
ESSENTIAL DIMENSION OF ALBERT ALGEBRAS

MARK L. MACDONALD

Abstract. This paper shows that the number of independent parameters required
to describe an Albert algebra up to isomorphism is at most 7. In other words, the
essential dimension of the split group of type F4 over a field of characteristic not 2 or
3 satisfies ed(F4) ≤ 7. This is achieved by reducing the structural group from the full
52-dimensional automorphism group to a subgroup of dimension 10, and exhibiting
an 18-dimenional generically free linear representation which remains generically free
once projectivized.

An Albert algebra is a certain type of 27-dimensional non-associative algebra over a
field (see 1.2 for a definition; also [SV00] [Alb47]). If the field is algebraically closed, then
there is only one Albert algebra, but for arbitrary fields there are many open questions
about their classification up to isomorphism. The basic question being addressed in
this paper is:

Question 0.1. How many algebraically independent parameters do we need to describe

an arbitrary Albert algebra up to isomorphism?

To make this precise, let me introduce some terminology. Say we have an inclusion
of fields F ⊂ F ′ ⊂ F ′′. Let A be an algebra over F ′′, and let B be an algebra over a
subfield F ′ such that A ∼= B⊗F ′ F ′′ (isomorphic as algebras over F ′′). Then we say F ′

is a field of definition of A. In this situation, A is an Albert algebra if and only if B
is. So, with respect to Question 0.1, at most tr.degF F ′ independent parameters are
needed to describe A.

Fix a base field F . Consider the smallest number d such that for any Albert algebra
over any field extension of F there exists a field of definition whose transcendence
degree over F is at most d. This number, which is known to be finite, may be taken
as an answer to Question 0.1. In this paper we show that it is at most 7 (see Theorem
0.3).

0.2. Essential dimension. It is known that isomorphism classes of Albert algebras
correspond to isomorphism classes of F4-torsors, for the split exceptional group of type
F4 [KMRT, 37.11]. The essential dimension of an algebraic group G is a non-negative
integer which has the property that ed(G) = 0 precisely for the special groups, which
were classified by Grothendieck (for a definition, see Section 1). So one could think of
ed(G) as measuring how complicated G-torsors can be, up to isomorphism. In fact, the
above number d (and hence our answer to Question 0.1) is equal to ed(F4).

It is known that 5 ≤ ed(F4) due to the existence and non-triviality of Serre’s degree
5 cohomological invariant of Albert algebras [GMS, Thm. 22.5] [BF03, Cor. 3.6]. Pre-
viously, the best known upper bound was ed(F4) ≤ 19 for fields of characteristic zero
[Le04]. The main result of the present paper is the following theorem.

Theorem 0.3. If the base field is of characteristic not 2 or 3, then ed(F4) ≤ 7.

The proof is given at the end of the paper. The essential dimensions of the exceptional
algebraic groups remain largely open (see [Re10] or [Me13] for recent surveys). For
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example, even if the base field is the complex numbers, we only know that 9 ≤ ed(E8) ≤
231.

Corollary 0.4. If the base field is of characteristic not 2 or 3, then ed(Es.c
6 ) ≤ 8.

Proof. We know ed(Es.c.
6 ) ≤ ed(F4) + 1 by [Re00, 11.7] or [Ga09, 9.12]. �

The main difficulty in the proof is showing the generic freeness of a certain represen-
tation (Theorem 3.1). Showing that the stabilizer of a point in general position of this
representation is finite is not hard, since this can be done on the level of Lie algebras.
But to show it is trivial requires careful consideration of the group action.

To finish this introduction, I will mention how the values of the related essential

p-dimensions of Albert algebras are already known for all primes p (see [Me13] for
a definition and recent results). We know ed(F4; 2)=5, because any Albert algebra
becomes reduced after some degree prime-to-2 extension, and an arbitrary reduced Al-
bert algebra only requires 5 parameters to describe it, by Jacobson’s coordinatization
[Mac08]. Also, ed(F4; 3) = 3, because any Albert algebra becomes a first Tits construc-
tion J(A,λ) after some degree prime-to-3 extension, and they require three parameters
to describe them: two parameters for A (the degree 3 central simple algebra, which
must be cyclic), and one parameter for λ. Finally, ed(F4; p) = 0 for all primes p ≥ 5,
because any Albert algebra splits after a degree 6 extension. As usual, the essential
p-dimensions give lower bounds for the essential dimension, but they are otherwise,
apparently, not helpful in finding ed(F4).

1. Preliminaries

Unless otherwise specified, F will denote an arbitrary field of characteristic 6= 2, 3,
and F̄ , Fsep its algebraic and separable closures respectively. An algebraic group G
will be a smooth affine group scheme of finite type over a field; in particular all al-
gebraic groups are assumed to be linear [KMRT, 21]. By a subgroup H ⊂ G we will
mean a closed subgroup scheme (not necessarily smooth). X(F ) will denote the set
X(SpecF ) of F -rational points ofX. For an algebraic group G, the symbols NormG(H)
or NormG(Y ) will denote the scheme-theoretic normalizer of G which preserves a sub-
group H or subscheme Y respectively; the normalizer subgroup need not be smooth
[Ja03]. In particular, if G acts on X and x ∈ X(F ), then the symbol Gx := NormG(x)
will denote the subgroup in G of elements fixing x. The notation 〈{xi}〉 ⊂ V will mean
the vector subspace generated by some collection of vectors {xi} ⊂ V .

We will say that a G-variety X is generically free if there is an open dense subscheme
U ⊂ X such that the (scheme-theoretic) stabilizer of each point in U is trivial. By
[BF03, 4] it is enough to check Gx = {1} for all x ∈ U(F̄ ). For an algebraic group G, we
will define the essential dimension of G to be the minimum value of dim(X)−dim(G),
where X is a generically free G-variety and there exists a G-equivariant dominant
map V 99K X (also called a compression), such that V is a generically free linear
representation of G. By [BF03, Cor. 6.16], this is equal to Merkurjev’s definition of
essential dimension in terms of the étale cohomology functor F ′ 7→ H1

et(F
′, G(F ′

sep))
(since G is assumed to be smooth, this is the same as the functors for Galois or fppf
cohomology).

To understand the representation in Section 3, we will find it convenient to view the
vectors simultaneously in terms of octonions and in terms of weight spaces.

1.1. Octonions. The split octonion algebra over a field F will be denoted by O, and
is defined as follows. Its elements are pairs of 2 by 2 matrices over F , which also defines
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its vector space structure. We will define a conjugation operation
(

a11 a12
a21 a22

)

=
(

a22 −a12
−a21 a11

)

,

and then the multiplication on the 8-dimensional vector space is defined by

(a, b)(c, d) = (ac+ d̄b, da+ bc̄), where a, b, c, d ∈ M2(F ).

The norm on the octonions is defined as n((a, b)) := det(a)−det(b). This presentation
follows [SV00, 1.8].

We will also denote standard elements

1 := (
(

1 0
0 1

)

, 0), i := (
(

1 0
0 −1

)

, 0), j := (
(

0 1
1 0

)

, 0), k := (0,
(

1 0
0 1

)

).

Then the set {1, i, j, ij, k, ik, jk, (ij)k} ⊂ O is an F -vector space basis. One checks that
i, j, and k pairwise anti-commute and square to the identity 1.

1.2. Albert algebras. Consider the vector space Js of 3 by 3 matrices with entries in
the split octonion algebra, which are hermitian (elementwise conjugation equals matrix
transpose). As a vector space, we have

Js := {x ∈ M3(O)|x̄t = x} = {





λ0 c2 c̄1
c̄2 λ1 c0
c1 c̄0 λ2



 |λn ∈ F, cn ∈ O}.

We will also sometimes consider elements (c0, c1, c2) ∈ J0 ⊕ J1 ⊕ J2. Here Jn = O as
vector spaces for each n = 0, 1, 2; we refer to these as the Peirce subspaces.

If we equip Js with the multiplication x ◦ y := 1
2(xy + yx), where concatenation is

the usual matrix product in M3(O), then we call it the split Albert algebra over F .
An algebra J over a field F is an Albert algebra if for some field extension J ⊗F F ′ is
isomorphic to the split Albert algebra over F ′.

Define the 9-dimensional and 3-dimensional subalgebras as follows

Es := {





λ0 c2 c̄1
c̄2 λ1 c0
c1 c̄0 λ2



 |λn ∈ F, cn ∈ 〈1, i〉}, Ls := {





λ0 0 0
0 λ1 0
0 0 λ2



 |λn ∈ F}.

Then Js ⊃ Es ⊃ Ls. We will say an automorphism preserves a subalgebra, if the image
of the subalgebra is itself.

The algebra automorphism group Aut(Js) is the split group of type F4. Over an
algebraically closed field there is only one Albert algebra up to isomorphism.

Remark 1.3. It is a non-trivial fact from the structure theory of Jordan algebras,
that over F̄ , the Albert algebra is the only simple Jordan algebra which does not
“come from” an associative algebra. While much is known about the classification of
Albert algebras over non-algebraically closed fields, several open questions remain; for
example, Serre asked whether Albert algebras are classified by their cohomological
invariants with coefficients in Z/2 and Z/3, and this is still open [Se93, 9.4].

1.4. Spin8⋊S3 ⊂ F4. It is well known that the group of automorphisms preserving the
diagonal matrices in Js is NormF4

(Ls) ∼= Spin8⋊S3 [KMRT, 39.13]. Here transpositions
in S3 act on Js by matrix transpose composed with swapping diagonal idempotents, and
swapping their corresponding Peirce subspaces [Ga05, 3.2]. We will find it convenient
to express the subgroup Spin8 (as a scheme) as a subgroup of SO3

8, defined by its action
on J0 ⊕ J1 ⊕ J2 = O

3. In particular, by [KMRT, 35.8]:

Spin8(F ) ∼= {(g0, g1, g2) ∈ SO3
8 |g0(x · y) = g2(x) · g1(y),∀x, y ∈ O}.
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Here the multiplication is the usual one in O. Given such a triple (g0, g1, g2), we can
extend to a vector space automorphism of Js by taking the identity on Ls. One checks
this defines an algebra automorphism of Js. Notice that a different presentation of
Spin8 was used in [Bö11], so in what follows our statements will differ slightly from
his.

1.5. SL2 ⊂ SL3 ⊂ G2 ⊂ Spin8. The triples in Spin8 such that g0(1) = g1(1) = g2(1) =
1 are exactly the triples such that g0 = g1 = g2 = g on O, where g ∈ Aut(O)
[KMRT, 35.16]. This is the split group of type G2, and we will abuse notation slightly
by referring to this subgroup in Spin8 as G2. Similarly we will denote the subgroups
SL3 := NormG2

(i) and SL2 := NormSL3
(j) which are smooth subgroups of the given

types [SV00, 2.2].

1.6. T2 ⊂ Spin8. For λ ∈ F ∗, let Rλ (resp. Lλ) be the linear isomorphism of O given
by right (resp. left) multiplication by (

(

λ 0
0 λ−1

)

, 0). Then one checks (using the Moufang

identities) that the following elements of SO3
8 live inside Spin8.

rλ := (Lλ, Rλ, Lλ−1 ◦Rλ−1), sµ := (Rµ, Lµ−1 ◦Rµ−1 , Lµ).

For example, if we let (g0, g1, g2) = sλ, and x, y ∈ O, a :=
(

λ 0
0 λ−1

)

, then

g2(x) · g1(y) = (x · a) · ((a · y) · a) = (((x · a) · a) · y) · a = (x · y) · a = g0(x · y).

Furthermore, these elements generate two one-dimensional tori which intersect in the
identity and commute. The two-dimensional split torus they generate will be denoted
by T2 ⊂ Spin8.

1.7. Decomposition of Js. Consider the (split) maximal torus T4 ⊂ F4 generated by
T2 above and the 2-dimensional torus in SL3 described in [SV00, 2.3]. Then Js has 24
non-zero T4-weights, each of which has a 1-dimensional weight space and corresponds
to a short root of F4. So as an F4 representation, Js = F ⊕ V26, the sum of a trivial
representation, and the 26-dimensional irreducible representation.

As in 1.1, we can write any octonion (and therefore any element of J0, J1, or J2) as a
pair of 2 by 2 matrices. It turns out that the non-zero T4-weight spaces are exactly the
matrix entries from the pairs of 2 by 2 matrices in J0, J1, and J2. Using the notation
for the F4-roots from [Bour], we can label the weight spaces as follows:

J0 : (

(

ǫ1 ǫ2
−ǫ2 −ǫ1

)

,

(

ǫ3 −ǫ4
ǫ4 −ǫ3

)

),

J1 : (

(

(−+++) (−+−−)
(+−++) (+−−−)

)

,

(

(− −+−) (+ ++−)
(− −−+) (+ +−+)

)

),

J2 : (

(

(−−−−) (+ +−−)
(−−++) (+ + ++)

)

,

(

(+−+−) (−++−)
(+−−+) (−+−+)

)

)

Here the notation (−+++) means, for example, the weight 1
2(−ǫ1 + ǫ2 + ǫ3 + ǫ4).

The roots of Spin8 are given by the 24 long roots of F4, which are ±ǫm ± ǫn, m <
n. With this notation, the above subgroups SL2 and SL3 have roots ±(ǫ3 − ǫ4) and
±(ǫm − ǫn), 2 ≤ m < n ≤ 4 respectively. Furthermore, as SL3-representations, each of
J0, J1, and J2 are a direct sum of a 2-dimensional trivial representation, the standard
3-dimensional representation, and its 3-dimensional dual.

From 1.2, Ls is the 3-dimensional zero weight space, and Es is that together with
the six weight spaces from the diagonals of the three matrices on the left-hand sides,
above.
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2. Reduction to a subgroup

We will denote by F4 the split group of that type over the base field. To give the
new upper bound on ed(F4), we will reduce to a 10-dimensional subgroup, G ⊂ F4,
which has more small representations than F4 does.

2.1. The subgroup G ⊂ F4. Using the notation from 1.2, we will define G to be the
subgroup of automorphisms of Js which preserve both Es and Ls,

G := Aut(Js, Es, Ls) := NormNormF4
(Ls)(Es).

The notation (J,E,L) will refer to a triple of algebras defined over F , such that and
J ⊃ E ⊃ L. An isomorphism between two such triples is an isomorphism between the
largest algebras, which also restricts to respective isomorphisms on the two subalgebras.

Definition 2.2. An algebra A is a form of an algebra B if there is a field extension
F ′ such that A⊗ F ′ ∼= B ⊗ F ′. A triple (J,E,L) will be called a form of (Js, Es, Ls),
if after some base field extension, it becomes isomorphic to (Js, Es, Ls).

Lemma 2.3. Assume (J,E,L) is a triple such that J ,E, and L are forms of Js, Es,

and Ls, respectively. Then (J,E,L) is a form of (Js, Es, Ls).

Proof. It is enough to assume the field is separably closed, and then prove that (J,E,L)
becomes isomorphic to (Js, Es, Ls). Choose an isomorphism φ0 sending Js to J . Now
there is an automorphism φ1 of J which sends φ0(Es) to E, by [KMRT, 37.20]. Finally,
there is an automorphism φ2 of J preserving E which sends φ1(φ0(Ls)) to L, by
coordinatization together with [KMRT, 37.20]. So φ2◦φ1◦φ0 sends the triple (Js, Es, Ls)
to (J,E,L). �

Lemma 2.4. The Galois cohomology set H1(F,G) is in bijective correspondence with

the set of isomorphism classes of forms of (Js, Es, Ls).

Proof. Using the arguments of [KMRT, 29.C], this follows from Lemma 2.3. �

The following proposition was proved in [Bö11] over the complex numbers.

Proposition 2.5. G ∼= (((SL3 ×G
2
m)/µ3)⋊ Z/2)⋊ S3 as group schemes.

Proof. We have G ⊂ NormF4
(Ls) ∼= Spin8 ⋊S3, and let G′ be the kernel of the G action

on Ls, so G′ ⊂ Spin8. Since S3 preserves Es, we have G ∼= G′
⋊ S3.

The subgroup Aut(O, 〈1, i〉) := NormG2
(〈i〉) is isomorphic to SL3 ⋊Z/2 ⊂ Spin8

[Ja58, Thm. 4]. Notice that both SL3⋊Z/2 and T2 are contained in G′, so consider
the homomorphism of group schemes f : (SL3 ⋊Z/2)× T2 → G′ induced by the group
product. f is surjective, because for any g ∈ G′, we can find λ, µ ∈ F ∗ such that
g · rλsµ fixes (1, 1, 1) ∈ J0 ⊕ J1 ⊕ J2. The subgroups SL3 ⋊Z/2 and T2 commute, and
the F -points of ker(f) coincide with the F -points of µ3. By [KMRT, 22.13], the result
will now follow if df is a surjection of Lie algebras.

By [KMRT, 21.5(7)], we have Lie(G) = {h ∈ Lie(Spin8)|h(Es) ⊂ Es}. Assume
h ∈ Lie(G), and write h = h0 +

∑

α hα, where α runs over the Spin8-roots, and
h0 ∈ Lie(T4).

We claim that if β is a T4-weight of Es, α a Spin8-root, and α + β is a weight of
Js, then hα = 0. In this situation, if hα 6= 0, then hαVβ = Vα+β , since they are both
1-dimensional weight spaces; they could also be viewed as root spaces of Lie(F4). But
this contradicts the fact that h preserves Es, since α + β cannot be a weight of Es,
proving the claim.

By considering β = ±ǫ1, this shows that hα 6= 0 implies α = ±ǫm ± ǫn, where
2 ≤ m < n ≤ 4. By arguing similarly using β = ±(−+++), we see in fact α must be
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a root of SL3. So Lie(G) ⊂ Lie(SL3)⊕Lie(T2), and the reverse containment is obvious.
This completes the proof. �

Theorem 2.6. For any field F , the inclusion G ⊂ F4 induces a surjection H1(F,G) →
H1(F,F4).

Proof. The map to H1(F,F4) is given by the forgetful functor (J,E,L) 7→ J . To see
surjectivity, take a pair of elements x, y ∈ J , and let L be the subalgebra generated by
x, and let E be the subalgebra generated by x and y. For generic x and y this creates a
form of (Js, Es, Ls) as required [KMRT, 39.20]. Notice when F is finite, then H1(F,F4)
is trivial. �

3. Generic freeness

For each n = 0, 1, 2, let Vn ⊂ Jn be the 6-dimensional subspace as follows

Vn :=

((

0 ∗
∗ 0

)

,

(

∗ ∗
∗ ∗

))

, V := V0 ⊕ V1 ⊕ V2.

Then the 18-dimensional subspace V ⊂ Js is preserved by G. Each Vn is an irreducible
SL3 ⋊Z/2-representation. We could also write Vn = 〈j, ij, k, ik, jk, (ij)k〉 ⊂ O.

Theorem 3.1. G acts on V and P(V ) generically freely.

Proof. For generic freeness, it is enough to assume the base field is algebraically closed.
Let p = (x, y, z) ∈ V0 ⊕ V1 ⊕ V2. To prove the theorem, we will first reduce to the case
where (x, y, z) is of a certain form, and then we will show the (scheme-theoretic) G-
stabilizer of such a point is trivial. First we show that for a generic point Gp(F̄ ) = {1},
and then we show that Lie(Gp) = {0}, which together imply Gp = {1} ([KMRT, 22.5]
or [BF03, 4]).

Notice the size of the G-stabilizer is unchanged along G-orbits. Generically we may
assume the norm of z (as an element of O) is non-zero, so we can move it to a scalar
multiple of j ∈ V2 via an element of SL3 ⊂ G. This is because SL3 acts transitively
on norm one octonions orthogonal to i and 1 [SV00, 2.2]. Next, we can find an rλ ∈
T2 ⊂ G (which fixes V2) that sends y ∈ V1 to an element with zero ij coefficient.
Finally, SL2 ⊂ SL3 acts transitively on norm one octonions in 〈k, ik, jk, (ij)k〉 [SV00,
2.2], so we can assume y is in the span of j and k. In other words, we will assume
p = (x, y, z) ∈ V0 ⊕ 〈j, k〉 ⊕ 〈j〉.

Step 1: Prove Gp(F̄ ) = {1}. Assume g ∈ G(F̄ ) fixes such an element. We need
to show that for (x, y, z) generic of this form, this implies g is trivial. Firstly, notice
that generically the norms of x, y, and z are all distinct, and any non-trivial contri-
bution from S3 ⊂ G would permute the norms. So we may assume g = (g0, g1, g2) ∈
Spin8 ∩G ⊂ SO(O)3.

The identity 1.4 together with g2(j) = j and g0(〈1, i〉) = 〈1, i〉 implies that g1
preserves 〈j, ij〉 ⊂ V1. Due to our assumption on y ∈ V1, which is fixed by g1, we see
that g1(j) = j and g1(k) = k. So by the identity 1.4 we get g0(1) = 1.

Now let us write g = f · rλ · sµ · ι, where (f, ι) ∈ SL3 ⋊Z/2, and s and r are defined
in 1.6. Notice that g0(1) = 1 implies that (rλsµ)0(1) = 1, which implies µ = λ−1.

Switching to the matrix perspective of the octonions (see 1.1), the identity j = g1(j)
becomes (

(

0 1
1 0

)

, 0) = (f · rλ · sλ−1)1(
(

0 1
1 0

)

, 0) = f · (
(

0 λ−1

λ 0

)

, 0). Since f is an auto-

morphism fixing the diagonal, this implies (
(

0 1
−1 0

)

, 0) = f((
(

1 0
0 −1

)

, 0) · (
(

0 λ−1

λ 0

)

, 0)) =

f(
(

0 λ−1

−λ 0

)

, 0). Now using linearity of f , and a similar argument with g1(k) = k, we
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get

f(

(

0 a
b 0

)

, 0) = (

(

0 λa
λ−1b 0

)

, 0), f(0,

(

a 0
0 b

)

) = (0,

(

λa 0
0 λ−1b

)

).

In V0 we have that (rλsλ−1)0(
( 0 x1

y1 0

)

,
(

x2 y3
x3 y2

)

) = (
( 0 λ2x1

λ−2y1 0

)

,
(

λ2x2 λ−2y3
λ2x3 λ−2y2

)

), for any

xi, yi ∈ F . There are now two cases to consider.
Case: ι = 1. In other words, g0(i) = i. In this case, g = f · rλsλ−1 acts in V0 as

(
(

0 a
b 0

)

, 0) 7→ (
(

0 λ3a
λ−3b 0

)

, ). Since a generic x ∈ V0 is fixed by g, this implies λ3 = 1,

which means sλ−1rλ ∈ SL3, and therefore g ∈ SL3. But g1(k) = k and g2(j) = j imply
g also fixes j and k, which means g is trivial.

Case: ι 6= 1. In other words, g0(i) = −i. Let x = (
( 0 x1

y1 0

)

,
(

x2 y3
x3 y2

)

) ∈ V0. By the

identity in 1.4 combined with g1(j) = j and g1(k) = k we have that g0(〈j, ij〉) = 〈j, ij〉
and g0(〈k, ki〉) = 〈k, ki〉. So we have

g0(

(

0 x1
y1 0

)

, 0) = (

(

0 λ3y1
λ3x1 0

)

, 0),

g0(0,

(

x2 0
0 y2

)

) = (0,

(

λ3y2 0
0 λ3x2

)

).

Since x is generic and we are assuming it is fixed by g0, this implies λ3 = x1/y1 and
λ3 = x2/y2. But for generic x these two ratios are not equal, which gives a contradiction,
so no such g exists. This proves that generically the stabilizer of G on V has trivial
F̄ -points.

Step 2: Prove G[p](F̄ ) = {1}. Consider a generic element [p] = [(x, y, z)] ∈ P(V )(F̄ );

we must show no element of G(F̄ ) sends (x, y, z) to a scalar multiple of itself. Consider
the S3 action on the triple of norms up to scalar [(n(x), n(y), n(z))], viewed as an
element of P2. Since S3 acts faithfully on P

2, it acts generically freely there. If g ∈ G(F̄ )
fixes [(x, y, z)], this implies the S3 contribution is trivial. So we can assume (x, y, z) is
sent to its negative.

As for Step 1, we may assume (x, y, z) ∈ V0⊕〈j, k〉⊕〈j〉. So if g = (g0, g1, g2) sends it
to its negative then g2(j) = −j, g1(j) = −j, and g1(k) = −k. The identity 1.4 gives us
that g0(jk) = jk. Since g preserves orthogonality in O, this contradicts our assumption
that a generic x ∈ V0 is sent to its negative, so generically the stabilizer of G on P(V )
has trivial F̄ -points.

Step 3: Prove Lie(Gp) = Lie(G[p]) = {0}. Notice that if [p] ∈ P(V )(F̄ ), then we
have an inclusion of subgroups G[p] ⊂ NormG(〈p〉). In particular, it is enough to show
that Lie(NormG(〈p〉)) = {h ∈ Lie(G)|h · p ∈ 〈p〉} = {0} for a generic p ∈ V .

So take p ∈ V0 ⊕〈j, k〉 ⊕ 〈j〉 as above, and take h ∈ Lie(G) such that h · p ∈ 〈p〉. Use
the root space decomposition to write h = h0 +

∑

α hα.
Here (0, 0, j) is supported on two weight spaces, ±(+ + −−), see 1.7. One of these

weight spaces lies in the standard SL3-representation inside V2, while the other lies in
its dual inside V2. Lie(G) preserves each Vn, so h·(0, 0, j) ∈ 〈(0, 0, j)〉. If β = ±(++−−),
and α is an SL3-root such that β+α is a weight of V , then hα = 0, because otherwise
hαVβ = Vα+β , which contradicts h·(0, 0, j) ∈ 〈(0, 0, j)〉. So if hα 6= 0 then α = ±(ǫ3−ǫ4).
By arguing similarly with β = ±(+ − ++), or ±(+ + −+), we see α could not be
±(ǫ3 − ǫ4) either. So h ∈ Lie(T4). Therefore h preserves the weight spaces.

Since we have assumed there exists a λ ∈ F such that h · p = λp, considering the
weights of V0 (from 1.7), we see that ǫ2(h) = λ and −ǫ2(h) = λ. Since charF 6= 2,
we have λ = 0. Looking at other weight spaces we see ǫ3(h) = ǫ4(h) = 0 as well as
ǫ1(h) = 0. This implies h = 0, and completes the proof that Gp = G[p] = {1}. �
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Proof of Theorem 0.3. By Theorem 2.6 we have that ed(F4) ≤ ed(G) for the smooth
10-dimensional group G defined above. By Theorem 3.1 we have a compression V 99K

P(V ) from a generically free G-representation to its 17-dimensional generically free
projectivization. Therefore ed(F4) ≤ ed(G) ≤ dimP(V ) − dimG = 17 − 10 = 7, as
required (see also [BF03, Prop. 6.17]). �
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