were a finite field extension
k'/k such that k' is quadratically closed, then A’ would contain k(y/—1) and
(11, Chap. VIII, (5.11)] would imply that k(y/—1) is quadratically closed. In
particular, for v € €, the residue field of v is not quadratically closed. Thus K
is radical-free, by (3.2). O

3.5. Corollary. Assume that K contains a subfield k such that K/k is purely
transcendental of transcendence degree at least two. Then K is radical-free.

Proof. Let X be a transcendence basis of K/k with K = k(X). Choose © € X
and put X' = X \ {z} and Ky = k(X’). Then K = Ky(z). As X’ # 0 by the
hypothesis, we have that Kq(v/—1) = k(v/—1)(X”’) is not quadratically closed.
Hence, we conclude from (3.4) that R(K) = K*. O

3.6. Question. Assume that K is a finitely generated field extension of transcen-
dence degree at least two of another field k. Is then K radical-free? Is every
non-square in K a non-square in the completion of a Z-valuation on K that is
trivial on k and whose residue-field is an algebraic function field over k¢
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3.7. Theorem. Assume that K = k(X1,...,X,)) for a field k of characteristic
different from 2. Let § denote the set of Z-valuations on K corresponding to the
localizations of k[ X1, ..., X,] at its height one prime ideals. Then

(VKX NK;?) =K.
vEQ
In particular, K is radical-free unless k is quadratically closed and n = 1.

Proof. Let A = k[Xy,...,X,]. Note that A is a unique factorization domain
by [12, (20.3) and (20.8)], and noetherian by [1, (10.27)]. In particular, by [12,
(20.1)] any height one prime ideal in A is principal.

Consider an arbitrary element a € K*. We may write a = u-p;...p, - x
where u € A*, x € K*, r > 0, and where pq,...,p, are pairwise non-associate
prime elements of A. Let ¢ denote the constant term of v as a power series. Then
¢ 'u is a 1-unit in A, and therefore a square in A. Note that, for v € Q, we
have that v(a) is odd if v is associated to one of the prime elements py, ..., p,,
and v(a) is even otherwise. Assume now that a € (), .o(K* N K ?). Then v(a)
is even for every v € €0, whereby r = 0, a = ux?, and aK*? = cK*%2. Let w
be the Z-valuation associated to the irreducible element X, in A. Note that
Ky = k(X1,..., X, 1)(Xn). It follows that ¢ € kX N K2 = k*2, whereby
a € K*?. This argument shows that (),.q (K N K %) = K*2.

Furthermore, if n = 1, then K = k((X;)) and it follows by (2.2) that K is
radical-free unless k is quadratically closed. Assume now that n > 2. The
residue field of any valuation v € () is k-isomorphic to a finite extension of
k(X1,...,X, 1) and therefore is not quadratically closed. Using (3.2) the proven
equality yields that K is radical-free. U

2

4. THE RADICAL COMPLEX FOR A QUADRATIC EXTENSION

We consider a finite field extension L/K and ask about the relations between
R(K) and R(L). After a first general result, we shall focus on the case of a
quadratic extension. Let Ny x : L* — K be the group homomorphism given
by the norm map.

4.1. Proposition. We have Ny /x(R(L)) C R(K).

Proof. For a € K*, as R(L) € Dy (1,a) we have that Ny, x(R(L)) € Dg(1,a),
by [11, Chap. VII, (4.3)]. Hence, Ny /k(R(L)) € Nyerx Dr (1, a). O

For the remainder of this section we consider the case where L/K is a quadratic
field extension. We denote by ¢7,x the inclusion homomorphism K* — L*.

4.2. Proposition. Assume that L ~ K(\/a) where a € K*. For any b € K* we
have that
DL<17 —b> N K> = DK<1, —b> : DK<1, —CLb) .

Proof. See e.g. [3, (2.4)]. O
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The following was shown in [4, Cor. of Prop. 3; Prop. 5| as a partial analogue
to the square-class exact sequence in [11, Chap. VII, (3.8)].

4.3. Proposition. We have R(K) C R(L) and Np/x(K*R(L)) € R(K). In
particular, the maps vk and Np /i induce a complex

K*/R(K) — L*/R(L) — K*/R(K),
which is exact if and only if K*R(L) = N;/IK(R(K)).

Proof. Consider b € K*. By the Norm Principle [11, Chap. VII (5.10)] we have
that

Ny (Dr(1,=b)) = K*Dpr(1,-b).

Hence, if Dg (1, —b) = K*, then Dy (1, —b) = L*. This shows that R(K) C R(L).
Since Np/x(R(L)) € R(K) by (4.1) and Ny x(K*) C K*2, it follows that
Npk(K*R(L)) € R(K). The statement follows from this. O

There are examples of quadratic field extensions L/K where K is radical-
free whereas L is not. For example, in [2, Section 2], for any positive integer
n a real pythagorean field K is constructed such that L = K(y/—1) satisfies
|L*/R(L)| = 4 and |R(L)/L*?| = 2".

D. Kijima and M. Nishi [8] raised the question whether the complex in (4.3) is
always exact. We will show that the answer is negative by providing a construc-
tion that produces counter-examples. To simplify the discussion of the problem,
we say that the quadratic field extension L/K is radical-ezact if the equality

K*R(L) = NL’/IK(R(K)) holds, that is, if the complex in (4.3) is exact.

4.4. Corollary. Let L/K be a quadratic field extension such that Ny is surjec-
tive. Then R(K) = K* NR(L) and the maps vk and Nk induce a complex

1 — K*/R(K) — L*/R(L) — K*/R(K) — 1,

which is exact on the left and on the right. In particular, this is an exact sequence
provided that L/K is radical-exact.

Proof. Let a € K* be such that L = K(\/a). As N,k is surjective, the norm
form (1, —a) of L/K is universal over K, whereby a € R(K). This further shows
that the complex is exact on the right.

Consider an arbitrary element b € K*. As a € R(K), by [11, Chap. XII,
(6.3)] we have that Dk (1, —b) = Dg(1,—ab). Using (4.2) we thus obtain that
Dg(l,—b) = K* N Dr(1,—b). Therefore, if the form (1, —b) is universal over
L, it is also universal over K. This shows that K* N R(L) C R(K). Since by
(4.3) the opposite inclusion also holds, we obtain that R(K) = K* N R(L). In
particular, the complex is exact on the left.

The rest follows from (4.3). O

The following recovers [9, (2.13)].
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4.5. Proposition. Assume that L ~ K(v/d) with d € S.K*?. Then K is quasi-
pythagorean if and only if L quasi-pythagorean, and in this case L/K is radical-
exact.

Proof. This claimed equivalence is [5, (4.10); (4.5)] for n = 2. Assume now that K
and L are quasi-pythagorean. Using the Norm Principle [11, Chap. VII, (5.10)],
we obtain that

Ny % (R(K)) = N (D (1,1)) = K*Dp(1,1) = K*R(L),
showing that L/K is radical-exact. t

4.6. Proposition. Let L/K be a quadratic field extension with R(L) = L*2.
Then R(K) € K* N L** and K*R(L) C NL’/IK(R(K)), and exactly one of the
two inclusions is strict.

Proof. Since R(L) = L*? we have that

K*R(L) = K*L*? = N} (K*).
By (4.3) we obtain that R(K) € K* NR(L) = K* N L*?. Let a € K* be such
that L = K(y/a). Then K* N L*? = K*? UaK*?. Hence, either R(K) = K*? or
R(K) = K*?UaK*2.

If R(K) = K*?, then R(K) C K* N L*? and from the above we obtain that
K*R(L) = NL_/lK(R(K)). Assume now that R(K) = K*? U aK*?. Then in
particular a € Dg (1, —a) = N x(L*). Hence, we obtain that

K*R(L) = N]:/lK(KXQ) & Ng/lK(KX2 U aKX2) - Ng/lK(R(K)) : O
4.7. Lemma. Let a € KX\ K*?. Let C be the set of isomorphism classes of
smooth conics over K having a K(\/a)-rational point. For C' € C let K(C)
denote the corresponding function field, determined by C' up to K-isomorphism.
Let K' be a field composite of all K(C) with C € C. Then K* C Dg/(1, —a) and
the extension K'(\/a)/K(\/a) is purely transcendental.

Proof. The field K'(y/a) is the compositum of the function fields K (y/a)(C) for
all C € C. Since every C' € C is rational over K(y/a), the field K'(y/a) is a
compositum of rational function fields in one variable over K (y/a), thus a purely
transcendental extension of K (y/a).

By construction, every smooth conic over K that has a K(y/a)-rational point
has a K’-rational point. Hence, for any b € K* the ternary quadratic form
(1, —a, —b) becomes isotropic over K’. Thus K* C Dg/(1, —a). O

4.8. Theorem. Let L/K be a quadratic field extension. There exists a field
extension K'/K that is linearly disjoint to L/K and such that LK’ is radical-
free, R(K') = K™ N (LK')*?, and LK'/K' not radical-ezact.
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Proof. Let L = K(y/a) with a € K*. We define a tower of extension fields (K;);en
of K by letting Ky = K and, K, the field composite over K; of all K;(C') where
C' runs over the isomorphism classes of conics over K; having a K;(y/a)-rational
point. Let K’ denote the direct limit of the tower of fields (K;);en. For i € N,
then K'/K; is linearly disjoint to any algebraic extension of K; and, moreover,
by (4.7) K;y1(v/a)/K;(y/a) is purely transcendental and every element of K* is
represented over K by the form (1, —a). It follows that K’/ K is linearly disjoint
to L/ K, that the form (1, —a) is universal over K’, and that K'L = K'(\/a) is a
purely transcendental extension of K (y/a), whereby K'L is radical-free by (3.5).
Note that K™ N (K'L)*? = K"?2UaK"*? C R(K"). Using (4.6) we conclude that
R(K') = K™ N (K'L)*? and that K'L/K' is not radical-exact. O
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