PUSH-PULL OPERATORS ON THE FORMAL AFFINE
DEMAZURE ALGEBRA AND ITS DUAL

BAPTISTE CALMES, KIRILL ZAINOULLINE, AND CHANGLONG ZHONG

CONTENTS
1. Introduction 1
2. Formal Demazure and push-pull operators 3
3. Two bases of the formal twisted group algebra 6
4. The Weyl and the Hecke actions 8
5.  Push-pull operators and elements 10
6. The push-pull operators on the dual 12
7. Another basis of the Wz-invariant subring 14
8. The formal affine Demazure algebra 16
9. The algebraic restriction to the fixed locus 18
10.  The push-pull operators on D7 19
11. The non-degenerate pairing on the Wz-invariant subring 21
References 24

1. INTRODUCTION

In a series of papers [[KIK806], [[{IX90] Kostant and Kumar introduced and suc-
cessfully applied the techniques of nil (or 0-) Hecke algebras to study equivariant
cohomology and K-theory of flag varieties. In particular, they showed that the dual
of the nil Hecke algebra serves as an algebraic model for the T-equivariant singular
cohomology of G/B (here G is a split semisimple linear algebrac group with a cho-
sen split maximal torus 7' and G/B is the variety of Borel subgroups). In [HMSZ]
and [CZ7], this formalism has been generalized using an arbitrary formal group law
associated to an algebraic oriented cohomology theory in the sense of Levine-Morel
[LMO7], via the Quillen formula. Namely, given a formal group law F' and a finite
root system with a set of simple roots II, one defines the formal affine Demazure
algebra D and its dual D% provides an algebraic model for the T-equivariant
oriented cohomology hy(G/B). Specializing to the additive and the multiplica-
tive formal group laws, one recovers Chow groups (or singular cohomology) and
K-theory respectively.
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Another motivation for studying the algebra D r comes from its close relationship
to Hecke algebras. Indeed, for the additive (resp. multiplicative) F it coincides with
the completion of the nil (resp. 0-) affine Hecke algebra (see [ ). Moreover,
in section 8, we show that for some elliptic formal group law F' and a root system
of Dynkin type A the non-affine part of D is isomorphic to the classical Iwahori-
Hecke algebra, hence, relating it to equivariant elliptic cohomology.

In the present paper we pursue the ‘algebraization program’ for oriented coho-
mology theories started in [ ] and continued in | | and [CZZ]; the general
idea is to match cohomology rings of flag varieties and elements of classical interest
in them (such as classes of Schubert varieties) with algebraic and combinatorial
objects that can be introduced simply and algebraically, in the spirit of | ] or
[ ]. This approach is useful to study the structure of these rings, and to per-
form various computations. We focus here on algebraic constructions pertaining to
T-equivariant oriented cohomology groups. The precise proofs and details of how
our algebraic objects match cohomology groups will be treated in a forthcoming
paper; however, for the convenience of the reader, we now give a brief description
of the geometric setting.

Given an equivariant oriented cohomology theory h over a base field whose spec-
trum is denoted by pt, the formal group algebra S will correspond to hr(pt). ' It
is an algebra over R = h(pt).

The T-fixed points of G/B are naturally in bijection with the Weyl group W.
This gives a pull-back to the fixed locus map hr(G/B) = hp(W) ~ @,y hr(pt).
This map happens to be injective. We do not know a direct geometric reason for
that, but it follows from our algebraic description, in which it appears as the map
D% — Sy =~ @, e S of Definition 9.1. It is then convenient to enlarge S to its
localization ) at a multiplicative subset generated by Chern class of line bundles
corresponding canonically to roots, which gives injections S C @, Sy C Qw and
Sty € Q3. Although we do not know good geometric interpretations of @), Qw or
Q3y, all the formulas and operators we are interested in are easily defined at that
localized level, because they involve denominators. The main technical difficulties
then lie in proving that these operators actually restrict to S, S}, D% etc., or so
to speak, that the denominators cancel out.

Our central object of study is a push-pull operator on D7, which is an algebraic
version of the composition

hy(G/P) 5 b (G/Q) & hr(G/P)
of the push-forward followed by the pull-back along the quotient map p: G/P —
G/Q, where P C (@ are two parabolic subgroups of G. Again p* happens to be
injective, and it identifies hr(G/Q) to a subring of hp(G/P), namely the subring
of invariants under the action of the parabolic subgroup Wg of the Weyl group W.
This does not seem to be straightforward from the geometry either, and it once more
follows from our algebraic description: given subsets 2’ C = of a given set of simple
roots IT (each giving rise to a parabolic subgroup), we define an element Y= ,z: in
Qw (see 5.3). We define an action of the Demazure algebra Dp on its S-dual D%,
by precomposition by multiplication on the right. The action of Y= =/ thus defines
the desired push-pull operator Az = : (D})"=" — (D%)"=. The formula for the

We will require that the cohomology rings are ‘complete’ in some precise sense, but this is a
technical point, that we prefer to hide here for simplicity.
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element Y=,z with =’ = () had already appeared in related contexts, namely, in
discussions around the Becker-Gottlieb transfer for topological complex-oriented
theories (see | , (2.1)] and | , 84.1]).

Finally, we define the algebraic counterpart of the natural pairing hr(G/B) ®
hy(G/B) — hp(pt) obtained by multiplication and push-forward to the point. It
is a pairing D}, ® D}, — S. We show that it is non-degenerate, and that algebraic
classes corresponding to (chosen) desingularization of Schubert varieties form a
basis of D}, with a very simple dual basis with respect to the pairing. We provide
the same kind of description for hy(G/P). This generalizes (to parabolic subgroups
and to equivariant cohomology groups) and simplifies several statements from [ ,
§14], as well as results from | ] and | | (to arbitrary oriented cohomology
theories).

The paper is organized as follows. In sections 2 and 3, we recall definitions and
basic properties from [ , §2,3], [ , §6] and | , §4,5]: the formal group
algebra S, the Demazure and push-pull operators A, and C,, for every root «, the
formal twisted group algebra Qw and its Demazure and push-pull elements X,
and Y,,. In section 4, we introduce a left Qw -action ‘e’ on the dual Qy;,. It induces
both an action of the Weyl group W on Q7 (the Weyl-action) and an action of
X, and Y, on Q) (the Hecke-action). In sections 5 and 6, we introduce and study
the more general push-pull elements in @y and operators on Qj;, with respect to
given coset representatives of parabolic quotients of the Weyl group. In section 7,
we construct a basis of the subring of invariants of Qf;,, which generalizes | ,
Lemma 2.27].

In section 8, we recall the definition and basic properties of the formal (affine)
Demazure algebra D following | , 86, [ , 85] and | ]. We show that for
the special elliptic formal group law, the formal Demazure algebra is related to the
classical Iwahori-Hecke algebra. In section 9, we define the algebraic restriction to
the fixed locus map which is used in section 10 to restrict all our push-pull operators
and elements to D and its dual D7}, as well as to restrict the non-degenerate pairing
on D7.. At last, in section 11, we define and discuss the non-degenerate pairing on
the subring of invariants of D% under a parabolic subgroup of the Weyl group.

Acknowledgments We would like to mention that one of the ingredients of this paper,
the push-pull formulas in the context of Weyl group actions, arose in discussions
between the first author and Victor Petrov, whose unapparent contribution we
therefore gratefully acknowledge.

2. FORMAL DEMAZURE AND PUSH-PULL OPERATORS

In this section we recall definitions of the formal group algebra and of the formal
Demazure and push-pull operators, following | ] and | .

Let R be a commutative ring with unit, and let F' be a one-dimensional commu-
tative formal group law (FGL) over R, i.e. F(x,y) € R[z,y] satisfies

F(:L',O) =0, F(Zay) - F(y,x), F(ZaF(yaz)) = F(F(x,y),z)

Example 2.1. The additive FGL is defined by F,(z,y) = +vy, and a multiplicative
FGL is defined by F,,(x,y) = x + y — Szy with § € R. The coefficient ring of the
universal FGL is generated by the coefficients a;; modulo relations induced by the
above properties and is called the Lazard ring.
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Example 2.2. Consider an elliptic curve given in Tate coordinates by
(1 — pat — pot?)s = 3.
The corresponding FGL over the coeflicient ring R = Z[u1, p2] is given by, e.g. see

[ , Example 63],

Ty —pizy
Fe(xvy) T 14pszy

and will be called a special elliptic FGL. Observe that
Fe(z,y) =2 +y —ay(u + palFe(z,y)),
and thus that the formal inverse of F, is identical to the one of F,, i.e. and

_ 2
Fo(w,x) = Foiae,

_z
p1xr—17

Let A be an Abelian group and let R[xa]] be the ring of formal power series
with variables z) for all A € A. Define the formal group algebra R[A]r to be
the quotient of R[za] by the closure of the ideal generated by elements xy and
Ta4x, — F(zr,,2y,) for any A, A2 € A. Here 0 is the identity element in A. Let
Zr denote the kernel of the augmentation map e: R[A]r — R, x4 — 0.

Assume that A is a free Abelian group of finite rank and let ¥ be a finite subset
of A. A root datum is an embedding ¥ — AV, a — " into the dual of A satisfying
certain conditions | , Exp. XXI, Def. 1.1.1]. The rank of the root datum is the
Q-rank of A ®z Q. The root lattice A, is the subgroup of A generated by X, and
the weight lattice A, is the Abelian group defined by

Ay ={weA®,Q|aY(w) €Zfor all a € T}

We always assume that the root datum is reduced and semisimple (Q-ranks of A,.,
Ay, and A are the same and no root is twice another one). We say that a root datum
is simply connected (resp. adjoint) if A = A, (resp. A = A,), and then use the
notation D¢ (resp. D2?) for irreducible root data where D = A, B,C, D, E, F,G is
one of the Dynkin types and n is the rank.

The Weyl group W of a root datum (A, X) is a subgroup of Autz(A) generated
by simple reflections s, for all a € ¥ defined by

sa(A) = A —a’(Na, XeA.

We fix a set of simple roots II = {a1,...,a,} C ¥ that is a basis of the root datum:
each element of ¥ is an integral linear combination of simple roots with either all
positive coefficients or negative. This partitions ¥ into X+ and ¥~ the subsets of
positive roots, resp. negative roots. Let ¢ denote the length function on W with
respect to the set of simple roots II. Let wy be the longest element of W with
respect to £ and let N := £(wp).

Following [ , Def. 4.4] we say that the formal group algebra R[A]r is -
reqular if o is not a zero-divisor in R[A]r for all roots o € ¥. We will always
assume that:

The formal group algebra R[A]r is X-regular.

By [ , Lemma 2.2] this holds if 2 is not a zero-divisor in R, or if the root datum
does not contain any C'*¢ as an irreducible component.
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Following | , Def. 3.5 and 3.12] for each o € ¥ we define two R-linear opera-
tors A, and C, on R[A]F as follows:

(21) Aa(y) =22 Cu(y) = hay — Daly) = 2= + 228y e R[A]F,

T T
where ko := = + =1 (note that ko € R[A]r). The operator A, is called the

Demazure operator and the operator C, is called the push-pull operator or the
BGG operator.

Example 2.3. For the special elliptic formal group law F, we have ko, = u; +
waFe(x_0,2q) = p1 for each « € 3. If the root datum is of type Aj°, we have
Y = {+£a}, A = (w) with simple root o = 2w and

T_a 1 T Ltpaa
Co(a) = 2+ T2 = pra—ltim =7, Coltw) = 345 +52 = e — 152

T_o H1Ta—17 T_o

If it is of type AS¢ we have ¥ = {£a1, +as, (a1 + a2)}, A = (w1, ws) with simple
201 —p a2 —xo—poxics
14+ p2a?—prze—2p2z 102

roots a; = 2w —wa, @z = 2wy —w; and x4, =

1tpoa? —pxa—2p021 20
l—p1z1—p2xia2 ’

Coy(@1) = maz1,  Coy(21) = 21 —
where x1 := x,,, and xg 1= x,.
According to | , §3] the operators A, satisfy the twisted Leibniz rule
(22) Aa(zy) = Aa(2)y + sa(x)Aa(y), =,y € R[A]F,

i.e. Ay is a twisted derivation. Moreover, they are R[[A]];V“—linear, where W, =
{e, 34}, and

(2.3) Sa(x) =z if and only if A, (z) =0.

Remark 2.4. Properties (2.2) and (2.3) suggest that the Demazure operators
can be effectively studied using the theory of twisted derivations and the invariant
theory of W. On the other hand, push-pull operators do not satisfy properties (2.2)
and (2.3) but according to | , Theorem 12.4] they correspond to the push-pull
maps between flag varieties and, hence, are of geometric origin.

For the i-th simple root «y, let A; := A,, and s; := s,,. Given a sequence
I=(i1,...,im) with i; € {1,...,n}, denote |I| = m and define

A=A 0---04; , Cr:=0C;o0---0C;, andset Ayp=Cp=id.

We say that a sequence I is reduced in W if s;,s;, ...s;,, is a reduced expression
in W. In this case we also say that I = I, is a reduced sequence of the element
w(l) == 8i, 84, - - - 5i,,. Weset I, =0 (here e is the identity element of W).

Remark 2.5. It is well-known that for a nontrivial root datum, all w € W, Ar,
and Cr, are independent of the choice of a reduced sequence I, of w € W if and
only if F is of the form F(x,y) = z+y+ SBzy, § € R. The “if” part of the statement
is due to Demazure | , Th. 1] and the “only if” part to Bressler and Evens
[ , Theorem 3.7]. So for such F we can define A, := Ay, and C, := Cf,, for
each w € W.

The operators A,, and C,, play a crucial role in Schubert calculus and compu-
tations of the singular cohomology (F' = F,) and the K-theory (F = F,,) rings of
flag varieties.

For a general F, e.g. for F' = F,, the situation becomes much more intricate as
we have to rely on choices of reduced decomposition I,.

w



6 BAPTISTE CALMES, KIRILL ZAINOULLINE, AND CHANGLONG ZHONG

3. TWO BASES OF THE FORMAL TWISTED GROUP ALGEBRA

We now recall definitions and basic properties of the formal twisted group algebra
Qw, Demazure elements X, and push-pull elements Y,, following [ | and
]. For a chosen set of reduced sequences {I,}wew we introduce two bases

{X1,} and {Y7,} of Qw and describe the matrices (a;,,) and (a) ) by expressing

v,w
them on the canonical basis {0, } of Qw. We also relate the coefficients aifw

1X

v,w

and

the corresponding coefficients a;;”,, of the reversed elements Xjrev.

For simplicity we write S := R[A]r. Since the formal group algebra S is -
regular, it embeds into the localization Q = S[i | « € 3. Let Qw be the twisted
group algebra of @ and of the group ring R[W] over R, i.e. Qw = Q ®r R[W] as
an R-module and the product in Qw is given by

(q®5w)(q/®5w’) = qw(q/)®5ww/a Qaq/ € Qa wawl € W

where d,, is the canonical element corresponding to w in R[W]. Note that Qw is
not a Q-algebra since the embedding Q@ — Qw, ¢+ ¢ ® . is not central.

Inside Qyw, we use the notation ¢ := ¢ ® . and §,, := 1 ® d,, 1 := J. and
do 1= 05, for a root @ € . Thus ¢d,, = ¢ ® §,, and §,¢ = w(q) @ 0. Clearly,
{0w }wew is a basis of Qw as a left @-module.

For each o € ¥ we define the following elements of Qw (corresponding to the
operators A, and C,, respectively, by the action of (4.3)):

Xo = i — iéa, Yo i= ke — Xo = zia + i&a
called the Demazure elements and the push-pull elements, respectively.
By straightforward computations, for each a € ¥ we have
(3.1) X2 = koXo = Xoka and Y2 =k,Y, = Yoka,
Xoq=5a(0)Xa +Au(g) and Yog=sa(9)Yo +A-a(q), ¢€Q,
XY, =Y, X,=0.

Let §; := ds,, X; := Xq, and Y; := Y, be the i-th simple root «;. Given a

sequence I = (i1,12,...,4m) with i; € {1,...,n}, let the product X;, X;, ... X;,, be
denoted by X7 and V;,Y;, ... Y, by Y7. Set Xy =Yy =1.

By | , Ch. VI, §1, No 6, Cor. 2] if v € W has a reduced decomposition
UV = 8;,Siy *** Si,,, then
(3.2) vET NI = {80, (qig), - 8 (80 (- 80 (05,) ) )

In particular, $;,2~ N X+ = {;}.
Lemma 3.1. Let I, be a reduced sequence of an element v € W.

Then X1, = 3 <, ai{wéw for some ai{w € @, where the sum is taken over
all elements of W less or equal to v with respect to the Bruhat order and affw =
(71)“71) HaEvZ*ﬁE* xc:l :

Moreover, we have 6, = >, -, biwaIw for some bifw € S such that bi{e =1
and bﬂva = (_1)6(1}) HanZ*ﬂZ* Lo
Proof. Tt follows from | , Lemma 5.4, Corollary 5.6] and the fact that §, =
1—2,X,. U

Similar for Y;’s we have
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Lemma 3.2. Let I, be a reduced sequence for an element v € W.

Then Y1, =3 ,<, a}fw(S for someal ,, € Q andal, = (—1)™ak . Moreover,
we have 6, =Y, ., by Y1, for some b, €S and bY = (71)2(”)@):1}.
Proof. We follow the proof of | , Lemma 5.4] replacing X by Y. By induction
we have
YI—(:U5+9U5155 Z%’ww—xﬁ sg(a 5+Zavw
w<v’ w<v
where I, = (i1,...,%m) is a reduced sequence of v, 8 = a;, and v = sgv. This
implies the formulas for Y7, and for a{v Remaining statements involving b{w
follow by the same arguments as in the proof of | , Corollary 5.6] using the fact
that 0o = 24Ys — ;7= and =~ € S. O
As in the proof of | , Corollary 5.6], Lemmas 3.1 and 3.2 immediately imply:

Corollary 3.3. The elements { X1, }vew (resp. {Y1, }vew ) form a basis of Qw as
a left Q-module.

Example 3.4. For the root data A%¢ or A3¢ and the formal group law F. we have

T = T_q and
1 0
Y _
(av,w)v,weW - (,Ufl . i i)

where the first row and column correspond to e € W and the second to s, € W.

Given a sequence I = (i1,...,0m), let 1™ := (i, ...,41). We set
H To € 5.
acX—

Observe that by (3.2) we have so(2n)7T_o = ZnTe for a € 7.

Lemma 3.5. Let I = (i1,...,4m) be a sequence in {1,...,n}. Let
X = Z afvéy and Xjrev = Z a’ff;éy for some a“}, a“, €qQ,
veW veWw

then v(zm) a’fi) =v(ay,-1) zn. Similarly, let

Y = g a}/’véy and Yirev = E a8, for some ahj, alv € Q,
veW veEW

then v(zm) a'IYv = U(aKU,l)xn.

Proof. If I = (i), then Y7 = Ypev. So a’I,U = ar, for all v € W (we omit the

superscripts ‘Y’). For v ¢ {e,s;} we have a7, = ar, = 0. For v = e we have
1

Tay,

xna'Iye = znase. For v = s; we have si(xn)a}’si = zns;(ars,), since ar s, =
The proof is analogous for Xj;.

Now the conclusion immediately follows by induction on the length |I| using
Lemma 3.6 below with = zp1, f =Y, f' = Yjev, g = Y and ¢’ = Yirev for any
splitting of I in smaller sequences J followed by K. O



8 BAPTISTE CALMES, KIRILL ZAINOULLINE, AND CHANGLONG ZHONG

Lemma 3.6. Given x € Q, assume that elements

f= Z aydy, and f'= Z ard, with a,,al, € Q

veW veWw
g = Z b0, and ¢ = Z b, 6, with by, b, € Q
veEW veW

of Qw satisfy v(x)al, = v(a,-1)x and v(x)b), = v(by—1)x for all v € W. Then
the product fg = > ¢y, and the element (fg) := ¢'f' = >l d, bear the same
relation: v(x)c, = v(c,-1)x.

Proof. By definition of the product, we have
Z bf"l/u1 (a;z) a'nd Cy—1 = Z a"u;lvgl(bvfl)'
V1V2=7 V1V2=7

We then compute (all sums still being over pairs (v, v2) € W2 such that vive = v)

v(cy-1)x = Zvlvg aU;wQ 71 :U = Zvlvg vyl Jur ( b ) x
= Zvlvg oy )01(@) b, = Zvl (va(a,- ST ) by, Zvl (’UQ(J?)G/;Q) by,
(z valvl a,,) = v(x)c,. O

4. THE WEYL AND THE HECKE ACTIONS

In the present section we recall several basic facts concerning the @Q-linear dual
Q7 following | ] and [CZZ]. We introduce a left Qw-action ‘e’ on Q. The
latter induces an action of the Weyl group W on QF;, (the Weyl-action) and the
action by means of X, and Y, on Qj;, (the Hecke-action). These two actions will
play an important role in the sequel.

Let Q3 := Homg(Qw, Q) denote the Q-linear dual of the left @-module Q.

By definition, Q3 is a left @Q-module via (¢f)(z) := ¢f(z) for any z € Qw, f € Q3
and g € (). Moreover, there is a Q-basis { fu }wew of @y dual to the basis {0 fwew
defined by f,(dy) := 6w, (the Kronecker symbol), w,v € W.

Definition 4.1. We define a left action of Qw on Q7 as follows:
(ze f)(2) = f('2), 2,2 €Qw, feQi.

By definition, this action is left @-linear, i.e. z e (¢f) = ¢(z o f) and it induces a
different left -module structure on Q3 via the embedding ¢ — gd., i.e.

(g f)(2) := f(zq).
It also induces a Q-linear action of W on Qf, via w(f) := 0, e f.

Lemma 4.2. We have g o f,, = w(q)fuw and w(fy,) = fow—1 for any ¢ € Q and
w,v € W.

Proof. We have (g ® fi,)(0y) = fuw(v(¢)dy) = v(¢)dw,» which shows that g e f, =
v(q)fy. As for the second we have [w(f,)](6u) = fo(0udw) = v uw, SO W(fy) =
fvw*l- U
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There is a coproduct on Qw defined by [CZZ, Def. 8.9]:
AC?W*>CQW ®Q QW; qgw'_)q&w(@&w

Here ®q is the tensor product of left Q-modules. It is cocommutative with co-unit
e:Qw — Q, qdw — q | , Prop. 8.10]. The coproduct structure on Qw induces
a product structure on Q7,, which is Q-bilinear for the natural action of @ on Q5
(not the one using o). In terms of the basis {fy}wew the product is given by
component-wise multiplication:

(4.1) (Z Qv fu)( Z q;ufw) = Z Qinufwv Qw7q714; €Q.
veW wew wew
In other words, if we identify the dual @, with the @-module of maps Hom(W, Q)
via
Qw — Hom(W,Q), [ [, [f(w):= f(du),

then the product is the classical multiplication of functions with values in a ring.

The multiplicative identity 1 of this product corresponds to the counit ¢ and
equals 1 =% —u fu. We also have

(4.2) qge (ff)= (a0 f)f = flae f')forqe Qand f,f € Qy.

Lemma 4.3. For any o € ¥ and f, f' € QF, we have so(ff) = sa(f)sa(f’), i.e.
W acts on the algebra Q3 by Q-linear automorphisms.

Proof. By Q-linearity of the action of W and of the product, it suffices to check the
formula on basis elements f = f,, and f’ = f,, for which it is straightforward. O

Observe that the ring @ can be viewed as a left Qy-module via the following
action:

(4.3) (¢0w) - ¢ =qu(qd), ¢, €Q, weW.
Then by definition we have
(4.4) (qo1)(2) =2-q, z€Qw.

Definition 4.4. For a € ¥ we define two @-linear operators on Qy;, by
Aa(f) =Y,ef and Ba(f) =Xaof, fEQT/V
An action by means of A, or B, will be called a Hecke-action on Q7.

Remark 4.5. If I = F,, (resp. F = F,) one obtains actions introduced by
Kostant—Kumar in [ , I1g] (resp. in | , Is1])-

Asin (2.2) and (2.3) we have
(4'5) Ba(ffl) = Ba(f)fl + Sa(f)Boz(fl) and By 0sq = —B,, for f, fl € Q?/Va

(4.6) Bo(f) = 0 if and only if f € (Q%)"
Indeed, using (4.2) and Lemma 4.3 we obtain
Bo(N)f' +5a(f)Ba(f) = [7-(1=da) e fIf' +sa(f)7-(1 - 'l

a

= [i% = sa(PIf" + salf )[% ( _Sa(fl))]
= (ff = 5a(f)sa(f") = Balff')

and B, (sa(f)) = ( -9 )osa(f) = L e (84(f) = f) = =Bu(f). As for (4.6) we
have 0 = B, (f) = of—ao[(l—é ) f] which is equivalent to f = s (f).
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And similarly to (3.1) we obtain
(4.7) AZZ(f) = Fa @ Aa(f) = Aalra o f), B2(f) = fa ® Ba(f) = Ba(ka ® f),
AyoBy, =ByoA, =0.
We set A; = A,, and B; := B,, for the i-th simple root «;. We set Ay =
Ajyo...0A; and Bf = B;, o...0 B;  for a sequence I = (i1,...,4,,) with
i; € {1,...,n}. The operators A; and By are key ingredients in the proof that the

natural pairing of Theorem 10.7 on the dual of the formal affine Demazure algebra
is non-degenerate.

Lemma 4.6. For any sequence I, we have
Aprev (z11fe) = Z U(In)a{va and  Brrev(znfe) = Z v(xn)afva.
veW veWw

Proof. We prove the first formula only. The second one is obtained using similar
arguments. Let Yev = > a}y’vyév and Y7 = > oy a{véy as in Lemma 3.5.
Then

Aprev (211 fe) = Yirev @ 211 fe = Z IH(GII},/U(S@ o fo) =

veW
> an(a, o fm) = Y amo~ (@) o = D anv(al, ) fo.
veEW veEW veEW
The formula then follows by Lemma 3.5. (]

5. PUSH-PULL OPERATORS AND ELEMENTS

Let us now introduce and study a key notion of the present paper, the notion
of push-pull operators (resp. elements) on @ (resp. in Qw) with respect to given
coset representatives in parabolic quotients of the Weyl group.

Let (3,A) be a root datum with a chosen set of simple roots II. Let & C II
and let Wz denote the subgroup of the Weyl group W of the root datum generated
by simple reflections s,, a € . We thus have Wy = {e} and Wiy = W. Let
Yz :={a€X|s, € Wz} and let E'E" =3z NYT, X2 := Xz N~ be subsets of
positive and negative roots respectively.

Given subsets 2’ C Z of 1I, let EJEF = = EJEF \ EJEF, and EE/E, =Yz \ Xz, We
define
T/ = H To and set zg 1= z=z/p.
aEX_

=/8/
Lemma 5.1. Given subsets Z' C =2 of Il we have
’U(EE/E,) = Eg/a, and ’U(E;/E,) = E; = for anyv € Wz,

Proof. We prove the first statement only, the second one can be proven similarly.
Since v acts faithfully on Xz, it suffices to show that for any o € EE/E,, the root

B :=v(a) ¢ Xz and is negative. Indeed, if 3 € Xz, then so is a = v™1(B) (as
v~1 € Wz/), which is impossible. On the other hand, if 3 is positive, then
B=v(a) evizNXi =v8s, NnEL,

where the latter equality follows from (3.2) and the fact that v € Wz, So o =
v~ 1(B) € ¥=/, a contradiction. O
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Corollary 5.2. For any v € W=, we have ’U(IE/E/) = Tz =

Definition 5.3. Given a set of left coset representatives Wz = of Wz/Wz/ we
define a push-pull operator on Q with respect to Wz =/ by

Cz/=(q) == Z w(z (i_/)'

’UJEWE/E/ -

and a push-pull element with respect to Wz,=/ by

YE/E/ = ( Z 5w) xEl/E’ .

’UJEWE/E/

We set C= := Cg/p and Yz := Yz/p (so they do not depend on the choice of
=/0 = Wz in these two special cases).

By definition, we have Cz/=/(q) = Yz = - ¢, where Yz,= acts on ¢ € Q by
(4.3). Also in the trivial case where = = Z’, then zz/z = 1, while Cz/z = idg
and Yz =z = 1 if we choose e as representative of the only coset. Observe that for
E = {a;} we have Wz = {e, s;} and Cz = C; (resp. Yz = Y;) is the push-pull
operator (resp. element) introduced before and preserves S.

Example 5.4. For the formal group law F, and the root datum As, we have
T =Ty Ty Ty —a, aNd

Cn(1) =Y w(E)=miG—F—+ 7+ ) = i + mpe.

T—agT—a)—ay T—ayTag TagTag+tag
weW

Lemma 5.5. The operator Cz =/ restricted to QY= is independent of the choices
of representatives Wz = and it maps QW= to QW=.

Proof. Since 1/z=,= € Q"= by corollary 5.2, the independence statement is clear.
The second part follows, since for any v € W=, and for any set of coset representa-
tives Wz =/, the set vWz =/ is again a set of coset representatives. Il

Actually, we will see in Corollary 10.4 that the operator Cz sends S to SW=.

Remark 5.6. The formula for the operator Cz (with Z’ = () had appeared before
in related contexts, namely, in discussions around the Becker-Gottlieb transfer for
topological complex-oriented theories (see [ , (2.1)] and | , §4.1]). The
definition of the element Y=,z can be viewed as a generalized algebraic analogue
of this formula.

Lemma 5.7 (Composition rule). Given subsets 2" C Z' C = of II and given sets of
representatives Wz =z and Wz jzn, take Wz zn := {wv | w € Wz =/, v € Wa/jzn}
as the set of representatives of We /Wen. Then

CE/E/ [©] CE//EII = CE/EII (],nd YE/E'YE'/E” = YE/E”'

Proof. We prove the formula for Y’s, the one for C’s follows since C acts as Y, and
the composition of actions corresponds to multiplication. We have Yz =/ Y=/ /= =

( Z 5wﬁ/5,)( Z 5v955+/5”): Z 5w’um-

’LUEWE/E/ WEWE//EN ’LUEWE/E/JJEWE//EN

By Corollary 5.2, we have U‘l(acE/EI) = xz/=/. Therefore, v_l(acE/E,)acE,/:u =
r=z = xzzr = vz =0 We conclude by definition of Wz =z O
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The following lemma is clear from the defining formula of Cz/=.

Lemma 5.8 (Projection formula). We have
Cz/=(qq') = qC=y= () for any q € (Qw)""® and ¢’ € (Qw)"=".
Lemma 5.9. Given a subset 2 of Il and o € = we have

(a) Ye =YY, =Y, Y" for someY' andY" € Qw,
(b) YEXO( = XO(YE = 0, YaYE = IiaYE and YEYa = YEKO(.

Proof. (a) The first identity follows from Lemma 5.7 applied to ' = {a} (in this
case Y' = Yz/=/).

For the second identity, let “Wz be set of right coset representatives of W, \Wg,
thus each w € Wz can be written uniquely either as w = s,u or as w = u with
u € *Wz=. Then

Yo = > (1+46)0uz = Y. (1+6a)72 aburs

u€*Wg u€*Wg
_ ZYIEQ% -y, Z(Swl(aa)
uc*Wg werWse
(b) then follows from (a) and (3.1). O

6. THE PUSH-PULL OPERATORS ON THE DUAL

We now introduce and study the push-pull operators on the dual of the twisted
formal group algebra Q7 .

For w € W, we define f5 := Z’UG’LUWE fo. Observe that f= = f=, if and only
if wWz = w'Wz. Consider the subring of invariants (Qj)"= by means of the
eo’-action of Wz on @y, and fix a set of representatives Wy =z. By Lemma 4.2, we
then have the following lemma:

Lemma 6.1. The set {fx}wewy,= forms a basis of (Qy,)"
and fEfE = 6., = for any w,v € Wiy=.

m

as a left Q-module,

In other words, { fu }wewy /= Is a set of pairwise orthogonal projectors, and the
direct sum of their images is (Q};,)"V=

Definition 6.2. Given subsets ' C Z of I and a set of representatives Wz, =z we
define a @)-linear operator on Qy;, by

Azjz (f) =Yz/z o f, [€Qiy,
and call it the push-pull operator with respect to Wz =/. It is Q-linear since so is
the ‘e’-action. We set Az = Az /.

Lemma 5.7 immediately implies:

[I]

Lemma 6.3 (Composition rule). Given subsets Z’ C =/ C Z of II and sets of
representatives Wz = and Wz jzn, let Wz zn = {wv | w € Wz)z, v € Ww/w,}
then we have Az = o Azijzn = Azjzr.

Here is an analogue of Lemma 5.5

Lemma 6.4. The operator Az,= restricted to (QT,V)WE’ is independent of the
choices of representatives Wz = and it maps Q)= to (Qy)V=.
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Proof. Let f € (Q%,)"='. For any w € W and v € W=/, by Corollary 5.2, we have

1 1 1 1
Oww = (0 —0y = (0y Oy = (0w .
(brets) o = (=) 0 F = () oo f = () o
which proves that the action on f of any factor 5w(rl/:,) in Yz,=/ is independent

of the choice of the coset representative w.
Now if v € Wz, we have

v(Az/z/(f)) =0p o Yz = o f = (6, Yz/=) ® f = A==/ (f)
where the last equality holds since d, Yz = is again an operator Yz =/ corresponding

to the set of coset representatives vWz =/ instead of Wz =/. This proves the second
claim. (]

Lemma 6.5. We have

AE/E’(fv) = % Z Jow—1 = ’U(l‘; Z w(fv)

Proof. By Lemma 4.2 we obtain AH/W(f ) =

- ( Z 5w$3/3/ o fo= Z 0w ® Elsl)fv - ’U(JC—/—/) Z fow=1-

wEWE/E/ wEWE/E’ IUEW'—/'—/

In particular

AE E’(fUEI): Z WE/E,) Z fku*lzm Z Z fku*l

weWz HGWE/E’ wEWz uGWE/E’
_ 1 1 =
— v(zzer) Z fw — v(rg,z) fv
wevWz
where the second equality follows from Corollary 5.2. m

Together with Lemma 6.1 we therefore obtain:
Corollary 6.6. We have Az;= ((Q3,)"=") = (Qjy)"=.
Lemma 6.7 (Projection formula). We have

Azjz(ff') = fAz/z (f))  for any f € (Qi)™
Proof. Using (4.2) and Lemma 4.3, we compute

m

and f" € (Qiw)"™*

AE/E/(ff ) YH/H/ * ff Z 5w ;c—/—/ (ff/) - Z 5“’ ° l‘El/E/ ° (ff/)
weWz =/ wEWz 2/
S Gue(fin e/ = Y Guebue s o)
weWs/=r WEWz =
=f Y Guesizef =fAz=(f) O
w€W~/~,

Lemma 6.8. Given a sequence I in {1,...,n}, for any z,y € S and f, f' € Q%
we have

Crn(Ar(z)y) = Cn(zArev (y)) and An(Br(f)f') = An(fBre(f')).
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Proof. We prove the second formula only. The first one is obtained similarly. By
Lemma 5.9.(b) we have Y1 X, = 0 for any o € II. By (4.5) we obtain

0= An(Ba(sa(f)f) = An(fBa(f') = Ba(f)f)-
Hence, An(Bo(f)f") = An(fBa(f")). The formula then follows by iteration. O
Let { X}, }wew and {Y} }wew be the Q-linear basis of Qy, dual to { X7, fwew
and {Y7, }wew, respectively, i.e. Xj (Xr,) = 0w for w,v € W. We have X7 = 1.
Indeed, from Lemma 3.1, we have 6, = 3, -, bf}wa[w with bf}fe = 1. So for each
v e W we have X7 (0,) = by, =1 =1(0,).
Lemma 6.9. Let wy be the longest element in W, of length N. We have

An(X7, ) = (-)N1  and An(Y7, ) =1.

Proof. Consider the first formula. By Lemma 3.1 §, = ngv bf}wa 1,,, therefore
X7, =2 sw by o fo. Lemma 6.5 yields

X
An(Xp) =D st
v>w
bX
If w = wp is the longest element, then Ap (Xj*wo) = w1 By Lemma 3.1 we
have by .0 = (=1)N [T e+ Za Which by (3.2) equals to (—1)Nwo(zm).
The second formula is obtained similarly using Lemma 3.2 instead. O

Definition 6.10. We define the characteristic map c: Q = Qj, by ¢+— qe 1.

By the definition of the ‘e’ action, ¢ is an R-algebra homomorphism given by
c(q) = > wew w(q) fuw. Note that ¢ is Qu-equivariant with respect to the action
(4.3) and the ‘o’-action. Indeed, ¢(z-q) = (2-¢q)el =z20(qel) =zec(q). In
particular, it is W-equivariant.

The following lemma provides an analogue of the push-pull formula of | ,
Theorem. 12.4].

Lemma 6.11. Given subsets Z' C E of I, we have Azj= oc = coCz/z.

Proof. By definition, we have
Azyz(c(q)) = Yz/z 0 c(q) = c(Yz/z - q) = c(Cz/=/(q))- U
7. ANOTHER BASIS OF THE W=-INVARIANT SUBRING

Recall that {fZ}wewy - is a basis of the invariant subring (Qj,)""=. In the
present section we construct another basis { X7 },cw= of the subring Q)=
which generalizes | , Lemma 2.27].

Given a subset = of IT we define
W= ={w e W | l(wss) > L(w) for any a € Z}.

Note that W= is a set of left coset representatives of W/Wz such that each w € W=
is the unique representative of minimal length.
We will extensively use the following fact | , §1.10]:

(7.1) For any w € W there exist unique u € W= and v € W=
such that w = uv and ¢(w) = £(u) + £(v).
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Definition 7.1. Let = be a subset of II. We say that the set of reduced sequences
{Iy}wew is E-compatible if for each w € W and the unique factorization w = uv
with u € W= and v € Wz, £(w) = £(u) + £(v) of (7.1) we have I, = I, UT,, i.e. I,
starts with I,, and ends by I,.

Observe that there always exists a =Z-compatible set of reduced sequences. In-
deed, we can take any reduced sequence for w € W= U W= and then define
I, :=I,U]I, for w=wv with u € W% and v € W=.

Lemma 7.2. For any z € Qw, we have X} (2) = z - 1, where e is the neutral
element of W and z - 1 is defined in (4.3). In particular, for any sequence I with
|I| > 1, the coefficient of X} (X1) = 0.

Proof. Since X,, -1 =0, for any sequence I with |I| > 1, we have X; -1 =0, and
of course X7, -1=1-1=1. Thus

2 1=() X (2)X1,) 1= X} (2). O
weWw

It follows that if [I] > 1 and we express X; = > .y ¢uX1,, then g. = 0.

Lemma 7.3. For any reduced sequence I of an element w and q € QQ we have

X1 = 3 bru@)Xs, for some 61.1,(0) € Q.

v<w
Proof. For any subsequence J of I (not necessarily reduced), we have w(J) < w by
[ , Th. 1.1]. Thus, by developing all X; = %(1 — dq; ), moving all coefficients
to the left, and then using Lemma 3.1 and transitivity of the Bruhat order,

Xrq= Z b1,0(q)00w = Z or,w(@) X1,

w<v w<v
for some coefficients ¢~)[7w(q) and ¢r.,(q) € Q. O

Theorem 7.4. Assume that the set of reduced sequences {I, }wew s Z-compatible.
For any uw € W=, and for any sequence I of length at least 1 and in W= (i.e. a; € =
for any i appearing in the sequence I), we have

X7 (2X1) =0 for all z € Qw.

Proof. Since { X1, }wew is a basis of Qw, we may assume that z = X, for some
w € W. We proceed by induction on the length of w. First decompose X; =
ZS<UGWE gv X1, With ¢, € @ by Lemma 7.2.

When ¢(w) = 0, we have X;, = X = 1. Since WaNW?= = {e}, for any v € Wz,
v # e, we have X7 (Xy,) = 0 so this case is clear.

Then, the induction step goes as follows: since the sequences are =-compatible,
we have X7, X; = X7 , X1, Xr = X7, Xp with w' € W= v € We and I' € Wz
with ¢(I') > ¢(I) > 1. We can thus assume that w € W=. Then, by Lemma 7.3,

X1, X1 = ZXquUXIU = Z o1, 0 (00) X1, X1, -
v#e w!' <w,vF#e

Now X7 (X1,X1,) = X7, (X1,,) = 0 since wv is not minimal (v # e) so wv # u.
Applying X7 to other terms in the above summation gives zero by induction. [
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Remark 7.5. The proof will not work if we replace X’s by Y’s, because constant
terms appear.

Corollary 7.6. Assume that the set of reduced sequences { L, }wew is E-compatible.
The elements { X7 tuews= form a Q-module basis of Q)=

Proof. For every a; € =2 we have
(6.0 X7,)(2) = X}, (26) = X}, (2(1 ~ X)) = X1, (2). = € Qu,
where the last equality follows by Theorem 7.4. Therefore, X7 is Wz-invariant.
Let 0 € (Q%,)"=, i.e. for each a; € = we have 0 = s,(0) = §; @ 0. Then

o(zX;) = J(zx%i(l —0a;)) = J(zt) —(0; @ a)(zxil) =(c—0;e 0)(2%) =0

for any z € Qw. Write ¢ = Zwew cw X7, for some ¢, € S. If w ¢ WE=, then I,
ends by some ¢ such that «; € 2 which implies that

Cy = O’(X]w) = O'(Xlw\iXi) = 0,

where I, \ i is the sequence obtained by deleting the last ¢ in I,. So o is a linear
combination of { X7} },cw=. O

Corollary 7.7. Assume that the set of reduced sequences { I, }wew is E-compatible.
Then we have bfmu = biiu for any v € Wz, u € W= and w € W, where bfmu are
the coefficients of Lemma 3.1.

Proof. From Lemma 3.1 we have X} = sz“ bif’ufw. By Lemma 4.2 we obtain
that v(X} ) = 3,50 bis wfuwe—r for any v € W=. Since Xj is Wz-invariant by

w>u Cw,u

Corollary 7.7 and {f,,} is a basis of Qj, this implies that b2 _,  =b% ,. O

8. THE FORMAL AFFINE DEMAZURE ALGEBRA

In the present section we recall the definition and basic properties of the formal
(affine) Demazure algebra Dp following | L[ ] and | ]. We show that
for the special elliptic formal group law F,, the formal Demazure algebra is related
to the classical Iwahori-Hecke algebra.

Following | ], we define the formal affine Demazure algebra Dy to be the
R-subalgebra of the twisted formal group algebra Qw generated by elements of .S
and the Demazure elements X; for all i € {1,...,n}. By | , Lemma 5.8], Dp is
also generated by S and all X, for all « € 3. Since k. € S, the algebra D is also
generated by Y,’s and elements of S. Finally, since é, = 1 — 24X, all elements &,
are in Dp, and D is a sub-Sy-module of Qv , both on the left and on the right.

Remark 8.1. Since {X, }wew is a Q-linear basis of Qw, restricting the action
(4.3) of Qw onto Dp we obtain an isomorphism between the algebra Dy and the
R-subalgebra D(A)r of Endgr(S) generated by operators A, (resp. Cy) for all
« € %, and multiplications by elements from S. This isomorphism maps X, — A,
and Y, — C,. Therefore, for any identity or statement involving elements X, or
Y, there is an equivalent identity or statement involving operators A, or Cl,.

According to [ , Theorem 6.14] (or | , 7.9] when the ring R is not
necessarily a domain), in type A, the algebra Dp is generated by the Demazure
elements X;, ¢ € {1,...,n}, and multiplications by elements from S subject to the

folowing relations:
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(b) Xin = XjX,L' for |Z —j| > 1,
C) XZX]XZ - X]XZX] = nij(Xj - Xi) for |Z 7]| =1 and
) Xiq = si(q)Xi + Ai(q),

Recall that the Iwahori-Hecke algebra H of the symmetric group S,4+1 is an
Z[t,t~1]-algebra with generators T}, i € {1,...,n}, subject to the following rela-
tions:

(A) (T; +t)(T; —t~1) = 0 or, equivalently, T? = (1 — )T} + 1,

(B) T,LT] = T]Tz for |Z 7]| > 1 and
(The T;’s appearing in the definition of the Iwahori-Hecke algebrain | , Def. 7.1.1]
correspond to t7; in our notation, where t = q*1/2.)

Following | , Def. 6.3] let D denote the R-subalgebra of Dp generated by
the elements X;, i € {1,...,n}, only. By | , Prop. 7.1], over R=C,if F = F,,
(resp. F' = F,;,), then D is isomorphic to the completion of the nil-Hecke algebra
(resp. the 0-Hecke algebra) of Kostant-Kumar. The following observation provides
another motivation for the study of formal (affine) Demazure algebras.

Let us consider the special elliptic formal group law of example 2.2 with coeffi-
cient g1 = 1. Then its formal inverse is z/(z — 1), and since (1 + poz;z;)xi+; =
x; + xj — x;x;, the coefficient x,; of relation (c) is simply po:

(8.1) Ky = 1 1 1 _ witz @i —aiy; _ (Itpezizy)zip;—x
. (¥ Tit;T; TitiT—; TiT; TiTTi4 TiTjTi4 5

iti Lo
Proposition 8.2. Let F, be a normalized (i.e. p1 = 1) special elliptic formal
group law over an integral domain R containing Z[t,t™ ], and let a,b € R. Then
the following are equivalent
(1) The assignment T; — aX; + b, i € {1,...,n}, defines an isomorphism of
R-algebras H ®z; -1 R — Dp.
(2) We have a =t+t=t or —t—t=1 and b = —t ort=* respectively. Furthermore
po(t +t=1)% = —1; in particular, the element t + 1t~ is invertible in R.

Proof. Assume there is an isomorphism of R-algebras given by T; — aX; +b. Then
relations (b) and (B) are equivalent and relation (A) implies that

0= (aX;+b)2+(t—t"H(aX;+b)—1=[a*+2ab+a(t—t ") X;+b*+b(t—t~1)—1.

Therefore b= —tort ™t anda=¢t"1—¢t—2b=1t+t"! or —t — ¢t~ ! respectively,
since 1 and X; are S-linearly independent in Dy C Dp.

Relations (C) and (a) then imply

0= (aXi + b)(an + b)(CL)(Z + b) - (an + b)(aXi + b)(an + b)
=a*(X; X; X, — X;XiX;) + (@%b + ab?)(X; — X;).

Therefore, by relation (c) and (8.1), we have a®us — a*b — ab® = 0 which implies
that 0 = a?ug — ab — b = (t +t71)%us + 1.

Conversely, by substituting the values of a and b, it is easy to check that the as-

signment is well defined, essentially by the same computations. It is an isomorphism
since a = (¢ + ¢t~ 1) is invertible in R. O
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Remark 8.3. The isomorphism of Theorem 8.2 provides a presentation of the
Iwahori-Hecke algebra with ¢ +t~! inverted in terms of the Demazure operators on
the formal group algebra R[A]r,.

9. THE ALGEBRAIC RESTRICTION TO THE FIXED LOCUS

In the present section we define the algebraic counterpart of the restriction to
T-fixed points of G/B.

Let Sy be the twisted group algebra of S and the group ring R[W], i.e. Sy =
S ®g R[W] as a R-module and the multiplication is defined by

(26) (26 ) = 2w (2 )oior, w2 €8, w,w’ € W.

The algebra Sy is a free S-module with basis {J, }wew. Since S is X-regular, it
injects into its localization ). Therefore, Sy injects into Quw via dy, — 9.

Since 6, = 1 — x4, X, for each o € X, there is a natural inclusion of S-modules
n: Sw — Dp. By | , Prop. 7.7] the elements { X1, }wew and, hence, {Yr, }wew
form a basis of D as a left S-module. Tensoring n by () we obtain an isomorphism
nQ: Qw 5 Q ®s D, because both are free @Q-modules and their bases { X, }wew
are mapped to each other. Observe that by definition D injects into QQ ®s Dp ~

Qw-.

Consider the S-linear dual Sj;; = Homg(Sw, S). Since {d,}wew is a basis for
both Sy and Qw, S}, can be identified with the free S-submodule of Qy, with
basis { fuw }wew or, equivalently, with the subset {f € Q3 | f(Sw) C S}. Consider
the S-linear dual D% = Homg(Dp, S).

Definition 9.1. The induced map n*: Dy — S}, (composition with 7) will be
called the algebraic restriction to the fized locus, because of its geometric interpre-
tation, given in the introduction.

Lemma 9.2. The map n* is injective and its image in St C Qy = Q ®s Sy
coincides with the subset

{fe@Qw | f(Dr)C S}
Proof. There is a commutative diagram

*

* n *
DF SW

Lo,

Q®sDE — Q®s Sy

where the vertical maps are injective by freeness of the modules and because S
injects into ). The description for the image then follows from the fact that
{X1, }wew is a basis for both Dy and Qw . O

Remark 9.3. Observe that n* is not surjective, unless the root datum is trivial.
Indeed, since Xo = == — -4, we have f, (Xo) = —2— ¢ 5, so f,_ is not in the
image of n*.
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Since D is a subring of Qyw, the ‘®’-action of Qw on Q7 restricts to an S-linear
action of Dp on D% given by the same formula: (2’ @ 0)(z) = o(22’) for 0 € D}
and z, 2’ in Dg. Thus, the action of W on Q5 restricts to an action on Dp.

By | , Theorem 9.2] the coproduct A on Quw restricts to a coproduct on Dp.
Hence, the dual D}, becomes a subring of Q7.

10. THE PUSH-PULL OPERATORS ON D7,

In this section we restrict the push-pull operators onto the dual of the formal
affine Demazure algebra D%, and define a non-degenerate pairing on it.

Lemma 10.1. For any subset = of II we have Y= € Dp.

Proof. The ring Qw is functorial in the root datum (i.e. along morphisms of lattices
that send roots to roots) and in the formal group law. This functoriality sends
elements X, (or Y,) to themselves, so it restricts to a functoriality the subring Dp.
We can therefore assume that the root datum is adjoint, and that the formal group
law is the universal one over the Lazard ring, in which all integers are regular, since
it is a polynomial ring over Z.

Consider the involution ¢ on Qw given by ¢d,, +— (—1)*w=1(q)d,,-1. It satisfies
1(z2") = 1(2")e(2). Since 1(Xqa) = Y_4, it restricts to an anti-automorphism on D p.
Hence, it suffices to show that «(Yz) € Dp. By definition we have

() = 3 D Es =L Y (D e,
weEW= N - weWzs
Since the root datum is adjoint, Dp = {z € Qw | 2-S C S} by | , Remark 7.8].
It therefore suffices to show that ¢(Yz) -« € S for any x € S. We have

W(Yz) z =L Z (—1) @y ().
N weWs
For any o € X2 let “Wz = {w € Wz | {(sqw) > l(w)}. Then Wz = “W=1I
5o “W= and the sum

YD) M) = Y (1 (w(a)—sa(w(@) =20 Y (1) Ax(w(z))

weWs we*Wze werWz

is divisible by z,. By using the next lemma recursively, we then conclude that zz
divides the sum and thus that (¢(Yz)) - € Dp. O

Lemma 10.2. Assume that all integers are reqular in R, and that the root datum
is adjoint. Let « and B be roots such that o # £8 and let ' € S. Then if x4 | xgx’,
we have xo | 2.

Proof. By | , Lemma 2.1], the root a can be completed as a basis (e; =
a,ea, ..., e,) of the lattice, giving an R-algebra isomorphism ¢ : S — R[z1,...,zx],
sending z, to x1, by [ , Cor 2.13]. Since 8 # £a, we have 8 = ) . n;e; with
n; # 0 for some i # 1 and ¢(xg) = >, n;x; + 2, where z € I?, the square of
the augmentation ideal (generated by the variables). Since R[z1,...,x,]/(21) ~
R[za, ..., zy,], the result follows from the regularity of the class of zz in that quo-
tient, which in turn follows from [ , Lemma 12.3]. O
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Corollary 10.3. The operator Yz (resp. Az) restricted to S (resp. to D}.) defines
an operator on S (resp. on D%.). Moreover, we have

Y=(S) € S"=  and A=(D%) C (DR)"=.

Proof. Here Yz acts on S C Q via (4.3). Since Y e Dp C{2€Qw | 2-S C S}
by | , Remark 7.8] and Y= - Q C (Q)"=, the result follows.

As for Az, by Lemma 9.2 any f € D73 has the property that f(Dp) C S.
Therefore, (Az(f))(Dr) = (Yz o f)(Dr) = f(DrYz) € 5, so A=(f) € Df. The
result then follows by Lemma 6.7. O

Corollary 10.4. Suppose that the root datum has no irreducible component of type
C2¢ or that 2 is invertible in R. Then if |W=| is regular in R, for any ' C =2 C I,
we have

Yz = (SW=) C ST,

Proof. Let o € (S)"=, then |Wz/|- 2 =Y oy, w(z). So we have

|WE/| X
Wer| - Yoz (2) = Yeyz ((War| - 2) = Y u(———
ueWzg =/ E/E
TI= W=
Z Zuv p Zw(—IE)GS .
UEWz /=1 vEWz/ /= weWs -
Thus |W=/| - Yz/=/ (z) € S, Wthh 1mphes that Yz = (z) € S by | , Lemma 3.5].
Besides, it is fixed by W= by 5.5. O

For each v € W define
fv = fy ESI?V; ie. fv(z Qw(sw):xHQv-

weWw
Lemma 10.5. For any v € W we have fv € D%.

Proof. We first show that fwo € D}.. By Lemma 3.1, we have

_ X X _ 1
X, = g @y 0w, Where a;, = H (_Z)
w<v ac(vI—)NT+
Since wpX~ = X, we have
fuo(X1,) = f, worwe)0owo = | (=52)60,u0 €S
wo (X1, wo ( %w xnawo,wo v,wo = 7o /Ov,wo .
w<v aext

By Lemma 9.2, we have fwo € D%. For an arbitrary v € W, by Lemma 4.2, we
obtain

fo=anfyppet, = v w02 fu,) = v wo(fu,) € D O
Corollary 10.6. For any X € Dp we have xpX € Sy .

Proof. 1t suffices to show that for any sequence I,,, xn X7, € Sw. And indeed,
enXr, =an(d ] ay,0u) = > (06 ,)0w = > ful(X1,)6w € Sw. 0

w<v w<v w<v
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Theorem 10.7. For any v,w € W, we have

AH(YItAI{f" (znife)) = Ow,wl = AH(X;UBI{,,Q" (zrfe))-
Consequently, the pairing

An: DEx Dy — (D)W =S, (0,0') — An(oo’)

is non-degenerate and satisfies that { Aprev (w1 fe) bwew is dual to the basis {Y] }vew,
and { Brrev (w1 fe) bwew is dual to the basis {X] }oew-

Proof. We prove the ﬁrst identity. The second identity is obtained similarly.
Let Yyrew = ) 0y and Y7, = > cpy Gww0u. Let 8y = Y7 cyp buw YT, SO

veEW 'w'u
that > oy Guw,wbyu = 0w and Y/ = Y vew dvufu.
Combining the formula of Lemma 4.6 with the formula Apn(f,) = U(l m 1 of

Lemma 6.5, we obtain
AH(Y[tL Alfue" (I'er Z bv uU I'H)aw vAH fv Z bv ulw, 71 = 5w,u1~ O
veEW veW

The characteristic map ¢ introduced in 6.10 restricts to a homomorphism of R-
algebras cs: S — D7 which maps x € S to the evaluation at = using the action of
Dpr on S, that is cg(z)(z) = z - « for z € Dp. In particular, we have

cs(z)(X1) = Ar(z) and cg(x)(6y) = w(z), weW.
Lemma 10.8. For any sequence I and x € S, we have
An(es(@)Apev (znnfe)) = Cr(x)1 and An(cs(z)Brev (xnfe)) = Ar(x)1.

Proof. We prove the first formula only. The second formula is obtained similarly.
Let Y7 =) cw a}fwév. Since cs(z) = >, e v(2) fy, by Lemma 4.6, we get

Anles(@)Ar= (enf) = An(Y vl@)e(en)a, f) = 3 af 0@l = Cr@)1. O

veW veW

11. THE NON-DEGENERATE PAIRING ON THE W=z=-INVARIANT SUBRING

In this last section, we construct a non-degenerate pairing on the subring of in-
variants (D%)"=. Using this pairing we provide several S-module bases of (D%.)"=.

Lemma 11.1. Suppose that the set of reduced sequences {1, }wew is Z-compatible,
then the set {X} Yuews= is a basis of (D})"V=.

Proof. This follows immediately from Lemma 6.1 and the identity (Q%,)"=ND% =
(DF)"=, O

Given representatives u, v’ € W= we set

dzu’ = xH/ Z a’uum uu’ = CEH/ Z auuv? == H w(mH/E)

veEWz veWz weWE

X

where a7, , and aw are the coefficients introduced in Lemma 3.1 and 3.2.

v
Lemma 11.2. For any u € W= we have

Az(Ape (211 fe)) Z dy ! Az(Brev (znfe)) = Z diu’fua"

u/' €EWE w EWE
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Proof. We prove the first formula only. The second formula follows similarly. By
Lemma 4.6 and 6.5 we obtain

Az(Apev (anfe)) = A=( D wlen)ay , fu) = Y wlznz)al ,fo =

weW weWw

by (7.1), representing w = u'v, and Lemma 5.1 we get

= Z U/U(»’UH/E)@Z,u'UfifU = Z u/(xﬂ/E)aZ,u’va" U

uw EWE veWz uw EWE veWz

Theorem 11.3. Assume that the set of reduced sequences { I, }wew is ZE-compatible,
then the sets {A=(Apev (rr1fe)) fuew= and {Az(Brev (v fe))buews= are S-module
bases of (D%)W=.

Proof. Observe that by Corollary 10.3 our sets are in the S-module (D%)"=. To
show that they are bases, it suffices to show that the respective matrices MY
and Mz expressing them on the basis {X} },ew= of Lemma 11.1 have invertible
determinants (in .S).

If u' € W= and v € Wz, we have u’ < u'v where the equality holds if and only if
v = e. By Lemma 3.2, we get auuv = 0 unless v’ < and a}f’uv =0 if v # e. This

implies that du w = 0 unless v’ < u, and that

Y Y
dy o = u(zm/=) Z ay u(zr/2)ay , = u(rn/z=) ulu
veEW=
Hence, the matrix DY := (dY ,)u.wews= is lower triangular with determinant
n=[Tuew= b%. Similarly, the matrix D := (diu/)uyulewE is lower triangular

with determinant 7= [],cyp= b%.
On the other hand, for u € W=, we have
X}‘ = Zbiiuf’w: Z Z buvu 'v.
weW uw EWE veEWs
By Corollary 7.7, and because X7 is fixed by Wz, we have bff,y w= bﬁ,u' Therefore,

X, = ) by quer 2

u' €WE u' €WE
By Lemma 3.1, bf,’u = 0 unless v’ > u, so the matrix EX := {bi{’,u}u’,uEWE is
lower triangular with determinant [T, o= b, = [T,ew=(—1)""bY .

The matrix MZX = (EX)~!DZ has determinant

= H <b5,1u>2 == H (bz,lm

ueWEe ueWE

which is invertible in S by Lemma 11.5 below. Since the determinant of MY =
(Eé( )_1D35/ differs by sign only, it is invertible as well. (I

Recall the definition of ¥z from the beginning of section 5, and let w§ be the
longest element of W=.

Lemma 11.4. For any w € W=, we have b, wb?;w wwE = w5 (x=). In particular,
07 0
if 2 =11 we have b, ,bY 0 ww, = Wo(Tm).
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Proof. Recall from Lemma 3.2 that b, ,, = [I,,5- s+ Ta- By (3.2), it also equals

[Lys- st Ta- Since wFYz = XL, we have wwiEz NEE = wSE N X2, Moreover,
(wSz NS Nwsinsd) cwss Nnwsd =w(EzNsd) =0

and their union is EJEF. (]

Lemma 11.5. For any E C II the product n=[[,c = ﬁ is an invertible element
in S. "

Proof. We already know that this product is in S, since it is the determinant of the
matrix Mé( whose coefficients are in S. Consider the R-linear involution w — @ on
S = R[A]r induced by A — —X; A € A. Observe that it is W-equivariant.

Set b, := b{y. For any o € =, we have

T= = sa(:cg):c,a:cgl = sq(x E)bsabs@1
and, therefore, by induction z=z = w(xz)b,b;! for any v € W=. In particular,

rrn = w(rn)b,by,! for any w € W. Then
I|EWE| = H v(x=)byb,*  and x‘r‘fvl = H w(xm)bwby,t.

veEWz weW
If w = wv with £(w) = £(u) + ( ), by (3.2), we see that
wE” NEt = @WS NI Uu(eE Nyh),

50 buy = byu(b,) and by, = byu(b,). Hence

x‘r‘fvl = H w(rm)by,by,' = H H wv(2r/22z)buvby,

wew ueWs velWs
2T ez T1 wote=)boub, ub, )
ueWE vEWs
(11.1) we 7 -1y Iw=l byb !
=2 TT @)™ u( I v(e=)bib?)
ueWE veW=
_ vl H (Bubgl)lwa‘U(:ca)‘Wal
ueWE

On the other hand, by Lemma 11.4,

"= = wf (22) Vel = T bubyus = [] 02

veEW= veEWz

and, in particular, a’cLW‘ =[lwew b2. So, we obtain

= [T = 11 II %= I1 II tiut)

weWw ueEWE veWsz ueEWE veWz
:( H_bng—)( I1 « H b2) ( H_bi)'wal( H_u(ia))lwal.
ueW= uEWE ueW= ue W=

Combining this with equation (11.1), we obtain

(=" T 22)"" =A™ ( [T wazteapputi’)

ueWEe uEWE
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which is an element of S, since it is a product of elements of the form xa:vja es.
Therefore 1z [[,cy= 7= is invertible, since so is its [Wz|-th power. O

Corollary 11.6. Given = C = C II we have Az(D%) = (D%)"=. For any set
of coset representatives Wz, =/ the operator Az =/ induces a surjection (D})Wé —
(D)W= (independent of the choices of Wz/= by Lemma 6.4).

Proof. By Corollary 10.3 and Theorem 11.3, we obtain the first part. To prove the
second part, let o € (D%)"='. By the first part, there exists o/ € D% such that
o = Az=/(0’), so by Lemma 6.3 we have

Azjz(0) = Azz(Az (o)) = A=(0') € (D)=

Hence, Az /= restricts to Azj=: (D})"=" — (D})"=. Since A=(D}) = (D})"=,
we also have Az =/ ((D%)"=') = (D%)"=. O

Theorem 11.7. Assume that the set of reduced sequences { I, }wew s E-compatible.
Ifu e W=, then AH/E(X}‘HAE(B}fUV(foe))) = 0y,u1. Consequently, the pairing

(DR)"= x (DR)Y= = (DR =S, (0,0") = Anyz(00’)

is non-degenerate, and {Az(Brev(rnfe))uews=, {X], fuews= are dual S-bases of
(D})V=.

Proof. By Corollary 11.6, the pairing is well-defined (i.e. it does map into S). By
Lemma 6.7, Lemma 6.3 and Theorem 10.7, we obtain

Any=(X7, A=(Brev (znfe))) = Any=(Az(XT, Brev (vnfe)))
- AH(XELBI{US" (foe)) = 5w,u1~ O
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