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1. Introduction

It was proven independently in [16, (3.3)] and [6] that a non-hyperbolic or-
thogonal involution on a central simple algebra of Schur index two over a field of
characteristic different from two cannot become hyperbolic after scalar extension
to a generic splitting field of the algebra. This was generalised in [12] by dropping
the assumption on the Schur index. In [16] a stronger version, addressing isotropy
in place of hyperbolicity, was proven, which is still open in the case of Schur index
larger than two.

In characteristic two, orthogonal involutions are never hyperbolic. This moti-
vates replacing hyperbolicity by metabolicity, as both condition are equivalent in
characteristic different from two. However, the splitting behaviour of orthogonal
involutions in characteristic two is quite particular. In [8] it is shown that a non-
metabolic orthogonal algebra with involution over a field of characteristic two and
of Schur index two may become metabolic over every splitting field of the algebra.

Orthogonal involutions correspond after splitting to symmetric bilinear forms,
up to similarity. In characteristic different from two, symmetric bilinear forms and
quadratic forms are equivalent concepts, but this is not the case in characteristic
two. This motivates the search for objects that correspond to quadratic forms in
an analogous way to how involutions correspond to symmetric bilinear forms. This
led to the introduction of quadratic pairs in [14, Section 5].

In this article we present a characteristic free version of the aforementioned re-
sult, with quadratic pairs in place of orthogonal involutions. This covers the original
result as the two concepts are equivalent in characteristic different from two. We
approach the problem by working directly with the involutions and associated maps
involved in quadratic pairs, rather than using that they are associated with hermit-
ian or generalised quadratic forms. The presentation is free from any assumption
on the characteristic of the base field. It also provides a different proof of the
statement in characteristic different from two.
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In [16] and [6], the statements and proofs are given in terms of hermitian forms
and exact sequences of the corresponding Witt groups, rather than in terms of invo-
lutions. The result for orthogonal involutions can be obtained by taking the adjoint
involution to the hermitian forms. It is possible to adapt this approach directly by
using the notion of generalised quadratic forms over an algebra with involution from
[2]. In our approach we emphasise the role of involutions as independently from
hermitian form theory as much as possible.

A major motivation for this work stems from the crucial role of the result within
the proof of the Pfister Factor Conjecture in [4] and of the corresponding charac-
teristic free version for quadratic pairs in [9].

2. Quadratic forms

In this section we recall the basic terminology and results we use from quadratic
form theory. We refer to [10, Chapters 1 and 2] as a general reference on symmetric
bilinear and quadratic forms.

For two objects α and β in a certain category, we write α ≃ β to indicate that
they are isomorphic, i.e. that there exists an isomorphism between them. This
applies in particular to algebras with involution or with quadratic pair, but also
to quadratic, bilinear and hermitian forms, where the corresponding isomorphisms
are usually called isometries.

Throughout, let F be a field. We denote the characteristic of F by char(F ) and
the multiplicative group of F by F×.

An F–bilinear map b : V ×V −→ F on a finite dimensional F–vector space V is
called degenerate if there exists x ∈ V \ {0} such that b(x, y) = 0 for all y ∈ V and
nondegenerate otherwise.

A bilinear form over F is a pair (V, b) where V is a finite dimensional F–vector
space and b is a nondegenerate F–bilinear map b : V ×V → F . Let ϕ = (V, b) be a
bilinear form over F . We say that ϕ is symmetric if b(x, y) = b(y, x) for all x, y ∈ V ,
and alternating if b(x, x) = 0 for all x ∈ V . We call dimF (V ) the dimension of ϕ
and denote it by dim(ϕ). For c ∈ F× we denote by cϕ the bilinear form (V, cb),
where (cb)(x, y) = c(b(x, y)) for x, y ∈ V . Through the map 0× 0 −→ 0 we obtain
a bilinear form of dimension zero, which we call the zero form.

Let ϕ = (V, b) and ψ = (W, b′) be two symmetric or alternating bilinear forms
over F . By an isometry of bilinear forms f : ϕ −→ ψ we mean an isomorphism of
F–vector spaces f : V −→ W such that b(x, y) = b′(f(x), f(y)) for all x, y ∈ V .
If such an isometry exists, we say ϕ and ψ are isometric and write ϕ ≃ ψ. We
say that ϕ and ψ are similar if there exists c ∈ F× such that ϕ ≃ cψ. The
orthogonal sum of ϕ and ψ is defined to be the pair (V ×W, b′′) where the map
b′′ : (V ×W )×(V ×W ) → F is given by b′′((v1, w1), (v2, w2)) = b(v1, v2)+b

′(w1, w2)
for all v1, v2 ∈ V and w1, w2 ∈ W , and we write ϕ ⊥ ψ = (V ×W, b′′). The tensor
product of ϕ and ψ is defined to be the pair (V ⊗W, b′′) where the F–bilinear map
b′′ : (V ⊗W )× (V ⊗W ) → F is given by b′′(v1⊗w1, v2⊗w2) = b(v1, v2) · b

′(w1, w2)
for all v1, v2 ∈ V and w1, w2 ∈W , and we write ϕ⊗ ψ = (V ⊗W, b′′).

Let ϕ = (V, b) be a bilinear form over F . We say ϕ is isotropic if there exists an
x ∈ V \{0} such that b(x, x) = 0. Otherwise we say that ϕ is anisotropic. We call
a subspace W ⊂ V totally isotropic (with respect to b) if b|W×W = 0. We call ϕ
metabolic if it has a totally isotropic subspace W with dimF (W ) = 1

2dim(ϕ). Note
that an alternating form is always metabolic.
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For a1, . . . , an ∈ F× we denote by 〈a1, . . . , an〉 the symmetric bilinear space
(Fn, b) where

b : Fn × Fn → F, (x, y) 7→

n
∑

i=1

aixiyi.

We call such a form diagonalised. A symmetric bilinear space that is isometric to
a diagonalised form is called diagonalisable.

For a ∈ F× we denote 〈1,−a〉 by 〈〈a〉〉. Let m ∈ N. For a1, . . . , am ∈ F× we
denote by 〈〈a1, . . . , am〉〉 the symmetric bilinear form 〈〈a1〉〉⊗. . .⊗〈〈am〉〉. We call any
bilinear form isometric to 〈〈a1, . . . , am〉〉 for some a1, . . . , am ∈ F a bilinear m–fold
Pfister form. We consider 〈1〉 as the 0-fold bilinear Pfister form.

By a quadratic form over F we mean a pair (V, q) of a finite dimensional F -vector
space V and a map q : V → F such that q(λx) = λ2q(x) for all x ∈ V and λ ∈ F ,
and such that bq : V × V → F, (x, y) 7−→ q(x + y)− q(x) − q(y) is F–bilinear and
nondegenerate. (Hence, q is assumed to be nonsingular in the sense of [10, p. 42].)
Then (V, bq) is a symmetric bilinear form over F , called the polar form of (V, q).

Consider a quadratic form ρ = (V, q) over F . We call dimF (V ) the dimension of
ρ and denote it by dim(ϕ). We say ρ is isotropic if q(x) = 0 for some x ∈ V \{0} and
anisotropic otherwise. By a totally isotropic subspace of ρ we mean an F–subspace
W of V such that q|W = 0. If there exists a totally isotropic subspace W of ρ such
that dimF (W ) = 1

2dim(ρ), we say that ρ is hyperbolic. We say that ρ represents an
element a ∈ F× if there exists an x ∈ V \{0} such that q(x) = a. For c ∈ F× let
cρ denote the quadratic form (V, cq), where (cq)(x) = c(q(x)) for x ∈ V . The map
0 −→ 0 yields a quadratic form of dimension zero, which we call the zero form.

Let ρ1 = (V, q) and ρ2 = (W, q′) be two quadratic forms over F . By an isometry
of quadratic forms φ : ρ1 −→ ρ2 we mean an isomorphism of F–vector spaces
f : V −→ W such that q = q′ ◦ f . If such an isometry exists, we say ρ1 and
ρ2 are isometric and write ρ1 ≃ ρ2. We say that ρ1 and ρ2 are similar if there
exists a c ∈ F× such that ρ1 ≃ cρ2. The orthogonal sum of the quadratic forms
ρ1 and ρ2 is defined to be pair (V × W, q′′) where the map q′′ : (V ×W ) → F
is given by q′′((v, w)) = q′(v) + q(w) for all v ∈ V and w ∈ W , and we write
ρ1 ⊥ ρ2 = (V ×W, q′′).

Let ϕ = (V, b) be a symmetric or alternating bilinear form over F and ρ = (W, q)
be a quadratic form over F . There is a natural F–linear map b⊗ q : V ⊗F W → F
determined by the rule that (b ⊗ q)(w ⊗ v) = b(v, v) · q(w) for all w ∈ W, v ∈ V ,
and (V ⊗F W, b⊗ q) is a quadratic form over F , called the tensor product of ϕ and
ρ and denoted ϕ⊗ ρ.

Consider a ∈ F with 4a 6= −1. We denote by 〈〈a]] the 2-dimensional quadratic
form (F × F, q) with

q : F × F → F, (x, y) 7→ x2 + xy + ay2.

Such a form is called a 1–fold quadratic Pfister form. Let m be a positive integer.
By an m–fold (quadratic) Pfister form over F we mean a quadratic form over F
that is isometric to the tensor product of a 1–fold quadratic Pfister form over F
and an (m−1)-fold bilinear Pfister form over F . For a1, . . . , am ∈ F we denote by
〈〈a1, . . . , am]] the m–fold Pfister form 〈〈a1, . . . , am−1〉〉 ⊗ 〈〈am]].

In the case where char(F ) 6= 2, the following is well known, see e.g. [10, (6.25)].

2.1. Proposition. Let ρ be an anisotropic quadratic Pfister form over F and ϕ a
symmetric bilinear form over F . Then there exist symmetric bilinear forms ϕ1 and
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ϕ2 over F with ϕ⊗ρ ≃ (ϕ1⊗ρ)⊥(ϕ2⊗ρ) such that ϕ1⊗ρ is anisotropic and ϕ2⊗ρ
is hyperbolic.

Proof. If ϕ ⊗ ρ is anisotropic or hyperbolic, then the statement holds trivially,
as we can choose each of the forms ϕ1 and ϕ2 to be ϕ or the zero form, in the
appropriate order. Assume now that ϕ ⊗ ρ is isotropic, but not hyperbolic. Then
ϕ is non-alternating and hence diagonalisable, by [10, (1.17)]. Let a1, . . . , an ∈
F× be such that ϕ ≃ 〈a1, . . . , an〉. As ϕ ⊗ ρ is isotropic, ρ represents elements
b′1, . . . , b

′
n ∈ F not all equal to zero and such that

∑n
i=1 aib

′
i = 0. For i = 1, . . . , n,

replacing among the elements b′1, . . . , b
′
n any 0 by 1, we obtain nonzero elements

b1, . . . , bn ∈ F× represented by ρ such that 〈a1b1, . . . , anbn〉 is isotropic. By [10,
(9.9)] for i = 1, . . . , n we have biρ ≃ ρ. Hence

ϕ⊗ ρ ≃ a1ρ⊥ . . .⊥anρ ≃ a1b1ρ⊥ . . .⊥anbnρ ≃ 〈a1b1, . . . , anbn〉 ⊗ ρ.

As 〈a1b1, . . . , anbn〉 is isotropic, there exists a symmetric bilinear form ϕ′ and an
element c ∈ F× such that 〈a1b1, . . . , anbn〉 ≃ ϕ′⊥〈c,−c〉. Hence

ϕ⊗ ρ ≃ ϕ′ ⊗ ρ⊥〈c,−c〉 ⊗ ρ .

As 〈c,−c〉⊗ρ is hyperbolic and dim(ϕ′) = dim(ϕ)−2, an induction argument shows
that ϕ is of the desired form. �

Recall that, if char(F ) 6= 2, then the discriminant of a quadratic form ρ over F

is defined as the class in F×/F×2 given by (−1)md with m =
(

dim(ρ)
2

)

and where d
is the determinant of the Gram matrix (with respect to an arbitrary basis) of the
associated polar form of ρ (see [10, (13.5)]).

Suppose that char(F ) = 2. For a ∈ F we write ℘(a) = a2 + a. Then ℘(F ) =
{℘(a) | a ∈ F} is an additive subgroup of F . For every quadratic form ρ over F there
exist n ∈ N, a1, . . . , an ∈ F and b1, . . . bn ∈ F× such that ρ ≃ b1〈〈a1]]⊥ . . .⊥bn〈〈an]]
(see [10, (7.32)]). Then the discriminant of ρ is given as the class of a1 + . . .+ an
in F/℘(F ) (see [10, (13.5)]).

In either case, the discriminant of a quadratic form ρ over F , denoted by ∆(ρ),
is an element of some group given by F together with one of the field operations,
either multiplication or addition, depending on the characteristic.

2.2. Proposition. Any hyperbolic quadratic form over F has trivial discriminant.
The converse holds for quadratic forms of dimension 2.

Proof. This follows from [10, (13.3), (13.4) and (13.5)]. �

2.3. Corollary. Let ρ be a non-hyperbolic two-dimensional quadratic form and ϕ
a symmetric bilinear form over F such that ϕ ⊗ ρ is hyperbolic. Then dim(ϕ) is
even.

Proof. By (2.2) the form ϕ ⊗ ρ has trivial discriminant, whereas the form ρ has
non-trivial discriminant. If char(F ) 6= 2, then ∆(ϕ ⊗ ρ) = ∆(ρ)dim(ϕ) in F×/F×2.
If char(F ) = 2, then ∆(ϕ⊗ ρ) = dim(ϕ) ·∆(ρ) in F/℘F . Hence, in either case we
conclude that dim(ϕ) is even. �

Let ρ = (V, q) be a quadratic form over F and let K/F be a field extension.
Then we write ρK = (V ⊗F K, qK) where the quadratic map qK : V ⊗F K −→ K
is determined by having qK(v ⊗ k) = k2q(v) for all v ∈ V and k ∈ K.

By a rational function field over F we mean a field extensionK/F such that there
exist n ∈ N and elements t1, . . . , tn ∈ K that are algebraically independent over F
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such that K = F (t1, . . . , tn); in this case K/F is finitely generated of transcendence
degree n.

2.4. Proposition. Let ρ be a quadratic form over F and K/F a rational function
field. Then ρK is isotropic (resp. hyperbolic) if and only if ρ is isotropic (resp.
hyperbolic).

Proof. This follows from [10, (7.15) and (8.5)]. �

Let ρ be a quadratic form over F . If dim(ρ) > 3 or if ρ is a anisotropic 2-
dimensional form, then we call the function field of the projective quadric over F
given by ρ the function field of ρ and denote it by F (ρ). In the remaining cases we
set F (ρ) = F . This agrees with the definition in [10, Section 22]. By [10, (22.9)]
then F (ρ)/F is a rational function field if and only if ρ is isotropic over F .

3. Algebras with involution

We refer to [17] as a general reference on finite-dimensional algebras over fields,
and for central simple algebras in particular, and to [14] for involutions.

Let A be an (associative) F–algebra. We denote the centre of A by Z(A). For
a field extension K/F , the K–algebra A ⊗F K is denoted by AK . For a ∈ A×

we denote by Int(a) : A −→ A the inner automorphism given by c 7→ aca−1. An
element e ∈ A is called an idempotent if e2 = e. An F–involution on A is an
F–linear map σ : A→ A such that σ(xy) = σ(y)σ(x) for all x, y ∈ A and σ2 = idA.

Assume now that A is finite-dimensional and simple (i.e. it has no nontrivial
two sided ideals). Then Z(A) is a field, and by Wedderburn’s Theorem (see [14,
(1.1)]) we have that A ≃ EndD(V ) for an F–division algebra D and a right D–
vector space V , and furthermore dimZ(A)(A) is a square number, whose positive
square root is called the degree of A and is denoted deg(A). The degree of D is
called the index of A and is denoted ind(A). We call A split if ind(A) = 1. We call
a field extension K/F a splitting field of A if AK is split. If Z(A) = F , then we
call the F–algebra A central simple. Two central simple F–algebras A and B are
called Brauer equivalent if A and B are isomorphic to endomorphism algebras of
two right vector spaces over the same F–division algebra.

If A is a central simple F -algebra let TrdA : A −→ F denote the reduced trace
map and NrdA : A −→ F the reduced norm map (see [14, (1.6)] for the definitions).

3.1. Lemma. If the F–algebra A is central simple, then for all x ∈ A and a ∈ A×

we have

TrdA(Int(a)(x)) = TrdA(x) .

Proof. By [14, (1.8)] we have that TrdA(bc) = TrdA(cb) for all b, c ∈ A. Hence
TrdA(a(xa

−1)) = TrdA((xa
−1)a) = TrdA(x) . �

An F–algebra with involution is a pair (A, σ) of a finite-dimensional F–algebra
A and an F–involution σ on A such that one has F = {x ∈ Z(A) | σ(x) = x}, and
such that either A is simple or A is a product of two simple F–algebras that are
mapped to one another by σ. In this situation, there are two possibilities: either
Z(A) = F , so that A is a central simple F–algebra, or Z(A)/F is a quadratic
étale extension with σ restricting to the nontrivial F–automorphism of Z(A). To
distinguish these two situations, we speak of algebras with involution of the first
and second kind : we say that the F–algebra with involution (A, σ) is of the first kind
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if Z(A) = F and of the second kind otherwise. For more information on involutions
of the second kind, also called unitary involutions, we refer to [14, Section 2.B].

Let (A, σ) be an F–algebra with involution. If Z(A) is a field, then A is a central
simple Z(A)–algebra, and we say that (A, σ) is split if A is split as Z(A)–algebra.
If Z(A) ≃ F ×F , then (A, σ) ≃ (B×Bop, ε) where B is a central simple F–algebra,
Bop is its opposite algebra, and ε is the map exchanging the components of elements
of B×Bop; in this situation we say that (A, σ) is split if B is split as an F–algebra.
Given a field extension K/F , we abbreviate σK = σ⊗ idK and obtain a K–algebra
with involution (A, σ)K = (AK , σK), and we call K a splitting field of (A, σ) if
(A, σ)K is split.

Let (A, σ) and (B, τ) be F–algebras with involution. Letting (σ ⊗ τ)(a ⊗ b) =
σ(a)⊗τ(b) for a ∈ A and b ∈ B determines an F–involution σ⊗τ on the F–algebra
A ⊗F B. We denote the pair (A ⊗F B, σ ⊗ τ) by (A, σ) ⊗ (B, τ). By a homo-
morphism of algebras with involution Φ : (A, σ) → (B, τ) we mean an F–algebra
homomorphism Φ : A → B satisfying Φ ◦ σ = τ ◦ Φ. An injective homomorphism
is called an embedding, a bijective homomorphism is called an isomorphism.

To every (nondegenerate) symmetric or alternating bilinear form ϕ = (V, b) over
F we can associate a split F–algebra with involution of the first kind in the following
way. There is a unique F–involution σ on EndF (V ) such that

b(x, f(y)) = b(σ(f)(x), y) for all x, y ∈ V and f ∈ EndF (V );

this involution σ is called the adjoint involution of b and denoted by adb. We
use the notation Ad(ϕ) = (EndF (V ), adb), and we call this the F–algebra with
involution adjoint to ϕ. Conversely, to any split F–algebra with involution of the
first kind (A, σ), we can find a bilinear form ϕ over F such that (A, σ) ≃ Ad(ϕ)
(see [14, (2.1)]). Let ϕ and ψ be symmetric bilinear forms over F . Then it is easy
to show that Ad(ϕ ⊗ ψ) ≃ Ad(ϕ) ⊗ Ad(ψ). Further, if ϕ and ψ are similar then
Ad(ϕ) = Ad(ψ).

Let (A, σ) be an F–algebra with involution. We say (A, σ) is isotropic if there
exists an element a in A\{0} such that σ(a)a = 0. If no such element exists, we
call (A, σ) anisotropic. We call an idempotent e ∈ A hyperbolic (resp. metabolic)
with respect to σ if σ(e) = 1 − e (resp. σ(e)e = 0 and dimF eA = 1

2dimFA).
Any hyperbolic idempotent is in particular metabolic (see [7, (4.9)]). We say that
(A, σ) is hyperbolic (resp. metabolic) if A contains a hyperbolic (resp. metabolic)
idempotent with respect to σ.

3.2. Proposition. Let ϕ be a symmetric or alternating bilinear form over F . Then
ϕ is metabolic (resp. isotropic) if and only if Ad(ϕ) is metabolic (resp. isotropic).

Proof. See [7, (4.8)] for the statement on metabolicity; we show the statement on
isotropy. Let ϕ = (V, b). Suppose that ϕ is isotropic. Let x ∈ V \{0} be such
that b(x, x) = 0. We may choose f ∈ EndF (V )\{0} such that f(V ) = Fx. Then
b((adb(f) ◦ f)(y), z) = b(f(y), f(z)) = 0 for all y, z ∈ V . As ϕ is nondegenerate,
it follows that adb(f) ◦ f = 0. Therefore Ad(ϕ) is isotropic. Conversely, suppose
that there exists f ∈ EndF (V )\{0} with adb(f) ◦ f = 0. We choose x ∈ V \{0}
with f(x) 6= 0 and obtain that b(f(x), f(x)) = b((adb(f) ◦ f)(x), x) = 0. Hence ϕ
is isotropic. �
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Let (A, σ) be an F–algebra with involution. The F–subspaces of A of symmetric,
skew-symmetric, and alternating elements, respectively, are defined as follows:

Sym(A, σ) = {a ∈ A | σ(a) = a},

Skew(A, σ) = {a ∈ A | σ(a) = −a},

Alt(A, σ) = {a− σ(a) | a ∈ A}.

Any split F–algebra with involution of the first kind is adjoint to a (nondegen-
erate) symmetric or alternating bilinear form over F . One divides algebras with
involutions of the first kind into two types : An F–algebra with involution of the
first kind is symplectic if it becomes adjoint to an alternating bilinear form over
some splitting field, and orthogonal otherwise. In characteristic different from two,
these types are distinguished by the dimensions of the spaces of symmetric and of
alternating elements, whereas in characteristic two these dimensions do not depend
on the type (see [14, (2.6)]).

4. Semi-traces and quadratic pairs

In this section we revisit quadratic pairs and assemble a couple of partially known
results in a consistent setup. Quadratic pairs on a central simple algebra consist of
an involution and a certain map defined on the elements that are symmetric under
this involution. We first take a closer look at these maps.

Let (A, σ) be an F–algebra with involution of the first kind. We call an F–linear
map f : Sym(A, σ) → F a semi–trace on (A, σ) if it satisfies f(x+σ(x)) = TrdA(x)
for all x ∈ A.

4.1. Lemma. Let ℓ ∈ A with ℓ+ σ(ℓ) = 1. Then for all x ∈ A we have

TrdA(x) = TrdA(ℓ(x+ σ(x))) .

Proof. We use that TrdA : A −→ F is F -linear and satisfies TrdA(ab) = TrdA(ba)
for all a, b ∈ A, and further that by [14, (2.3)] we have TrdA(a) = TrdA(σ(a)) for
any a ∈ A. This yields that

TrdA(ℓ(x+σ(x))) = TrdA(ℓx)+TrdA(ℓσ(x)) = TrdA(ℓx)+TrdA(σ(ℓ)x) = TrdA(x)

for all x ∈ A. �

By [14, (2.6)], if char(F ) = 2 then an element ℓ ∈ A with ℓ+σ(ℓ) = 1 exists if and
only if (A, σ) is symplectic. In any case, given an element ℓ ∈ A with ℓ+ σ(ℓ) = 1,
we write

Trdσ,ℓA : Sym(A, σ) −→ F, x 7→ TrdA(ℓx) .

4.2. Proposition. For any ℓ ∈ A with ℓ+σ(ℓ) = 1, the map Trdσ,ℓA is a semi–trace
on (A, σ). Conversely, every semi–trace on (A, σ) is of this form. For ℓ, ℓ′ ∈ A with

ℓ+ σ(ℓ) = ℓ′ + σ(ℓ′) = 1, we have Trdσ,ℓA = Trdσ,ℓ
′

A if and only if ℓ′ − ℓ ∈ Alt(A, σ).

Proof. The first statement is obvious from (4.1). The remaining parts of the state-
ment are proven in [14, (5.7)]; although there the case where char(F ) 6= 2 and
(A, σ) is symplectic is excluded, the same proof applies. �

4.3. Proposition. Let (A, σ) be an F–algebra with involution of the first kind.
If char(F ) 6= 2, then the unique semi–trace on (A, σ) is given by 1

2 · TrdA|Sym(A,σ).
If char(F ) = 2 and (A, σ) is orthogonal, then there exists no semi–trace on (A, σ).
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Proof. Note that the existence of a semi–trace on (A, σ) implies that TrdA vanishes
on Skew(A, σ). Hence, if char(F ) = 2 and if there exists a semi–trace on (A, σ),
then TrdA vanishes on Sym(A, σ), and therefore (A, σ) is symplectic, by [14, (2.6)].

Assume now that char(F ) 6= 2. We may apply (4.2) with ℓ = 1
2 to obtain a

semi–trace on (A, σ). Given a semi-trace f on (A, σ), for all a ∈ Sym(A, σ) we have
a = 1

2 (a+ σ(a)) and thus f(a) = 1
2f(a+ σ(a)) = 1

2 · TrdA(a). �

An F–algebra with quadratic pair is a triple (A, σ, f) where (A, σ) is an F–
algebra with involution, assumed to be orthogonal if char(F ) 6= 2 and symplectic
if char(F ) = 2, and where f is a semi–trace on (A, σ). Given two F–algebras with
quadratic pair (A, σ, f) and (B, τ, g), a homomorphism of F–algebras with quadratic
pair Φ : (A, σ, f) → (B, τ, g) is a homomorphism of the underlying F–algebras with
involution satisfying f = g ◦ Φ; if Φ is bijective then it is an isomorphism.

We describe following [14, Sect. 5] how a (nonsingular) quadratic form gives rise
to an adjoint algebra with quadratic pair. Let ρ = (V, q) be a quadratic form over
F with polar form (V, bq). By declaring

(v1 ⊗ w1) ∗ (v2 ⊗ w2) = bq(w1, v2) · (v1 ⊗ w2) for v1, v2, w1, w2 ∈ V

a product ∗ is defined on V ⊗F V , which makes V ⊗F V into an F–algebra. By
declaring σ(v ⊗ w) = w ⊗ v for v, w ∈ V we obtain an F–involution σ on V ⊗F V .
Then by [14, (5.1)], the F–linear map Φ : V ⊗F V → EndF (V ) determined by

Φ(u⊗ v)(w) = bq(v, w)u for u, v, w ∈ V

yields an isomorphism of F–algebras with involution Ad(V, bq) −→ (V ⊗F V, σ).
According to [14, (5.11)] there is a unique semi–trace fq : Sym(Ad(V, bq)) → F
such that

fq(Φ(v ⊗ v)) = q(v) for v ∈ V,

which yields an F–algebra with quadratic pair

Ad(ρ) = (EndF (V ), adbq , fq) ,

called the adjoint quadratic pair to ρ. We say that a quadratic pair (A, σ, f) is
adjoint to a quadratic form ρ if (A, σ, f) ≃ Ad(ρ). By [14, (5.11)], to any split F–
algebra with quadratic pair (A, σ, f), there exists a (nonsingular) quadratic form ρ
over F such that (A, σ, f) ≃ Ad(ρ). If ρ1 and ρ2 are similar quadratic forms over
F we have Ad(ρ1) ≃ Ad(ρ2).

We recall the construction of the tensor product of an F–algebra with involution
of the first kind, assumed orthogonal if char(F ) 6= 2, with an F–algebra with
quadratic pair. This has a close relation to the tensor product of a symmetric
bilinear form with a quadratic form.

4.4. Proposition. Let (A, σ) and (C, τ) be F–algebras with involution of the first
kind and let f be a semi-trace on (A, σ). Then there is a unique semi-trace f∗ on
Sym((C, τ)⊗ (A, σ)) such that f∗(c⊗ a) = TrdC(c) · f(a) for all a ∈ Sym(A, σ) and
c ∈ Sym(C, τ).

Proof. The statement follows from (4.3) if char(F ) 6= 2. See [14, (5.18)] for the
proof in the case where char(F ) = 2. �

Let (C, τ) be an F–algebra with involution of the first kind and such that τ
is orthogonal if char(F ) 6= 2. Then by [14, (2.23)], (C, τ) ⊗ (A, σ) is orthogonal
if char(F ) 6= 2 and symplectic if char(F ) = 2. Therefore the semi-trace f∗ on
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(C, τ) ⊗ (A, σ) characterised in (4.4) makes (C ⊗F A, τ ⊗ σ, f∗) into an F–algebra
with quadratic pair, which we also denote by (C, τ) ⊗ (A, σ, f).

4.5. Proposition. Let ϕ be a symmetric bilinear form and ρ a quadratic form
over F . Then Ad(ϕ ⊗ ρ) ≃ Ad(ϕ)⊗Ad(ρ).

Proof. See [14, (5.19)] �

We now describe how the notions of isotropy and hyperbolicity carry over from
quadratic forms to algebras with quadratic pairs.

Let (A, σ, f) be an F–algebra with quadratic pair. We call (A, σ, f) isotropic if
there exists an element s ∈ Sym(A, σ) \ {0} such that s2 = 0 and f(s) = 0, and
anisotropic otherwise. We call an idempotent e ∈ A hyperbolic with respect to σ
and f if σ(e) = 1 − e and f(eA ∩ Sym(A, σ)) = {0}. We say that the F–algebra
with quadratic pair (A, σ, f) is hyperbolic if A contains a hyperbolic idempotent
with respect to σ and f ; note that this implies that the F -algebra with involution
(A, σ) is hyperbolic.

4.6. Proposition. A quadratic form ρ over F is hyperbolic if and only if the adjoint
F–algebra with quadratic pair Ad(ρ) is hyperbolic.

Proof. See [14, (6.13)]. �

4.7. Lemma. Let (A, σ, f) be an F–algebra with quadratic pair. Then (A, σ, f) is
hyperbolic if and only if f = Trdσ,eA for some idempotent e ∈ A.

Proof. See [14, (6.14)]. �

4.8. Proposition. Let (A, σ, f) be an F–algebra with quadratic pair and (C, τ) an
F–algebra with involution. Assume that (C, τ) is orthogonal if char(F ) 6= 2. If
(C, τ) is metabolic or (A, σ, f) is hyperbolic, then (C, τ) ⊗ (A, σ, f) is hyperbolic.

Proof. If (C, τ) is metabolic, then (C, τ) ⊗ (A, σ, f) is hyperbolic by [5, (A.5)].
Assume that (A, σ, f) is hyperbolic. Hence, by (4.7) there exists an idempotent
e ∈ A such that f = Trdσ,eA . Let f∗ be the semi-trace of the F–algebra with
quadratic pair (C, τ) ⊗ (A, σ, f). Since TrdC⊗FA = TrdC ⊗ TrdA, it follows from
(4.4) that

f∗(x) = (TrdC ⊗ Trdσ,eA )(x) = Trdτ⊗σ,1⊗e
C⊗FA (x)

for all x ∈ Sym(C, τ) ⊗ Sym(A, σ). Using again (4.4) we conclude that

f∗ = Trdτ⊗σ,1⊗e
C⊗FA ,

and as 1⊗ e is idempotent, (4.7) yields that (C, τ) ⊗ (A, σ, f) is hyperbolic. �

4.9. Proposition. Let ϕ1 and ϕ2 be symmetric bilinear forms over F . If (A, σ) is
an F–algebra with involution such that Ad(ϕi)⊗(A, σ) is hyperbolic for i = 1, 2, then
Ad(ϕ1 ⊥ ϕ2)⊗ (A, σ) is hyperbolic. If (A, σ, f) is an F–algebra with quadratic pair
such that Ad(ϕi)⊗ (A, σ, f) is hyperbolic for i = 1, 2, then Ad(ϕ1 ⊥ ϕ2)⊗ (A, σ, f)
is hyperbolic.

Proof. Let (A, σ) be an F–algebra with involution. Let ϕ = ϕ1 ⊥ ϕ2 and let e1
and e2 be the projections from ϕ onto ϕ1 and ϕ2, respectively. Set (B, τ) = Ad(ϕ).
Hence, e1 and e2 are symmetric idempotents in (B, τ) with e1 + e2 = 1B and such
Ad(ϕi) ≃ (eiBei, τi) where τi = τ |eiBei , for i = 1, 2.
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Assume now that (eiBei, τi)⊗(A, σ) is hyperbolic for i = 1, 2. Hence, for i = 1, 2
there exists a hyperbolic idempotent ai in (eiBei ⊗F A, τi ⊗ σ). We consider B as
an F–subalgebra of B ⊗A and set a = a1 + a2 in B ⊗A. Then

(σ ⊗ τ)(f) = e1 ⊗ 1A − a1 + e2 ⊗ 1A − a2 = 1B⊗A − a ,

showing that (B, τ) ⊗ (A, σ) is hyperbolic.
Assume now that we are given a semi-trace f such that (A, σ, f) is an F–algebra

with quadratic pair. Let

(C, γ, g) = (B, τ)⊗ (A, σ, f) .

Assume further that Ad(ϕi)⊗(A, σ, f) is hyperbolic for i = 1, 2. Then in particular,
Ad(ϕi)⊗ (A, σ) is hyperbolic. Hence, we can choose e1, e2, a1, a2 ∈ B⊗A as above
such that a = a1 + a2 is an idempotent with (τ ⊗ σ)(a) = 1− a, and such that we
further have

(TrdB ⊗ f) (aC ∩ Sym(Ad(ϕi)⊗ (A, σ))) = {0}.

We want to show that g(eC ∩ Sym(C, γ)) = {0}. Since e1 + e2 = 1B, for all
x ∈ B we have x = e1xe1 + e1xe2 + e2xe1 + e2xe2. Then, as e1e2 = e2e1 = 0, we
have

TrdB(e1xe2) = TrdB(e2e1x) = 0 = TrdB(e1e2x) = TrdB(e2xe1).

Therefore, as TrdB is an F–linear map, we have

TrdB(x) = TrdB(e1xe1) + TrdB(e2xe2) for all x ∈ B.

It follows that

g|Sym(C,γ) = TrdB ⊗ f |Sym(Ad(ϕ1)⊗(A,σ)) +TrdB ⊗ f |Sym(Ad(ϕ2)⊗(A,σ)).

The result then follows. �

4.10. Remark. Note that statement and proof of (4.9) remain valid if ‘symmetric
bilinear forms’ are replaced by ‘λ–hermitian forms’ over an F–algebra with involu-
tion of the first kind (see Section 6 for the definition).

Given a field extension K/F , we denote by (A, σ, f)K the K–algebra with qua-
dratic pair (AK , σK , fK) where fK = f ⊗ idK : Sym(A, σ)K → K. Note that for a
field extension K/F and a quadratic form ρ over F we have Ad((ρK) ≃ (Ad(ρ))K .

5. Quaternion algebras

For a ∈ F with 4a 6= −1 we denote by Fa the étale quadratic extension
F [T ]/(T 2 − T − a) of F . If T 2 − T − a is reducible over F then Fa ≃ F × F ,
otherwise Fa is a field. The linear substitution T 7→ 1 − T induces the (unique)
nontrivial F -automorphism τ of Fa, and the pair (Fa, τ) becomes a unitary F–
algebra with involution. We use the notation [a)F for (Fa, τ).

With the norm map ν : Fa → F, x 7→ τ(x)x we obtain a 2-dimensional quadratic
space (Fa, ν) over F , which is isometric to 〈〈a]]. Note that, by [1, Chap. IX, Lemma
8], every separable quadratic field extension of F is F -isomorphic to Fa for some
a ∈ F with 4a 6= −1.

An F–quaternion algebra is a central simple F -algebra of degree 2. Any F–
quaternion algebra has a basis (1, u, v, w) such that

u2 = u+ a, v2 = b and w = uv = v − vu ,(5.1)
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for some a ∈ F with 4a 6= −1 and b ∈ F× (see [1, Chap. IX, Thm. 26]); such
a basis is called a quaternion basis. Note that the F–subalgebra F [u] = F ⊕ uF
is isomorphic to Fa, and Int(v) restricts to the non-trivial F–automorphism on
F [u]. Conversely, given a ∈ F with 4a 6= −1 and b ∈ F×, the above relations
determine an F–quaternion algebra, which we denote by [a, b)F . By the above, up
to isomorphism any F–quaternion algebra is of this form.

Let Q be an F–quaternion algebra. By [14, (2.21)], the map γ : Q → Q,
x 7→ TrdQ(x) − x is the unique symplectic involution on Q; it is called the canon-
ical involution of Q. With an F–quaternion basis (1, u, v, w) of Q as above, γ is
determined by the conditions that γ(u) = 1 − u and γ(v) = −v. By [14, (2.21)]
every orthogonal involution σ on Q is of the form σ = Int(s) ◦ γ for an invertible
element s ∈ Skew(Q, γ) \ F .

Considering Q as an F -vector space, the pair (Q,NrdQ) is a 4–dimensional qua-
dratic form over F . If Q ≃ [a, b)F for some a ∈ F with 4a 6= −1 and b ∈ F×, then
(Q,NrdQ) ≃ 〈〈b, a]].

5.2. Proposition. Let Q be an F–quaternion algebra. Then Q is split if and only
if (Q,NrdQ) is hyperbolic.

Proof. See [10, (12.5)]. �

We denote by F (Q) the function field of the quadratic form (Q,NrdQ).

5.3. Proposition. Let Q be an F–quaternion algebra and let ρ be an anisotropic
even dimensional quadratic form over F . Then ρF (Q) is hyperbolic if and only if
ρ ≃ ϕ⊗ (Q,NrdQ) for some alternating or symmetric bilinear form ϕ over F .

Proof. If the 2–fold Pfister form (Q,NrdQ) is an anisotropic, then the result follows
from [10, (23.6)]. Otherwise (Q,NrdQ) is hyperbolic by (5.2), so that F (Q)/F is a
rational function field over F , and then the result follows from (2.4). �

Let a ∈ F with 4a 6= −1 and b ∈ F×. We consider the quaternion algebra
Q = [a, b)F , constructed from a basis (1, u, v, w) through the relations in (5.1).
Let γ denote the canonical involution on Q. Then τ = Int(v) ◦ γ is an orthogonal
involution on Q, by [14, (2.21)]; it is characterised by the rules

τ(u) = u and τ(v) = −v .(5.4)

We denote by [a |· b)F the F–algebra with involution (Q, τ).

5.5. Proposition. If a ∈ F× then Ad(〈〈a〉〉) ≃ [0 |· a)F .

Proof. Let 〈〈a〉〉 = (V, b) and let x, y ∈ V be such that b(x, y) = 0, b(x, x) = 1
and b(y, y) = −a. Let f, g ∈ EndF (V ) be given by f(x) = x, f(y) = 0, g(x) = y
and g(y) = ax. Then fg + gf = g, f2 = f and g2 = a · idF . Hence (1, f, g, fg)
is a quaternion basis of [0, a)F . For w, z ∈ V we have b(f(w), z) = b(w, f(z))
and b(g(w), z) = −b(w, g(z)). Hence, adb(f) = f and adb(g) = −g. Hence, the
statement follows using (5.4). �

Let σ be the F–involution on Q determined by

σ(u) = 1− u and σ(v) = v .

As 4a 6= −1 and hence (2ℓ− 1)2 = 4a+1 ∈ F×, we have that 2ℓ− 1 ∈ Q×, and we
obtain that σ = Int(2u− 1) ◦ γ; in particular, σ = γ in the case where char(F ) = 2.
We denote by [a ·| b)F the F–algebra with involution (Q, σ). We obtain a canonical
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homomorphism of F–algebras with involution [a)F −→ [a ·| b)F , and it is injective.
Furthermore, as σ(u) = 1− u, by (4.2) the map

f : Sym(Q, σ) −→ F, x 7→ TrdQ(ux)

is a semi-trace on (Q, σ). This gives rise to an F–algebra with quadratic pair
(Q, σ, f), which we denote by [a || b)F .

5.6. Proposition. Any F–quaternion algebra with quadratic pair is isomorphic to
[a || b)F for some a ∈ F with 4a 6= −1 and b ∈ F×.

Proof. Let (Q, σ, f) be an F–algebra with quadratic pair. Let γ be the canonical
involution on Q. Assume first that char(F ) 6= 2. Then σ is orthogonal, so by [14,
(2.21)] we have σ = Int(s)◦γ for some s ∈ Skew(Q, γ)∩Q×. Then s2 ∈ F×, and for
u = s+ 1

2 we obtain that u2−u = s2− 1
4 ∈ F , 4(u2−u) 6= −1, and Int(2u−1)◦γ =

Int(s) ◦ γ = σ. Moreover, (4.2) and (4.3) yield that f = 1
2TrdQ|Sym(Q,σ) = Trdσ,uQ .

Assume now that char(F ) = 2. Then σ is symplectic and thus σ = γ. By (4.2) there
exists u ∈ Q such that 1 = u+γ(u) and f = Trdσ,uQ . Moreover, u2−u = γ(u)u ∈ F .

In either case we have found an element u ∈ Q \ F with u2 − u ∈ F and
4(u2 − u) 6= −1 and such that σ = Int(2u − 1) ◦ γ and f = Trdσ,uQ . Then F (u) is
a separable quadratic extension of F contained in Q, and by the Skolem-Noether
Theorem (see [17, (12.6)]) the non-trivial F–automorphism of F (u) extends to an
inner automorphism of Q. Hence, there exists v ∈ Q× such that vuv−1 = 1− u. It
follows that (1, u, v, uv) is a quaternion basis of Q and that with u2 − u = a and
v2 = b we obtain that (Q, σ, f) ≃ [a || b). �

5.7. Proposition. Let a, c ∈ F such that 4a 6= −1 6= 4c and b, d ∈ F×. Then

[c |· d)F ⊗ [a || b)F ≃ [c |· bd)F ⊗ [a+ c+ 4ac || b)F .

Proof. Let (B, σ, f) = [c |· d)F⊗[a || b)F , (Q1, σ1) = [c |· d)F and (Q2, σ2) = [a ·| b)F .
We fix i, j ∈ Q1 such that i2 = i + c, j2 = d, ij = j − ji as well as u, v ∈ Q2 such
that u2 = u + a, v2 = b and uv = v − vu. In B we have that σ(i ⊗ 1) = i ⊗ 1,
σ(v ⊗ 1) = −v ⊗ 1, σ(1 ⊗ u) = 1⊗ 1− 1⊗ u and σ(1⊗ v) = 1⊗ v.

Let i′ = i ⊗ 1, j′ = j ⊗ v, v′ = 1 ⊗ v and u′ = (1 − 2i) ⊗ u + i ⊗ 1. Then one
easily checks that

Q′
1 = F ⊕ Fi′ ⊕ Fj′ ⊕ Fi′j′ and Q′

2 = F ⊕ Fu′ ⊕ Fv′ ⊕ Fu′v′

are σ–invariant F–subalgebras of B that commute element wise with one another.
We set σ′

1 = σ|Q′

1
and σ′

2 = σ|Q′

2
. We have

(Q′
1, σ

′
1) ≃ [c |· bd)F and (Q′

2, σ
′
2) ≃ [a+c+4ac ·| b)F .

Hence, (B, σ) ≃ (Q′
1, σ

′
1) ⊗ (Q′

2, σ
′
2) and it remains to express the semi–trace f in

these terms.
We have

(Q′
2, σ

′
2,Trd

σ′

2
,u′

Q′

2

) ≃ [a+ c+ 4ac || b)F .

Since i⊗ u− σ(i ⊗ u) = i⊗ u− i⊗ (1− u) = 2i⊗ u− i⊗ 1 we have that

1⊗ u− u′ = 2i⊗ u− i⊗ 1 ∈ Alt(B, σ),

whence Trdσ,1⊗u
B = Trdσ,u

′

B by (4.2). Let g : Q2 −→ F be the map given by x 7→
TrdQ2

(ux). Since (B, σ) = (Q1, σ1)⊗ (Q2, σ2) and further TrdB = TrdQ1
⊗TrdQ2

,
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we obtain that

f =
(

TrdQ1
⊗ g

)
∣

∣

Sym(B,σ)
= TrduB = Trdσ,u

′

B .

Hence

(B, σ, f) = (Q′
1 ⊗Q′

2, σ
′
1 ⊗ σ′

2,Trd
σ,u′

B ) ≃ [c |· bd)F ⊗ [a+ c || b)F .

�

5.8. Corollary. For b ∈ F× and a ∈ F with 4a 6= −1 the F–algebra with quadratic
pair Ad(〈〈b〉〉)⊗ [a || b)F is hyperbolic.

Proof. From (5.5) and (5.7) we get

Ad(〈〈b〉〉)⊗ [a || b)F ≃ [0 |· b)F ⊗ [a || b)F

≃ [0 |· b2)F ⊗ [a+ 0 || b)F
≃ [0 |· 1)F ⊗ [a || b)F
≃ Ad(〈〈1〉〉)⊗ [a || b)F

As 〈〈1〉〉 is metabolic, Ad(〈〈1〉〉) is metabolic by (3.2), and hence the conclusion
follows by (4.8). �

6. Unitary involutions and hermitian forms

Let (D, θ) be an F–division algebra with involution. In the sequel, let λ ∈ Z(D)
be such that λθ(λ) = 1. An bi–additive map h : V ×V −→ D on a finite dimensional
D–vector space V is called degenerate if there exists x ∈ V \{0} such that h(x, y) = 0
for all y ∈ V and nondegenerate otherwise. A λ–hermitian form over (D, θ) is a pair
(V, h) where V is a finite-dimensional right D-vector space and h is a nondegenerate
bi-additive map h : V × V → D such that

h(x, yd) = h(x, y)d and h(y, x) = λθ(h(x, y))

for all x, y ∈ V and d ∈ D. Note that a symmetric bilinear form over F is the same
as a 1–hermitian form over (F, idF ).

Let η = (V, h) and η′ = (V ′, h′) be λ–hermitian forms over (D, θ). By an isometry
of λ–hermitian forms φ : η −→ η′ over (D, θ) we mean an isomorphism of D–vector
spaces φ : V −→ V ′ such that h(x, y) = h′(φ(x), φ(y)) for all x, y ∈ V . If such an
isometry exists, we write η ≃ η′. For c ∈ F× we denote by cη the λ–hermitian form
(V, ch) on (D, θ), where (ch)(x, y) = c(h(x, y)) for all x, y ∈ V . We say that η is
similar to η′ if cη ≃ η′ for some c ∈ F×.

Let ϕ = (V, b) be a symmetric bilinear form over F . Then (V ⊗F D,h) where
h : (V ⊗F D)× (V ⊗F D) → D is the F–bilinear map given by h(x⊗ d1, y⊗ d2) =
θ(d1)b(x, y)d2 for x, y ∈ V and d1, d2 ∈ D is a 1–hermitian form over (D, θ). We
call (V ⊗F D,h) the 1–hermitian form over (D, θ) extended from ϕ. Note that for
a 1–hermitian form (V ⊗F D,h) over (D, θ) extended from a symmetric bilinear
form (V, b) over F we have that h is degenerate if and only if b is degenerate.

There is well-known correspondence between (nondegenerate) λ-hermitian forms
on V and F–involutions on EndD(V ), generalising the correspondence between
bilinear forms and involutions on a split algebra. We state it only in the unitary
case.
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6.1. Proposition. Let (D, θ) be an F–division algebra with unitary involution, V
a finite-dimensional right D–vector space and let A = EndD(V ). For every λ-
hermitian form (V, h), there is a unique F–involution σ on A such that σ|D = θ
and

h(f(x), y) = h(x, σ(f)(y)) for all x, y ∈ V and f ∈ A.

This gives a one-to-one correspondence between λ–hermitian forms on (D, θ) up to
a factor in F× invariant under θ and unitary involutions on A.

Proof. See e.g. [14, (4.1) and (4.2)]. �

In the situation of (6.1), we call the F–algebra with involution (A, σ) the adjoint
involution to (V, h).

6.2. Proposition. Let (A, σ) be a split F–algebra with unitary involution. Let
K = Z(A) and τ = σ|K . Then (A, σ) ≃ Ad(ϕ) ⊗ (K, τ) for a non-alternating
symmetric bilinear form ϕ over F .

Proof. If K is not a field, then (K, τ) and (A, σ) are both hyperbolic, and we
have (A, σ) ≃ Ad(ϕ) ⊗ (K, τ) for any symmetric bilinear form ϕ over F with
dim(ϕ) = deg(A). Suppose now that K is a field. We may then identify A with
EndK(V ) for a finite-dimensional right K–vector space V . Then by [14, (4.2)],
the involution σ is adjoint to some λ–hermitian form (V, h) over (K, τ). Note
that h(v, v) ∈ Sym(K, τ) = F for all v ∈ V . By [13, Chap. I, (6.2.4)] there
exists an orthogonal basis (v1, . . . , vr) of (V, h). Consider the F–vector space U =
Fv1 ⊕ . . . ⊕ Fvr. Then ϕ = (U, h|U×U ) is a non-alternating symmetric bilinear
form over F , and the natural isomorphism of K–spaces U ⊗F K → V induces an
isomorphism of F–algebras with involution Ad(ϕ)⊗ (K, τ) → (A, σ). �

6.3. Proposition. Let A be a central simple F–algebra, let K be a quadratic sep-
arable extension of F contained in A, and let C be the centraliser of K in A. Any
F -involution on A that restricts to the non-trivial F–automorphism of K is uniquely
determined by its type and its restriction to C. Further, if char(F ) = 2 then any
such involution is symplectic.

Proof. Let τ denote the non-trivial F–automorphism of K. We fix x ∈ K with
τ(x) + x = 1. Consider F–involutions σ and σ′ on A with σ|K = σ′|K = τ and
σ|C = σ′|C . Note that 1 ∈ Alt(A, σ), so if char(F ) = 2 then (A, σ) is symplectic
by [14, (2.6)]. Then σ′ ◦ σ is an F–automorphism of A, so σ′ ◦ σ = Int(b) for some
b ∈ A× by the Skolem-Noether Theorem (see [17, (12.6)]). Since σ|C = σ′|C , we
obtain that Int(b)|C = idC , whereby b ∈ K by the Double-Centralizer-Theorem
(see [17, (12.7)]). As idA = σ′2 = (Int(b) ◦ σ)2 = Int(bσ(b−1)), we obtain that
bσ(b−1) ∈ Z(A) = F , and therefore σ(b) = ±b. If σ(b) = b then b ∈ F× and σ′ = σ.
Otherwise σ and σ′ are of different type by [14, (2.7)]. �

6.4. Proposition. Let B be a central simple F–algebra and a ∈ F with 4a 6= −1.
Let σ1 and σ2 be F–involutions on B, both orthogonal in the case where char(F ) 6= 2.
If (B, σ1)⊗ [a)F ≃ (B, σ2)⊗ [a)F then (B, σ1)⊗ [a || b)F ≃ (B, σ2)⊗ [a || b)F .

Proof. If Fa is not a field, then [a)F and [a || b)F are hyperbolic and the statement
is trivial. So we assume that Fa is a field.

Let (Q, γ, f) = [a || b)F . Fix u ∈ Q with u2 + u = a and γ(u) + u = 1. Let
A = B⊗F Q, K = F (u), and let C be the centraliser of K in A. For i = 1, 2 we let
σ̂i = σi ⊗ γ and thus have that (B, σi)⊗ [a)F ≃ (C, σ̂i|C).
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Hence, assuming that (B, σ1)⊗ [a)F ≃ (B, σ2)⊗ [a)F we have

(C, σ̂1|C) ≃ (C, σ̂2|C).

As C is a central simple K-algebra and σ̂1|K = σ̂2|K , by [14, (2.18)] we have that
σ̂2|C = Int(c) ◦ σ̂1|C for some c ∈ C× with σ̂1(c) = c. By [14, (2.7)], the F -
involutions σ̂2 and Int(c) ◦ σ̂1 on A have the same type. Hence, we obtain using
(6.3) that σ̂2 = Int(c) ◦ σ̂1. Therefore we have an isomorphism of F–algebras with
involution Int(c) : (A, σ̂2) −→ (A, σ̂1).

For i = 1, 2, we have that (B, σi) ⊗ [a || b)F ≃ (A, σ̂i, fi) for the semi-trace
fi : Sym(A, σ̂i) −→ F, x 7→ TrdA((1 ⊗ u) · x). Since c is in the centraliser of K in
A, it commutes with 1⊗ u. It follows using (3.1) that

TrdA((1⊗u)·(Int(c))(x)) = TrdA(Int(c)((1⊗u)·x)) = TrdA((1⊗u)·x) for all x ∈ A .

We conclude that f2 = f1 ◦ Int(c). Hence, we obtain an isomorphism of F–algebras
with quadratic pairs Int(c) : (A, σ̂2, f2) −→ (A, σ̂1, f1), as desired. �

6.5. Proposition. Let a ∈ F with 4a 6= −1. Let ϕ1 and ϕ2 be symmetric bilinear
forms over F . We have Ad(ϕ1)⊗ [a)F ≃ Ad(ϕ2)⊗ [a)F if and only if ϕ1⊗〈〈a]] and
ϕ2 ⊗ 〈〈a]] are similar. Moreover, in this case Ad(ϕ1)⊗ [a || b)F ≃ Ad(ϕ2)⊗ [a || b)F
for any b ∈ F×.

Proof. For i = 1, 2, the F–algebra with involution Ad(ϕi) ⊗ [a)F is adjoint to
the hermitian form over [a)F over (D, θ) extended from ϕi. Hence by (6.1), we
have Ad(ϕ1) ⊗ [a)F ≃ Ad(ϕ2) ⊗ [a)F if and only if the 1–hermitian forms over
[a)F extended from ϕ1 and ϕ2 are similar, which by [18, (10.1.1)] is if and only
if ϕ1 ⊗ 〈〈a]] and ϕ2 ⊗ 〈〈a]] are similar. The second part of the statement follows
directly from (6.4). �

6.6. Corollary. Let a ∈ F be such that 4a 6= −1. Let ϕ be a symmetric bilinear
form over F . Then Ad(ϕ)⊗ [a)F is hyperbolic if and only if ϕ⊗ 〈〈a]] is hyperbolic,
and in this case Ad(ϕ) ⊗ [a || b)F is hyperbolic for any b ∈ F×.

Proof. If Fa is not a field, then 〈〈a]] and [a || b)F are hyperbolic and the statement
is trivial. Suppose now that Fa is a field. Then 〈〈a]] is anisotropic. Assume
that ϕ ⊗ 〈〈a]] is hyperbolic. Then ϕ is even-dimensional by (2.3), so there exists
a metabolic symmetric bilinear form ϕ′ over F with dim(ϕ′) = dim(ϕ). Since
all hyperbolic quadratic forms of the same dimension are isometric it follows that
ϕ⊗ 〈〈a]] ≃ ϕ′ ⊗ 〈〈a]]. Hence Ad(ϕ) ⊗ [a || b)F ≃ Ad(ϕ′) ⊗ [a || b)F by (6.5), and the
result follows from (3.2) and (4.8). �

7. Hyperbolicity over a separable quadratic extension

In this section we expand on a characterisation given in [5, (1.16)] of those alge-
bras with quadratic pair that become hyperbolic over a given quadratic separable
extension.

7.1. Proposition. Let (A, σ, f) be an F–algebra with quadratic pair and K/F a
quadratic separable extension with nontrivial F–automorphism τ . The K-algebra
with quadratic pair (A, σ, f)K is hyperbolic if and only if one of the following holds:

(1) The F -algebra with quadratic pair (A, σ, f) is adjoint to a quadratic form of
odd Witt index and whose anisotropic part is isometric to ν ⊗ϕ where ν is the
norm form of K/F and ϕ is a symmetric bilinear form over F .



16 K. J. BECHER AND A. DOLPHIN

(2) There exists an embedding of F–algebras with involution ε : (K, τ) −→ (A, σ)
such that TrdA(ε(c)x) = (c+ τ(c))f(x) for all c ∈ K and x ∈ Sym(A, σ).

The conditions (1) and (2) are mutually exclusive.

Proof. This is a reformulation of [5, (1.16)] and the remark that follows it. �

7.2. Proposition. Let (A, σ) be an F–algebra with involution of the first kind and
let K be a σ–stable quadratic étale extension of F inside A such that σ|K is the
nontrivial F–automorphism of K. Let

C = {x ∈ A | xy = yx for all y ∈ K} .

Assume that the K–algebra with unitary involution (C, σ|C) is split. Then K is
contained in a σ–stable quaternion algebra Q inside A that is Brauer equivalent to
A and such that (Q, σ|Q) is of the same type as (A, σ). Moreover, then

(A, σ) ≃ Ad(ϕ)⊗ (Q, σ|Q)

for a non-alternating symmetric form ϕ over F .

Proof. Note that, if char(F ) = 2, the fact that σ|K is the non-trivial automorphism
of K/F implies that 1 ∈ Alt(A, σ) and thus that (A, σ) is symplectic, by [14, (2.6)].
By (6.2) we have (C, σ|C ) ≃ Ad(ϕ)⊗(K,σ|K) for a non-alternating symmetric bilin-
ear form ϕ over F . Hence C contains a σ–invariant central simple F–subalgebra B
such that (B, σ|B) ≃ Ad(ϕ), C ≃ B⊗F K and dimF (A) = 2dimF (C) = 4dimF (B).
Then

Q = {x ∈ A | xy = yx for all y ∈ B}

is a σ–stable F -subalgebra of A containing K. By the Double Centralizer Theorem
(see [17, (12.7)]), Q is a central simple F–algebra and A = B ⊗F Q. Hence,
dimF (Q) = 4, whereby Q is an F–quaternion algebra, and we obtain that (A, σ) ≃
Ad(ϕ) ⊗ (Q, σ|Q). As Ad(ϕ) is orthogonal, it follows from [14, (2.23)] that (A, σ)
and (Q, σ|Q) have the same type. �

7.3. Proposition. Let a ∈ F with 4a 6= −1 and b ∈ F× and let (A, σ, f) be
an F–algebra with quadratic pair such that A is Brauer equivalent to [a, b)F and
(A, σ, f)Fa

is hyperbolic. Then

(A, σ, f) ≃ Ad(ϕ) ⊗ [a || b)F

for a non-alternating symmetric bilinear form ϕ over F .

Proof. Let τ be the non-trivial F–automorphism on Fa. As (A, σ, f)Fa
is hyper-

bolic, (7.1) says that there exists an embedding of F–algebras with involution
ε : [a)F −→ (A, σ) such that TrdA(ε(c)x) = (c + τ(c))f(x) for all c ∈ Fa and
x ∈ Sym(A, σ). Therefore by (7.2), ε(Fa) is contained in a σ–stable quaternion
algebra Q Brauer equivalent to A and (A, σ) ≃ Ad(ϕ) ⊗ (Q, σ|Q) for some non-
alternating symmetric form ϕ over F . There exists an ℓ ∈ Fa such that ℓ2 = ℓ+ a
and τ(ℓ) = 1 − ℓ. For u = ε(ℓ) ∈ Q we obtain that u2 = u + a and σ(u) = 1 − u.
Then for all s1 ∈ Sym(Ad(ϕ)) and s2 ∈ Sym(Q, σ|Q) we have

f(s1 ⊗ s2) =
TrdA(ε(ℓ) · (s1 ⊗ s2))

ℓ+ τ(ℓ)
= TrdB(s1) · TrdQ(u · s2),

where B = EndF (V ) for the underlying vector space V of the form ϕ. It follows
from (4.4) that

(A, σ, f) ≃ Ad(ϕ)⊗ (Q, σ|Q,Trd
σ|Q,u

Q ) .
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Finally, since Q is Brauer equivalent to A and thus to [a, b)F and since (Q, σ|Q) is

of the same type as (A, σ), we obtain that (Q, σ|Q,Trd
σ|Q,u

Q ) ≃ [a || b)F . �

8. Hyperbolicity over the function field of a conic

We are now almost ready to prove our main result.

8.1. Lemma. Let a ∈ F with 4a 6= −1, b ∈ F× and Q = [a, b)F . Let ϕ be
a symmetric bilinear form over F such that (ϕ ⊗ 〈〈a]])F (Q) is hyperbolic. Then
Ad(ϕ)⊗ [a || b)F is hyperbolic.

Proof. If the quadratic form 〈〈a]] is isotropic then it is hyperbolic, and then the
conclusion follows by (6.6). We may therefore assume that 〈〈a]] is anisotropic.

Suppose now first that ϕ⊗ 〈〈a]] is anisotropic. As this form becomes hyperbolic
over F (Q), we then obtain by (5.3) that there exists a symmetric bilinear form ψ
over F such that ϕ⊗ 〈〈a]] ≃ ψ ⊗ 〈〈b, a]] ≃ 〈〈b〉〉 ⊗ ψ ⊗ 〈〈a]]. By (6.5) we obtain that

Ad(ϕ)⊗ [a || b)F ≃ Ad(ψ)⊗Ad(〈〈b〉〉)⊗ [a || b)F .

As Ad(〈〈b〉〉) ⊗ [a || b)F is hyperbolic by (5.8) we conclude that Ad(ϕ) ⊗ [a || b)F is
hyperbolic by (4.8).

In general, we apply (2.1) to obtain symmetric bilinear forms ϕ1 and ϕ2 over F
such that

ϕ⊗ 〈〈a]] ≃ ϕ1 ⊗ 〈〈a]]⊥ϕ2 ⊗ 〈〈a]]

and where ϕ1 ⊗ 〈〈a]] is anisotropic and ϕ2 ⊗ 〈〈a]] is hyperbolic. By (6.5) we have
that

Ad(ϕ)⊗ [a || b)F ≃ Ad(ϕ1⊥ϕ2)⊗ [a || b)F .

By the previous case, if ϕ1 is nontrivial, then Ad(ϕ1)⊗ [a || b)F is hyperbolic. More-
over, by (6.6), if ϕ2 is non-trivial, then Ad(ϕ2)⊗ [a || b)F is hyperbolic. Hence, using
(4.9) we conclude that Ad(ϕ)⊗ [a || b)F is hyperbolic. �

8.2. Theorem. Let (A, σ, f) be an F–algebra with quadratic pair such that A is
Brauer equivalent to the F–quaternion algebra Q. Then (A, σ, f) is hyperbolic if
and only if (A, σ, f)F (Q) is hyperbolic.

Proof. Clearly, if (A, σ, f) is hyperbolic, then so is (A, σ, f)F (Q). Assume now that

(A, σ, f)F (Q) is hyperbolic. We fix a ∈ F with 4a 6= −1 and b ∈ F× such that
Q ≃ [a, b)F . Then Q splits over Fa, and hence Fa(Q)/Fa is a rational function
field. Note that AFa

is split and therefore (A, σ, f)Fa
is adjoint to a quadratic form

over Fa. Since (A, σ, f)Fa(Q) is hyperbolic, we obtain using (4.6) and (2.4) that
(A, σ, f)Fa

is hyperbolic. Using (7.3) we conclude that

(A, σ, f) ≃ Ad(ϕ) ⊗ [a || b)F

for a symmetric bilinear form ϕ over F . Since [a || b)F (Q) ≃ Ad(〈〈a]]F (Q)), it follows

using (4.5) that

Ad(ϕ ⊗ 〈〈a]])F (Q) ≃ (A, σ, f)F (Q) .

Hence, (ϕ⊗ 〈〈a]])F (Q) is hyperbolic by (4.6). We conclude by (8.1) that (A, σ, f) is
hyperbolic. �
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8.3. Remark. As mentioned in the introduction, the methods of [16, (3.3)] and
[6] can be more directly adapted to give the characteristic 2 analogue of our main
result in terms of generalised quadratic pairs (see [2]). It is shown in [15] that the
groups and exact sequences required in the arguments of [16, (3.3)] and [6] have
characteristic free analogues for Witt groups of generalised quadratic forms. Using
these exact sequences, the arguments from [16, (3.3)] and [6] carry over to this wider
setting. This together with the correspondence between generalised quadratic forms
and algebras with quadratic pair (see [11]) yields our result (8.2).
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Acad. Sci., Paris, Sèr. I, Math., 332:105–108, 2001.

[7] A. Dolphin. Metabolic involutions. Journal of Algebra, 336(1):286–300, 2011.
[8] A. Dolphin. Decomposition of algebras with involution in characteristic 2. Journal of Pure

and Applied Algebra, 217(9):1620–1633, 2013.
[9] A. Dolphin. The Pfister Factor Conjecture for quadratic pairs. Preprint, 2013.

[10] R. Elman, N. Karpenko, and A. Merkurjev. The Algebraic and Geometric Theory Quadratic
Forms, volume 56 of Colloq. Publ., Am. Math. Soc. Am. Math. Soc., 2008.

[11] M.A. Elomary and J.-P. Tignol. Classification of quadratic forms over skew fields of charac-
teristic 2. Journal of Algebra, 240:366–392, 2001.

[12] N.A. Karpenko. Hyperbolicity of orthogonal involutions Doc. Math., Extra volume: Andrei
A. Suslin sixtieth birthday: 371–392, 2010.

[13] M.-A. Knus. Quadratic and Hermitian Forms over Rings, volume 294 of Grundlehren der
mathematischen Wissenschaften. Springer-Verlag, 1991.

[14] M.-A. Knus, A.S. Merkurjev, M. Rost, and J.-P. Tignol. The Book of Involutions, volume 44
of Colloq. Publ., Am. Math. Soc. Am. Math. Soc., 1998.

[15] M.-A. Knus and O. Villa. Quadratic quaternion forms, involutions and triality. Doc. Math.
Quadratic Forms LSU, pages 201–218, 2001.

[16] R. Parimala, R. Sridharan, and V. Suresh. Hermitian analogue of a theorem of Springer. J.
Algebra, 243:780–789, 2001.

[17] R. Pierce. Associative Algebras. Graduate texts in mathematics. Springer-Verlag, 1982.
[18] W. Scharlau. Quadratic and hermitian forms, volume 270 of Grundlehren der Mathematis-

chen Wissenschaften. Springer-Verlag, 1985.

Departement Wiskunde–Informatica, Universiteit Antwerpen, Belgium /
Zukunftskolleg, Universität Konstanz, Germany

E-mail address: becher@maths.ucd.ie

Fachbreich Mathematik und Statistik, Universität Konstanz, Germany/
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