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1. INTRODUCTION

Informally speaking, the essential dimension of an algebraic object
can be thought of as the minimal number of independent parameters
needed to define it. Essential dimension assigns a numerical invariant
(a non-negative integer) to algebraic objects and allows us to compare
their relative complexity. Naturally, the fewer parameters needed for
definition, the simpler the object is.

The notion of essential dimension first appeared in a 1997 paper by
J. Buhler and Z. Reichstein [BuRe] within the context of finite groups.
Later on A. Merkurjev extended this notion to arbitrary functors; see
[BF]. For the definition, properties and results on essential dimension
of algebraic groups and various functors we refer to recent surveys [Me]
and [Re].

In the past 15 years this numerical invariant has been extensively
studied by many people. To the best of our knowledge in all pub-
lications on this topic the only approach for computing the essential
dimension ed(G) of an algebraic group G consisted of finding its upper
and lower bounds. If, by lucky circumstance, both bounds for G are
equal then of course their common value is ed(G). We remark that this
strategy has worked in all cases where ed(G) is known.
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The aim of the current paper is two-fold. We recall that a gen-
eral method for computing lower bounds of the essential dimensions
of simple algebraic groups defined over fields of characteristic # 2 via
orthogonal representations was developed in [ChSe]. Our first goal is to
extend this approach to characteristic 2 case. In Section 12 we prove the
incompressibility of the so-called canonical monomial quadratic forms
and this result leads us to Theorem 2.1 below which says that for any
simple split “adjoint group” G defined over a field of characteristic 2
one has ed(G) > r + 1 where r = rank(G). Second, we show that for
an adjoint split group G of type B, one has ed(G) = r + 1. Thus, this
result indicates that the lower bound r + 1 of the essential dimension
in Theorem 2.1 is optimal for groups of adjoint type in the general case
and it seems inevitable that any future progress, if possible, will be
based on case by case consideration.

We now pass to the precise description of the main results of the

paper.

2. THE MAIN THEOREMS

In what follows, we assume that k£ is an algebraically closed field of
characteristic 2 and all fields and rings under consideration will contain
k.

Let G° be a simple algebraic group over k of adjoint type, and let T be
a maximal torus of G°. Let ¢ € Aut(G°) be such that ¢ = 1 and ¢(t) =
t=! for every t € T (it is known that such an automorphism exists, see
e.g. [DG|, Exp. XXIV, Prop. 3.16.2, p. 355). This automorphism is
inner (i.e. belongs to G°) if and only if —1 belongs to the Weyl group
of (G,T). When this is the case, we put G = G°. If not, we define G
to be the subgroup of Aut(G°) generated by G° and ¢. We have

e G = G” for types Ay, B,, Cy, D, (r even), Gy, Fy, F7, Eg;
o (G :G°) =2and G = Aut(G°) for types A, (r > 2), D, (r
Odd), EG-

Let r = dim (7") be the rank of G.
2.1. Theorem. If G is as above, we have ed (G) > r + 1.

Our second main theorem deals with orthogonal and special orthog-
onal groups.

2.2. Theorem. Let q be a non-degenerate n-dimensional quadratic
form over k. We have:

(a) if n =2r then ed(O(q)) =7+ 1;

(b) if n = 2r and r is even then ed(SO(q)) = r + 1;



(c) if n =2r and r is odd then r < ed(SO(q)) <r+1;
(d) If n =2r + 1 then ed(O(q)) = ed(SO(q)) =7+ 1.

3. STRATEGY OF THE PROOF OF MAIN THEOREMS

For groups of type G5 and F); in Theorem 2.1 there is an easy reduc-
tion to orthogonal groups (see Section 14 below). For all other adjoint
types, orthogonal and special orthogonal groups we follow the same
approach as in [ChSe]. Namely,

a) we construct a G-torsor 6 over a suitable extension K/k with
tr.deg,(K) =7+ 1, see below;

b) we show that there exists a suitable representation p : G — Oy
such that the image of 0 in H!(K, Oy) is incompressible; this implies
that O itself is incompressible, and Theorems 2.1 and 2.2 follow.

Let us start with part a) for an adjoint group G. Let R be the root
system of G with respect to T', and let Ry, be the (sub) root system
formed by the short roots of R. Let A = {ay,...,a,} be a basis of Rgy,.
The root lattices of R and Ry, are the same; hence A is a basis of the
character group X (7"). This allows us to identify 7" with G, X - - X G,
using the basis A.

Call A the kernel of “multiplication by 2” on T'. Let A = Ag x {1, ¢}
be the subgroup of G generated by Ay and by the element ¢ defined
above. The group A is isomorphic to g X « -+ X g X Z/2.

Take K = k(t1,...,t.,x) where ty,...,t, and = are independent
indeterminates. We have

HYEK,A) = HV(K, jio) % ... x HY(K, o) x H'(K,Z/2).

Identify H'(K, po) with K*/(K>*)? and H'(K,Z/2) with K/p(K) as
usual. Here p : K — K is the Artin-Schreier map. given by p(a) =
a’? + a. Then x and the ¢;’s define elements (x) and (t;) of H*(K,Z/2)
and H'(K, ps) respectively. Let 04 be the element of H'(K, A) with
components ((t1), ..., (t.), (z)). Let Og be the image of 4 in H'(K, G).
We will prove in Section 14 :

3.1. Theorem. (K, 0g) is incompressible.

Note that Theorem 3.1 implies Theorem 2.1 since tr.deg. K = r +
1. Its proof relies on studying properties of the so-called monomial
quadratic forms (see Section 10 below) which are also crucial for the
proof of Theorem 2.2.
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4. REVIEW: (QUADRATIC SPACES IN CHARACTERISTIC 2

The purpose of this section is to review some properties of quadratic
forms in characteristic 2 needed for construction of a representation of
our group G with the required property explained above. To this end
we will introduce the notion of a “normalization” of a quadratic form
which may not be standard.

Let K be an arbitrary field of characteristic 2. Recall that a quadratic
space over K is a pair (V, q) where V is a vector space over K and ¢ is
a quadratic form on V. As usual, for any a,b € K we will denote by
[a,b] a 2-dimensional quadratic form given by [a, b] = ax® + zy + by?.
The form [0,0] is called the hyperbolic plane and is denoted by H.
Similarly, for a € K we denote by (a) the quadratic form az?.

There is a special class of quadratic forms called n-fold Pfister forms
(see [EKM]). Recall that, by definition, a quadratic form [1,a] where
a € K is called a 1-fold Pfister form and denoted ((a]]. A quadratic

form isometric to

(a1, an]] 1= (a1, - an-1))p ® ((an]]
for some aq,...,a, € K is called a quadratic n-fold Pfister form. Here
({(ay,...,an—1))p is a symmetric bilinear form given by
({ar, ... an—1))p = (L,a1)p @ - - @ (1, an_1)s-

Let K/k be a finitely generated field extension of our base field k
and ¢ a quadratic form over K. Then, if there exists another quadratic
form g defined over a field L/k satisfying

e kCLCK,
o tr.deg, L < tr.deg, K; and
[ ] g®LK2q

we say that ¢ is compressible. Otherwise, it is incompressible.
Given a quadratic form ¢ one associates the bilinear form (called the
polar form of ¢) b, : V x V — K given by

by(u,v) = q(v +u) — q(u) — q(v).
Its radical is
rad(b,)) ={v eV | by(v,w) =0 YweV}
and the quadratic radical of ¢ is defined as
rad(q) = {v € rad(b,) | g(v) = 0}.
Obviously, both rad(b,) and rad(q) are vector subspaces in V.
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One says that ¢ is regular if rad(q) = 0 and ¢ is non-degenerate if it
is regular over any field extension L/K. Note that non-degeneracy is
equivalent to the property dim(rad(b,)) < 1.

It is well-known (see [EKM]) that any non-degenerate quadratic form
q of even dimension n = 2m is isometric to ¢ ~ ®,[a;, b;] where
a;,b; € K. In this case the element ¢ = ) a;b; modulo p(K) is called
the Arf invariant of ¢q. If ¢ is non-degenerate and has odd dimension
n = 2m + 1 then ¢ ~ & 4[a;, b;] + (¢) where ¢ € K* is unique up to
squares. This element ¢ (modulo (K*)?) is called the determinant (=
discriminant) of q.

Let ¢: V — K be a quadratic form. We denote V : = V/rad(q) and
let 7: V — V be the canonical map. It is straightforward to check that
the mapping §: V — K given by q(v) = ¢q(v) is well defined. Thus a
quadratic space (V,q) gives rise to a quadratic space (V,q). We will
see in the example below that § is non-degenerate, but first we state
the following definition.

4.1. Definition. We will say that G is the (non-degenerate) normaliza-
tion of q.

Example. Let ¢ be a quadratic form over k. Since k is algebraically
closed it is isometric to a quadratic form

Oo---o(0)eHS- - -®H or

Oo---00)d(yoHD - H.
It easily follows from the definition that its normalization is the follow-
ing quadratic form:

He---oH or (VOHS--- & H;

in particular g is non-degenerate.

Lastly, we want to relate the orthogonal group of a quadratic form ¢
to that of its normalization. Recall that given a quadratic space (V] ¢q)
the orthogonal group of (V,q) is

O(V,q) = {z € GL(V) | q(z(v)) = q(v) Vv eV}
We define a map
A: OV, q) — O(V, 7).

by # — T where T(0) = x(v) for all v € V.
Let us first show that T is well defined, i.e. z(rad(q)) C rad(q) or
equivalently x(v) € rad(b,) for v € rad(q) (because x preserves length
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of vectors). Let wy € V. Since z is invertible we have z(w) = wy for
some w € V. Then

2(v) +wo) + g(x(v)) + g(wo)

z(v) + z(w)) + q(z(v)) + q(z(w))
z(v +w)) + q(z(v) + g(z(w))

(v +w) +q(v) + g(w) = by(v,w) =0,

because v € rad(q) C rad(b,). Thus, z(v) € rad(q) as required.
It remains to see that T € O(V,q). However,

7(@() =7 (2(0)) = a(2(v)) = a(v) = 7(D).

Thus we have the following result:

4.2. Lemma. The canonical map V — V induces a natural morphism

A: O(V,q) — O(V, 7).

5. KILLING FORMS OF SIMPLE LIE ALGEBRAS OVER 7

Let G be as in Theorem 2.1 and let G be a universal simply connected
covering of its connected component G°. To construct the required
orthogonal representation p of G (see part (b) of our strategy described
in Section 3) we need to know how the “normalized” Killing symmetric

bilinear (resp. quadratic) form Ky, (resp. KC,) of the Lie algebra Lie(G)
looks like.

Since our main field has characteristic 2, we begin by computing
K, in a Chevalley basis of the Lie algebra £ of a split simple simply
connected algebraic group defined over Z. We then pass to k by first
normalizing K, i.e. by dividing all its coefficients by their g.c.d., and
then applying the base change Z — Fy = Z /27 — k.

Recall that a Chevalley basis is a canonical basis of £ which arises
from a decomposition of

L=rLoa (][] La)
a#0

into a direct sum of the weight subspaces L, with respect to a split
maximal toral subalgebra H = Ly C L. Note that the set of all non-
trivial weights in the above decomposition forms a simple root system
and that for every root a we have dim(L,) = 1.

In what follows ® will denote the set of all roots of £ with respect to
H, A C ® its basis and & (resp. ) positive (resp. negative) roots.
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It is known (see [St]) that there exist elements { H,,
X, € L,, a€ ® such that the set

(5.0.1) {H,,|a; € A }U{X,JaedTU{X |ae d'}
forms a basis for £, known as a Chevalley basis, and these generators
are subject to the following relations:
° [Hai,Haj] =0;
i [HaiaXa] = <a7ai>on;
i Ha L= [XaaX—a] = Z

a; € A} in H and

7

osea Nilla, where n; € Z;

B 0 ifa+p ¢
[ ] [XO“XB] - { :t(p —+ l)XOH'B otherwise ’

where p is the greatest positive integer such that o — pg € ®. Here for
two roots «, § € ® the scalar {«, 3) is given by

2(a, B)
a? B = Y
IR
where (—, —) denotes the standard inner product on the root lattice.
It is in this Chevalley basis (5.0.1) that we will compute the Killing

form IC, of L.

Note that many people addressed computation of Killing forms (see,
for example, [GN], [Ma] [Sel], [SpSt]), but we could not find in the
literature explicit formulas valid in characteristic 2. Below we produce
such formulas for the normalized Killing forms for each type with the
use of the following known facts.

Recall that for any X,Y € L one has

Ko(X,Y) = Tr(ad(X) o ad(Y)), K (X) = Ky(X, X)
where ad: £ — End(£) is the adjoint representation of L. It is straight-
forward to check that
Ko(Hy,, Xo) =0, Ky(Xa, Xp) =0

for all 7 and all roots o, 8 € ® such that a +  # 0; in particular,
Ky(Xa) = Ky(Xa, Xo) = 0. Thus as a vector space £ is decomposed
into an orthogonal sum of its subspaces H and ( X,, X_, ), a € o+,

Another fact which we need is due to Steinberg and Springer [SpSt]:
for any long root a € ® one has

(5.0.2) Ky(Hy, Hy,) = Tr(ad(H,) o ad(H,)) = 4h |

where  is the dual Coxeter number of the given Lie algebra. Also, for
any root a € ¢ we have

(5.0.3) KXo, X o) = % Tr(ad(H,) o ad(H,)).
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Lastly, we need one more result from [Mal:

(5.0.4) Ky(Ho,, Ha,) = 2h(cy, &) |

where &; = (O?,O‘;,) and (&, B) is the Weyl-invariant inner product such

that (&, &) = 2 for a long root a. Note that the above formula requires
(&, &) = 2 for a long root «, so that for groups of type C, and Gs
we will have to multiply the standard inner product by an appropriate
scalar to match this condition.

Combining the above mentioned results we see that for computation
of K, we need to know only how K, looks on the Cartan subalgebra .
Indeed, formula (5.0.3) allows us to compute the restriction of IC, to
each 2-dimensional subspace ( X,, X_,). Furthermore, for each long
root a we know by equation (5.0.2) that Ky(H,, Hy) = 4h. Similarly,
by using (5.0.4) and the fact that the Killing form is W-invariant,
where W is the corresponding Weyl group, we see that Kp(Hg, Hg) is
a constant value for all short roots /3, but this value will depend on the
type of ®. Finally we remark that if a;,a; € A C ® are non adjacent
roots, then

Ky(Hy,, Hy,y) = Tr(ad(H,,) o ad(H,,)) = 0.

1

Indeed this is equivalent to saying that (a;, ;) = 0 which is true for
non adjacent roots.

Below we skip straightforward computations of KCy(H,,, H,,) and
Ky(H,,, H,,,,) for each type and present the final result only.

Qi1
5.1. Type A,. We have:
Tr(ad(H,,) o ad(H,,)) = 4h and Tr(ad(H,,) o ad(H,

1 i Q41

) = —2h.

Thus the Killing quadratic form K, restricted to the Cartan subalgebra
‘H of the Lie algebra L of type A, is of the form

n n—1
i=1 i=1

and the Killing form on all of L is

]Cq = ICq‘H + 4h Z YiYi+1

||

To pass to the main field k we first modify (normalize) I, by dividing
all coefficients of IC, by 4h. After doing so our modified Killing form



(still denoted by ;) becomes

n n—1
2
Ky = E 1’@ - E TiTiv1 + E Yilfit1-
i=1 i=1

||

Passing to Z — Z /27, which is a field of characteristic 2, we finally
would like to “diagonalize” our form. Simple computations show that
a diagonalization of K, looks as follows:

(n=1)/2
Ky~ @ [0.00@ () @€ [0,0], if nis odd; c € {0,1}

i=1 |®+|

and

(n—1)/2
Ky~ €D (0,00 @P [0,0], if n is even
=1

|F]

5.2. Remark. In the above formula ¢ can be 0 and 1. Its value depends
on the parity of m where n = 2m + 1.

Similar arguments work for each type. Below we present the final
result only.

5.3. Type B,.

(n—2)/2
K,y =~ EB [0,0] ® EB [0,0] & (c) ®m(0), if n is even; ¢ € {0,1}

i=1 |<1>+ |

long

and

(n—1)/2
KCp @ [0,0] & @ [0,0] @ m(0), if n is odd,
i=1

C

long

where m = 2|®f, |+ 1.

short

5.4. Type C,.
Ky~ (1)& €B (0,01 &m0)

|3

long

where m = (n — 1) + 2|®},

short!*
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5.5. Type D,,.
(n—1)/2
Ky~ €D [0,0] @ (0) & €D [0.0], if n is odd;

=1 ‘cI)-F‘

and

(n—2)/2
Ky~ @ [0,0] ® (c1) ® (c2) ® @ [0,0], if n is even; ¢, co € {0,1}.
i=1

||

where one of ¢; or ¢y equals 0.

5.6. Type Fj.
Ky 2 [0,0] @ [0,0] @ [0,0] & 5 [0,0].
|2t
5.7. Type F;.
Ky ~ (0,01 [0,0] & [0,0] & (1) & € [0,0].
|2+ |
5.8. Type FEks.
Ky~ [0,0] & [0,0] & [0,0] & [0,0] & € [0, 0].
|2+
5.9. Type F}.

Ky~ [0,0]© @5 [0,0] @ m(0)
5]

long

where m = 2 + |9},

short!*
5.10. Type Gs.
K, ~1[0,0] @ 5 10,0].

||

6. AN ORTHOGONAL REPRESENTATION

6.1. Proposition. Let G° be a split simple adjoint algebraic group over

k of one of the following types: A,, B,,C,, D,, Eg, B, Es. There exists

a quadratic space (V,q) over k, and an orthogonal linear representation
p:G°— 0 (V.q)

with the following property:

() q is non-degenerate and the nonzero weights of T on V are the
short roots and they have multiplicity 1.
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Proof. Types A, Dy, Eg, E7, Es. Let W = Lie(G). The adjoint repre-
sentation G — O(W, KC,) factors through G — G°. So it induces the
representation p @ G° — O(W,K,). Let p be the composition of p
and the map \ : O(W, K,) — O(W,K,) given in Lemma 4.2. Denote
V = W. The inspection of the normalized Killing form K, presented
in Section 5 shows that p has the required property.

Type B,.. We take V' to be the standard representation of SOy, of
dimension 2r + 1.

Type C,. The formula for ; presented in 5.4 shows that the adjoint
representation doesn’t work. So instead of the adjoint representation
of G = PSp,, we consider its representation on the exterior square.

More precisely, let V; be the standard representation of G = Sp,,
over Z equipped with a standard skew-symmetric bilinear form w.
Choose a standard basis {ey,...,e,,e_.,...,e_1} of V]. There exists a
natural embedding A*(V1) = Vi ®@ Vi given by v Aw — v @ w —w @ v.
We extend w to a symmetric bilinear form on V; ® V; by

w(v; ® V9, w1 ® wy) = w(vy, wy)w(ve, ws)

and take its restriction (still denoted by w) to Vo = A*(V4).

Consider a natural action of G on V5. This action preserves w and
thus we have a natural representation G — O(Vh,w). Let go(z) =
w(z, x) be the quadratic form on V5 corresponding to w. Denote v; =
e; Ne_;. Alsoif i < j let Vij = € /\€j, Wi; = €4 /\G,j and U5 = €4 /\G,j
for all © # j. It is straightforward to check that the subspaces (v;),
(vij, wij), (wij, uj;) of Va are orthogonal to each other and that g, written
in the bases v;, v;j, u;;, w;; of V5 is of the form

=20 1) e4(> yijz)

Note that dividing all coefficients of ¢ by 2 and passing to Z —
7Z/2 we don’t achieve our goal since the resulting quadratic form is
“highly degenerate”. So instead of considering the representation of G
on V, we do the following. One can easily check that any (hyperplane)
reflection 7 : Vi — Vj acts trivially on a 1-dimensional subspace of V5
spanned by v = vy + --- + v,. It follows that Sp,, acts trivially on
(v) and hence so does G. This implies that G acts on the orthogonal
complement V = (v)1 (with respect to w). This subspace is spanned
by v1 — v,v2 — U3, ..., V1 — Uy, Ui, Uy, Wi;.  In this basis of V' the
restriction ¢ of ¢o to V' is of the form

=40 w =) wwin) 8 4()_ yizi).
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Dividing all coefficients of ¢ by 4 and taking the base change Z —
Z]2 C k we obtain an orthogonal representation of G' over k with the
required property. O

7. THE WITT GROUP IN CHARACTERISTIC 2

In this section we summarize Arason’s results [Arl] on the structure
of the Witt group of quadratic forms over complete fields of character-
istic 2 used in our present work.

Let K be a field of characteristic 2, m an indeterminate over K and
let K((m)) be the field of formal Laurent series over K. If f is a non-
degenerate quadratic form over K ((7)), we will denote its image in the

Witt group W, (K ((7))) by fw.

7.1. Theorem. W, (K ((m))) is the additive group generated by the el-
ements [o, B *w and [an™!, B~y where k € Z, k > 0 and
a, B € K, with the condition that [a, B )y and [ar™!, B~ *H]y are
biadditive as functions of o, B and satisfy the following sets of relations:

(7.1.1a) [, Bp*7 KW + (B, ap®m Fw = 0 if k is even

7.1.1b)  [arn ™Y BpPnF )y + B ap*n T F e = 0 if K ds even

(7.

(7.1.1c) [, B> F|w + (B, ap?m* ) w = 0 if k is odd
(7.1.2a) [, ap’n™*w + [, pr = 0

(7.1.2b) lar ™! ap®n ™y + [ar ™ pr ]y = 0

Here k runs through the non-negative integers and o, and p run
through K.

7.2. Theorem. Let m > 0 and let W, (K ((7)))n be the subgroup of
W,(K((7))) generated by the |a, B w and [ar~!, Br=* 1y where
keZ,0<k<mandaoa e K. Then:

(1) W,(K((7)))o is isomorphic to W,(K)®W,(K). A generator [, Blw
of Wy(K((m)))o is sent to [, Blw in the first summand W,(K), but a
generator [an ™1, Bslw corresponds to [, Blw in the second summand.
(2) If n > 0 then W (K ((7)))2n/W4(K((7)))2n-1 is isomorphic to

K Ag2 K @ K Ag2 K. The class of a generator o, f7~*"]w corre-
sponds to o \ [ in the first summand, but the class of a generator
[an™t, Br=2" )y, corresponds to o A B in the second summand.

(3) If n > 0 then W (K((7)))an+1/Wy(K((7)))2n is isomorphic to
K®g2 K. The class of a generator [, B2y corresponds to a® 3,
but the class of a generator [am™!, Br=2"|y corresponds to  ® «.
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By the above theorem one has
Wy(K((m)))o = Wy(K) @ W,(K),
so that we have two natural projections
O : Wo(K (7))o = Wy(K) and 9, : Wy(K((m))) = Wy (K)

which we will call the first and second residues (of the zero term of
Arason’s filtration).

Using the fact that [f, g] ~ H for all f,g € K((n)) such that fg €
mK]|[r]], it is straightforward to show that the the zero term of the
Witt group of Arason’s filtration and the first residue don’t depend on
presentation L = K((m))). In other words, they don’t depend on a
choice of a coefficient field K C L (for the notion of coefficient fields
we refer to Section 9 below) nor of a choice of a uniformizer of L and
that the second residue is defined up to similarity only. We leave the
details of the verification to the reader.

8. PRESENTATION OF QUADRATIC FORMS INSIDE THE WITT GROUP

In this section we will work with the Witt group of quadratic forms
over a field of Laurent series K ((7)) where the coefficient field K is of
characteristic 2 and is finitely generated over k. By Theorems 7.1 and
7.2, given a non-degenerate quadratic form f defined over K ((r)), we
may decompose its image fy, in the Witt group as

(8.0.1) fw=fow + fooaw + o+ fow

where f]y, € Wo(K((m))); is homogeneous of degree i, i.e. a sum of
elements of the form [, 37| and [an ™!, A7~} with «, 8 € K. Such
decomposition is not unique. The following lemma allows us to choose
the homogeneous components of fyy in a canonical way.

8.1. Lemma. Let {o;}Y, be a basis for K as a K*-vector space and let
f be a non-degenerate quadratic form over K((n)). Then fw admits
a decomposition fw = fow + fm—1w + ... + fow such that it satisfies
the following:

if n is even then

fow = Z[ai, wioym My + Z[Ozﬂr’l, viagm "y,
i<j i<j
where u;, v; € K;
if n is odd then
N

faw = Z [, ufam

ij=1
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where u; € K.

Proof. Take decomposition (8.0.1). Suppose first that n = 2s is even.
Write fj,y in the form

fés,W - Z[Pu C]ﬂT_QS]W + Z[p;ﬂ—1’ qz{ﬂ—25+1]w

where p;, ¢;, pl, ¢. € K. Since {a;}Y | is a basis for K/K? one has p; =
Zﬁ;:l e?jaj where e; ; € K and similarly for the g;, p, ¢;. Replacing the
Di, Gi» Ds, ¢ with these expressions and using the biadditivity of [, |w
and the fact [uv? w] = [u,v?w| for all u,v,w € K((r)) we get that

fasw can be written in the form

N N
/ _ 2 o2 2 212 —2stl
fosw = g [uiai,vjajﬁ lw + E [u;”a;m U oy lw
i,j=1 b,j=1
N N
_ 2 9 12 _—9stl
= E o, wiom ]W+E [T ™ wijoym lw
i,j=1 i,j=1

vk € Koand wij = uvj , wi =u

where w;, v;, ug, U]

[Ogh wiaﬂ_%] 7.1.2a

and

[omr_l w/2aﬂ_—25+1]

Ifi > 5 we get

_25] 7.1.1a 2 —23]

2
i, wijoym™ = lw =" oy, wizoam

and
[OéﬂT_la w,‘?aﬂ‘zs“]w Ll [%‘W—la w,‘?am‘zs“]w
If n = 25 — 1 is odd similar arguments shows that f;, ;y can be
written as a sum of symbols of the form [a;, u?a;7 =]y, where u € K.
Collecting all summands in the above decompositions of all f;_, and
fas_1w of the same degree together we obtain the required deéompo—

sition of fy . O

The following proposition provides us with the uniqueness of the
above decomposition.

8.2. Proposition. Given a quadratic form f, its image in the Witt
group can be decomposed uniquely as fw = fomw + fm—1w + ... + fow,
where fow, ..., fow are as in Lemma 8.1.
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Proof. We already know that a decomposition exists, so we only need
to prove uniqueness. Suppose

fw = foow + fooiw + o+ fow = gaw + Gnrw + .+ Gow

are 2 different decompositions of fy,. We first claim that n = m.

Suppose not. Then without loss of generality we may assume m > n.

Let us compare the images of these decompositions in the quotient

group W, (K ((5)))m/Wq(K((s)))m—1. Since n < m the image of g,, w +

In—1,w + ...+ gow equals 0 whereas the other decomposition has image

the class of f,,, w. We consider separately the cases m is even and odd.
m 1S even: write

8.1 2 -1 2 —m+1
Jmw = E i, ufos ™ w + E [azs™ viays lw
1<J 1<J
and let

O Wy(K((5)))m/ Wol K ()1 = K Ao K & K Ay K

be the canonical isomorphism. Then

fmw (Zu az/\a] Zv az/\aj>.

1<) 1<J

Since {a; A a;}i<; is a basis for K Ag2 K,

gb(fm,w):()(:)u?:vf»:O v g

This would imply that f,, w = 0, a contradiction.

m s odd: let
N

8.1 _
Jmw = Z[ai,uz%‘s "w
1,j=1
and

6 Wy (K ((8)n/Wo K ((9))nos © K @2 K .

Then we have
N

S frw) = Y (i @ ).
ig=1
Since {a; ® o}/, is a basis for K @2 K,
O(fmw) =0 u; =0V j,

a contradiction.
Thus m = n. If m is even, from ¢(fnw) = &(gmw) we conclude

that
Z u?(ai A o) = Z u;?(Oéz A ay),
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where u;? are the corresponding coefficients of g¢,, w, and similarly

ZUJZ'(O%‘ A aj) = va(ai A ).
2

This implies u; = uf and vjz = 1)3»2, hence f,w = gmw. Similarly we

can see that f,, w = gmw if m is odd. Then from the equality

(fow + o+ fomrw) + frow = (ow + oo + Gm—1,w) + G
it follows that

Jow + oA fooaw = fow + o+ friw -
By induction, the proof is completed. O

9. DIFFERENTIAL BASES, 2-BASES, COHEN STRUCTURE THEOREM
AND COEFFICIENT FIELDS

Let K/k be a finitely generated field extension. Recall that Qg
denotes the K-vector space of Kéahler differentials. A differential basis
for K/k is a set of elements { a; }ier of K such that {do; } C Qg is
a vector space basis. Recall also that a set of elements { z) }ca of K
is a 2-basis for K over k if the set W of monomials in the x) having

degree < 2 in each z) separately forms a vector space basis for K over
its subfield k - K* = K? C K. The following facts are well-known.

9.1. Theorem. Let B = {x1,...,2,} C K be a subset. The following
are equivalent:

(1) B is a separating transcendence basis for K over k;
(2) B is a 2-basis for K over k:
(3) B is a differential basis for K/k.

Proof. See [Ei, 16.14]. O

Assume now that K is equipped with a discrete valuation trivial on
k. We denote its valuation ring by R and residue field by K. Since
our valuation is trivial on k residue field K contains a copy of k. Let
7w be a uniformizer. Choose aq,...,a, € R such that their images
@, ...,d, under the canonical map R — K form a differential basis
for K /k. Note that, by Theorem 9.1, we have tr. deg,(K) = n, hence
tr. deg, (K) = n + 1. Then we claim that

(9.1.1) B ={ay,...,a,, 7}
is a differential basis for K/k. Indeed, it is straightforward to check
that all monomials af'...aZ 71 with €1,..., 6,41 = 0,1 are linearly

independent over kK? = K?2. This implies that B is a 2-basis for K
over k. Hence the claim follows from Theorem 9.1.



17

Conversely, if (9.1.1) is a differential basis for Qg such that all a;
are units in R then day, ..., da, viewed as elements of Qg are linearly
independent over R. Then from the conormal sequence

(W)/(W)Q —)F@R QR/k — Qf/k — O,

(see [Ei, page 387]) we conclude that their images day,...,da, are
linearly independent over K. By dimension count {a,...,a,} is a
differential basis for K /k.

We will say that a differential basis {a1,as, ..., an41} for K/k comes
from K if a; is a uniformizer in K and aq,...,a;_1,@ip1, ..., Gpp1 are
units in R for some index 1.

Now let R be a complete discrete valuation ring containing a field k.
Denote its quotient field by L and residue field by L. We will assume
throughout that the field extension L/k is finitely generated. It follows
from the Cohen Structure Theorem [Ei, Theorem 7.7] that R ~ L][r]]
and L ~ L((r)) where 7 is a uniformizer. Such decompositions are not
unique. They depend on a choice of 7w and a choice of a coefficient field
in L, i.e. a subfield of L contained in R that maps isomorphically onto
L under the canonical map R — L. Such coefficient fields do exist
because the field extension L/k is separable. The following theorem
describe all coefficient fields.

9.2. Theorem. Let R be as above. If B is a differential basis for
L over k then there is one-to-one correspondence between coefficient
fields ECR containing k and the set B C R of representatives for
B obtained by associating to each E the set B of representatives for B
that it contains.

Proof. See [Ei, Theorem 7.8]. O

10. MONOMIAL QUADRATIC FORMS

Let K = k(ty,ta, ..., t,, ) be a pure transcendental extension of k of
transcendence degree n + 1. We say that a non-degenerate quadratic
form f over K is monomial if it is of the form

f=@uery my(p)t"[1,2] HS ... 0 H

where u = (f1, ..., n) € FY, t* = t"¢h?> ... t#~ are monomials in
t1,...,t, and mys(p) the number of times a given summand appears.
Note that the multiplicity m(x) may be 0. Since t*[1, z] & t"[1, ] ~
H ¢ H we may assume without loss of generality that m(x) =0 or 1.

Let V' be the vector subspace of F} generated by all p such that
mys(p) = 1. Choose a basis of V, say i, po, ...pts. Then define u; =
thi for ¢ = 1,...,s. It is easy to see that wuq,...,us are algebraically



18 A. BABIC AND V. CHERNOUSOV

independent over k. Furthermore, any p € V' can be written as p =
> ¢ ayu; where a; =0 or 1 so that # = uf*...us.

Thus f has descent to the subfield K’ = k(uq,...,us,z) C K and
viewed over K’ it is of the form

f=ull 2] @us(l, 2] & Dull, 2] ® (Dpevu’[lz])) OHS - O H

where u* are monomials in uq,...,us of length at least 2. When a
monomial quadratic form f is written in such a way and is viewed over
K’ we say that it is a canonical monomial form. We also say that f
has rank s.

For later use we need the following easy observation.

10.1. Proposition. Let f be a canonical monomial form without sum-
mands isometric to the hyperbolic plane H. Then f is anisotropic.

Proof. The argument is similar to that in [ChSe, Proposition 5] and we
leave the details to the reader. U

The main result related to canonical monomial quadratic forms is
the following theorem.

10.2. Theorem. Let f be a canonical monomial form over K. Then f
18 incompressible.

11. INCOMPRESSIBILITY OF MONOMIAL FORMS IN CODIMENSION 2

In this section we establish an auxiliary result, Theorem 11.3 below,
needed later on to prove Theorem 10.2. Let K = k(x,t1,...,t,) be a
pure transcendental extension of k of degree n 4+ 1 and v the valuation
on K associated to t;. It is characterized by:

v(ty) =1land v(h) =0 V hek(x,ty,.. t,)".

Let R C K be the corresponding valuation ring. Note that K? C K is
a finite field extension of degree 2"*'. As usual, K*(a;,,...,aq;) C K
denotes the subfield generated by K? and elements a;,,...,q; € K.

11.1. Proposition. Let F' C K be a subfield containing k such that
tr.deg, (F') < n+1. Then there exists a differential basis {ai, ..., ani1}
for K/k coming from K such that F C K2*(ay,,...,q) with | <
tr.deg, (F) <n+ 1.

Proof. Choose any 2-basis {b,...,bs} for F'/k. Since s = tr.deg,(F)
we get s < n+ 1. Let L = K?(by,...,b,). Clearly, L contains F' and
for any aq,...,as € K one has

L=K*by,..., b)) = K*a?by,...,a%,).

The restriction w = v|g is either nontrivial or trivial.
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Case 1: w is nontrivial and the ramification index e(v/w) is even.
Multiplying b; by an appropriate scalar a? we may assume that ¢; =
alby,...,cs = a?b, are units in R and F C L = K*(cy,...,cs). With-
out loss of generality we may also assume that {ci,..., ¢} where | < s
is a minimal set of generators of L over K2 so that L = K?(cy,...,q).
The set of all monomials ¢i' - - - ¢;' with ¢; = 0, 1 is linearly independent
over K2 Put a; = ¢i,...,a; = ¢; and choose units a;;1,...,a, in R
such that B = {ay,...,a,,a,+1} where a,;1 = t; is a 2-basis for K
over k. By Theorem 9.1, B is a differential basis for K over k coming
from K and by construction it has the required property.

Case 2: w 1is trivial. Take a; = 1 and ¢; = b; for all ¢ and apply the
same argument as above .

Case 3: w is nontrivial and the ramification indez e(v/w) is odd. With-

out loss of generality we may assume that by,...,bs_; are units and
bs is a uniformizer for w. Choose scalars aq,...,a, € K such that
c1 = a2by,...,csy = a? by 1 are units in R, ¢, = a?b, is a uni-
formizer for v and F C L = K?%(cy,...,cs). Then the same argument
as above completes the proof. O

Let f be a canonical monomial quadratic form over K given by
(11.1.1) f=@Cuery my(u)t' 1, 0] OH® ... O H,
where all multiplicities m () are 1 or 0. Since f is canonical it contains
summands ¢;[1,z], i = 1,...,n.

Below we will be considering two Witt groups: W, (K) and Wq(l? ).
Here K ~ k(z,ts, ..., t,)((t1)). There exists the natural map W,(K) —

Wq(IA( ) and if there is no risk of confusion we will denote the image of
f in both groups by fi.

~

11.2. Lemma. (fz)w lives in W, (K )o. Its first residue is a canonical
monomaal form of rank n — 1 and its second residue up to similarity is
a nontrivial monomial form of rank < n — 1.

Proof. This follows from the definitions of monomial forms and the first

and second residues. ]
11.3. Theorem. There ezist no differential basis B = {ai,...,ans1}
for K/k coming from K and a non-degenerate quadratic form g defined
over L = K*(ay,...,a,-1) such that gx.w = fw.

Proof. Assume the contrary. Let B and g be the corresponding differ-
ential basis and quadratic form. The differential basis B gives rise to
the coefficient field £ C K containing all units from B and presentation

K ~ B((t)).
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We argue by induction on n. If n = 1 then L = K?. Hence g can
be written as a direct sum of 2-dimensional quadratic forms [, v;] =
[1, w?] where Ui, v; € K? and uv; = w?. We now pass to K = E((t))
and view g over K. Writing w; in the form w; = t1" (D2 50 €it1) With
e;; € E and using the property [u(t1),v(t1)]lw = 0 if v(u(t)v(t;) > 0
we conclude that [1,w?] #w can be written as a sum of symbols of
the form [l,ezjtf%]w with ey; € E. Thus, gz can be written as
9w = 9nw + -+ gow where g;w is of the form

giw =Y [Leitr™lw =1, et w
j j

with e;; € E. Since gz, = fw, it lives in the zero term of Arason’s
filtration. Then, by Pré)position 8.2, we conclude g, = ... = ¢ = 0.
Therefore fi = gz = [1,a 2y for some o € E. But thls 1mphes that
the second residue of fw is 0 which contradicts the second assertion in
Lemma 11.2.

Now let n be arbitrary and suppose that the statement is true for all
canonical monomial forms of rank < n. Assume first that aq,...,a,_1
are units in R. Let g = &; [u;, v;] with u;, v; € L. Writing

2 €1 Enl 2 €1 1
EU Q1 —E'U(ll...

where we use multi-index notation € = (ey,...,€,-1) and u., v, € K
and arguing as above we conclude that g ;,, can be written as a sum
9zw = 9nw + -+ gow where the homogeneous component g; y is of
the form
Giw = Z[ail cal ozf]al et w
j7€7€/

with o;; € E. Since g, lives in the zero term of Arason’s filtration,
application of Proposition 8.2 yields g, = ... = ¢g; = 0. Then as above
we conclude that the second residue of gz, is zero, a contradiction.

Finally, assume that up to numbering a,,_; is a uniformizer of v. The
same argument as above shows that gz, = gow is homogeneous of
degree 0 where the component gow is a sum of symbols of the form
[a .. a3ty af a1 a2t w oand [0S .. a2, fRa) a 2w
with «;, 8; € E. Then the first residue of gz ;;, (and hence of fi) is a
sum of symbols

’
€n—2 €n—2

N e B N g %
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where 3; € E ~ K. But B = {ay,...,a,_2, 0y, a1} is a differential
basis for ' ~ K over k and the first residue of fz  is a canonical

monomial form of rank n — 1. This contradicts the induction assump-
tion. U

11.4. Corollary. There exists no subfield k C F C K of transcendence
degree < n — 1 and a quadratic form g over F such that g ~ f.

Proof. This follows from Proposition 11.1 and Theorem 11.3. U

12. INCOMPRESSIBILITY OF CANONICAL MONOMIAL QUADRATIC
FORMS

Proof of Theorem 10.2. We keep the above notation. In partic-
ular, K = k(z,ty,ts,...,1,) is a pure transcendental extension of k of
transcendence degree n + 1 equipped with a discrete valuation v as-
sociated to t; and R the corresponding discrete valuation ring. As a
matter of notation we denote 7 = t; and Ky = k(to,...,t,, ). Thus
K ~ K ((r)) and K ~ K.

Consider a canonical monomial quadratic form f over K given by
(11.1.1). The proof of incompressibility of f will be carried out by
induction on rank n. More precisely, we will prove by induction on n
that the image fi of f in W, (K) is incompressible. Of course, this
would imply incompressibility of f itself.

The base of induction n = 0 is obvious.

12.1. Lemma. Let K = k(z) and let f = [l,z] ®H& --- @ H. Then
fw is incompressible.

Proof. Any subfield of K of transcendence degree 0 over k coincides
with k. Hence, if fjy were compressible then it would be represented by
a non-degenerate quadratic form defined over k, which is automatically
hyperbolic. On the other hand, by Proposition 10.1, fy is represented
by an anisotropic form [1, x|, a contradiction. O

Now let n > 0 and suppose that for all canonical monomial quadratic
forms of rank < n their Witt-equivalence classes are incompressible.
Suppose that fy is compressible. Then there exists a subfield F' C
K containing k£ which may be assumed to have transcendence degree
n over k, and a non-degenerate quadratic form g over F' such that

(9x)w = fw.
For the restriction w = v|g of v to F' there are three possibilities.

Case 1: w 1s triwvial. Write g as a direct sum of 2-dimensional forms

~

[b;, ¢i| with b;,¢; € F C R. Consider Arason’s filtration of W,(K') with
respect to the presentation K = K;((m)). Since b;, ¢; are units, gy lives
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in the zero term of Arason’s filtration and moreover its second residue
is trivial. On the other hand, since gz, = fz it has nontrivial
second residue by Lemma 11.2, a contradiction.

Case 2: w 1is nontrivial and the ramification index e(v/w) is even.
Arguing as in Proposition 11.1 we can choose a differential basis B =
{ai,...,an, 7} for K/k coming from K such that

(12.1.1) FC K*ay,...,a,).

By Theorem 9.2, B gives rise to the coefficient field £ C K containing
ai,...,a, and presentation K ~ E((m)). Clearly, {ay,...,a,} is a 2-
basis for E/k. We fix the presentation K ~ E((r)) and we will apply
Arason’s results [Arl] for this presentation only.

By construction fzy, = gz .y, hence the first residue of gz ), is a
canonical monomial form of rank n — 1 and the second residue of gz
is nontrivial. We now pass to computing the residues of gz using our

presentation K = E((m)) and inclusion (12.1.1).

Since g is non-degenerate it can be written as a direct sum of 2-
dimensional forms [b;, ¢;] with b;,¢; € F. In turn, in view of (12.1.1)
bi, ¢; can be written as sums of elements of the form of ; a; a;, - - - a;,
with «;, ;. € K. Then arguing as in Theorem 11.3 we conclude that

~

the image of gz in W, (K) can be written as a sum of symbols
2
lai i, - - a; Ko ) ]
Ay Qi * * Qi 2l ) Ajy « * = A, [ W

where o, ;, € E. Thus, we can write Jiw as the sum

9w = Go2n + G2(n-1) + -+ 9o

where all homogeneous components go; have even degree and are sums

of symbols
2
lai,ai, - a; Yoo ) 0 ]
iy Qi+ gy =y Oy~ U lw

with «ay,.;, € E. Obviously go has trivial second residue (because
ai,...,a, are units). So to get a contradiction it remains to show that
Gon + -+ g2 =0 1in W, (K).

Let us start from the highest component go,. Recall that according
to Arason’s Theorem we have

W (E((7))an/ Wy (E((1)))2nr =~ E Ap2 E@® E Ap: E.

The class of a generator [a, 7 2"]y corresponds to a A 3 in the first
summand, but the class of a generator [art, B7~2"*1]y, corresponds
to a A § in the second summand. To simplify writing we introduce
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multi-indices a;, where [; is a set of some indices i1,...,7s and ar; is
the product of the corresponding a;,.
Let ar,,...,ar,, be a E?%basis of E. By construction, g, is a sum

of elements of the form ,

Is
[alju ﬂals]w
with a;, € E. Recall that if I; = I; then

2
ar g,

lag;, W—Zibalj]w = lag,, F]W
by (7.1.2a)). It follows that ga, can be written as ga, = g4, + g, Where
: of,
Gop = ; laz;, ar —5zlw
with a, € E and g, lives in W,(E((r)))n. But g lives in W,(E((7)))o,
hence the image of g}, in Wq(f( )on/ Wq(f? )on—1 is trivial and this of
course implies g5, = 0, by Theorem 7.2.

Note that arguing in such a way we have eliminated the highest
homogeneous component g, of g living in W, (E((7)))2n, but we pos-
sibly acquire the component g;; with n > 0 in even or odd degree
W, (E((7)))n (if n is odd).

We can continue to do the same with the next highest homogeneous
component of g. If it has even degree the same argument as above
reduces it to a smaller component. If it has odd degree 2m + 1 then it
can be written in the form

a
Z laz;, WQT%OZ?S]W
2,8
with «y, € E. Then applying Arason’s Theorem 7.2, part (3), and
arguing similarly we conclude that this component is automatically 0.
This completes the proof of the fact that g, + -+ -+ go = 0 and hence
the proof of incompressibility of fy in the case e(v/w) is even.

Case 3: e = e(v/w) is odd. Let ' € F be a uniformizer for w. Write
7' = un® where u € R*. Our argument below doesn’t depend on a
choice of a uniformizer 7 for v. So replacing © with ur if necessary we
may assume without loss of generality that u = v? for some v € R*.
Choose a differential basis B’ = {ay,...,a,_1,7'} for F/k coming
from residue field F. Clearly, F C K?(ay,...,a,_1,7). We claim

that all monomials af'...a;" " with ¢ = 0,1 are linearly independent
modulo K2. Indeed, assume the contrary. Then up to numbering

we may assume that aq,...,aq; with [ < n — 1 is a minimal system
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of generators of K?(ay,...,a,_1) over K. Then there exists units
vy - -0y in R such that {a1,... 41,0}, ... 0, 7'} is a 2-basis of
K over k. Since

FCK*ay,...,ah1,7)=K*(ay,...,a,7)

and | < n — 1 this contradicts Theorem 11.3.
Now choose a, € R* such that B = {ay,...,a,_1,a,, 7} is a 2-
basis for K" over k and hence a differential basis for K /k coming from

K. It follows that two completions F c K with respect to w and v
respectively admit compatible coefficient fields, i.e. if £ C a (resp.
ECK ) is a coefficient field corresponding to B’ (resp. B) then E' =
ENFE and so we may choose compatible presentations

F=FE((") c K = E((r))

where E' C E.

The set of all monomials af' ...a; ' where ¢, = 0,1 form a basis
of E' over (E")?. Like before, let us number them in any order using
multi-indices ay,, ..., a Lyn_1- Lemma 8.1 and Proposition 8.2 show that

gw viewed over F can be written uniquely in the form gy = g, +- - -+ 9o
where g; is of the form:

if [ is even then
v
qw = Z lar, —=w + Z T]W
i<j 1<j

where u;,v; € E';

if 1 is odd then

2n—1 u2
gl,W = Z [alm a[]. <—‘/7)l]W
i,j=1 ﬂ-

where u; € E'.
We claim that n = 0. Indeed, if n # 0 then substituting 7’ = v?r®
in the above expressions for ¢g; and writing v=2" in the form

v = wi + win? +wint -

where w; € E, we easily obtain that the highest term in the decomposi-
tion of gz ,;, as a sum of its homogeneous components (with respect to
presentation K = E((m))) has degree ne which is impossible because
Irw = f Rw:

Thus n = 0 and hence gy is of the form

gw = Z [ali’u?alj]w + Z [a’Ii( 1,?}]2(111.77'/]{/[/,

1<J 1<J
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where u;,v; € E’. It follows that the first residue of gy (and hence of
fw) lives in a subfield E' C K = E of transcendence degree n— 1 over k
which contradicts the induction assumption. This completes the proof
of incompressibility of f.

13. ORTHOGONAL AND SPECIAL ORTHOGONAL GROUPS

Let g be a non-degenerate n-dimensional quadratic form on a vector
space V over k and F' be any extension of k.
Orthogonal groups. It is well known (see [KMRT, §29.E]) that if n =
2r is even then there exists a natural bijection between H'(F,O(V, g))
and the set of isometry classes of n-dimensional non-degenerate qua-
dratic spaces (V’, ¢’). Similarly, if n = 2r+1is odd then H'(F,O(V, g))
is in one-to-one correspondence with the set of isometry classes of
(2r + 1)-dimensional non-degenerate quadratic spaces (V’,¢’) over F
such that disc(¢’) = 1. Note that any such ¢’ is isometric to a quadratic
form of the shape ([a1,b1] ® -+ @ [a,,b.]) ® (1). Then in both cases
the incompressibility of canonical monomial quadratic forms provides
us with the required lower bound ed(O(V,g)) > r + 1. What is left
to finish the proof of Theorem 2.2 for orthogonal groups is to find a
“good” upper bound.

13.1. Proposition. In the above notation one has ed(O(V,g)) <r+1.

Proof. Tt suffices to show that any 2r-dimensional non-degenerate qua-
dratic form depends on at most 2r parameters. Let h be such form
over F'. Write h = a1[1,b1]®- - -®a,[1,b,]. Each summand [1, b;] corre-
sponds to a unique element & € H'(F,Z/2). Let H =7Z/2®---®Z/2
be the direct sum of r copies of the constant group scheme Z/2 and
let £ = (&,...,&). Choose any embedding H — G, which exists
because k is infinite. The exact sequence

O—>H—>Ga,ki>Ga,k—>0

gives rise to
F-2r-% HY(F H) — 1.

Let a € F be such that i(a) = £. It follows that & has descent
to the subfield k(a) of F. This amounts to the fact that there exist
by,...,b. € k(a) such that the quadratic form [1,0;] viewed over F'
is isometric to [1,b;]. Therefore h is isometric to the quadratic form
h = a[1,6)] @ -+ @ a,[1,0.] defined over the subfield k(a,ay,...,a,)
of F' of transcendence degree (over k) at most r + 1. U
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13.2. Remark. Note that if h has trivial Arf invariant then taking a
suitable quadratic subextension of k(a, ay, ..., a,) in F, if necessary, we
may also assume that A’ has trivial Arf invariant. Thus, our argument
for finding a lower bound of the essential dimension of can be applied
to special orthogonal groups as well.

Special orthogonal groups. By [KMRT, §29.E]), if n = 2r is even
then there exists a natural bijection between H'(F,SO(V,g)) and the
set of isometry classes of (2r)-dimensional non-degenerate quadratic
spaces (V’,¢') over F such that the Arf invariant of ¢ is trivial. Taking
into consideration Remark 13.2 it follows that the proof of Theorem 2.2
for special orthogonal groups in even dimensional case is similar to that
of for orthogonal groups.

Let n = 2r+1 be odd. Then there exists a natural bijection between
H'(F,SO(V, g)) and the set of isometry classes of (2r + 1)-dimensional
non-degenerate quadratic spaces (V’, ¢') over F such that disc(g') = 1.
As we mentioned above any such ¢’ is isometric to a quadratic form of
the shape ([a1,01] & - -- @ [a,, b)) & (1) for some a;,b; € F. It follows
that ed(SO(V,g)) <r+ 1.

To find a “good” lower bound we recall that SOg,11(g) = Og41(9)reds
the reduced subscheme of Oy,,1(g). Thus we have a natural closed em-
bedding SOs,11(9) < Osz-11(g). Fix a decomposition g ~ h @ (1)
where h = H @ --- @ H. It induces a natural closed embedding
¢1 1 Og.(h) — SO9,.11(g) (because Os,(h) is smooth). Furthermore,
we can view (1) as a subform of [1,0] ~ H. This allows us to view g as
a subform of a (2r+2)-dimensional split quadratic form ¢ = H®- - - H
and this induces a natural map

¢2 : SO211(9) = O2r11(9) = O2r42(q).

The maps ¢; and ¢o, in turn, induce the natural maps
Y1+ H'(F, Ox,(h)) — H'(F,802:11(g))

and
Py Hl(F, SOs,41(9)) — Hl(F, O3,42(q)).

It easily follows from the above discussions that 1, is surjective.
Also, identifying elements in H'(F, Oq,(h)) and H'(F, Og,42(q)) with
the isometry classes of the corresponding quadratic spaces we obtain
that the isometry class of a quadratic form @!_;[a;, b;] goes to the
isometry class of ®!_;[a;, b;] ® H under the composition 1y 0 9.

13.3. Theorem. Let g be a non-degenerate quadratic form of dimension
2r +1 over k. Then ed (SOq,41)(g) > 7+ 1.
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Proof. Take a pure transcendental extension K = k(x,ty,...,t,) of k of
degree r + 1 and a canonical monomial form f = t;[1,2]| @ --- @ t,[1, z]
of dimension 2r. We claim that its image £ under 1, is incompressible.
Indeed, if € is compressible so is ¥, (§). However, 1)5(&) is represented
by a canonical monomial form ¢;[1, 2| & - -@®t,.[1, x] ®H which is incom-
pressible by Theorem 10.2, a contradiction. Thus £ is incompressible
itself implying ed (SOs,41(g)) > r + 1. O

14. PROOF OF THEOREM 3.1

Types A, B, Cy., D,., Eg, F7, Es. Let p: G° — O (V,q) be as in Propo-
sition 6.1. As in [ChSe|, we can extend it to pg : G — O(V,q) .
Let 8o = pg(6g) be the image of ¢ in H'(K,O (V,q)). Consider the
quadratic form go on V' corresponding to 0p. If dim(q) is even then
arguing as in [ChSe] we conclude that go is a canonical monomial form
of rank r. By Theorem 10.2, qo is incompressible and hence so is 0.

If dim(q) is odd then we can write it as ¢ = (1) @ ¢’ where ¢’ is a
non-degenerate quadratic form of even dimension. The twist go of ¢ by
o is of the form go = (1) ® g where g is a canonical monomial form of
rank r. Then the proof of Theorem 13.3 shows that ¢ is incompressible
as well.

Type Go. Let F be a field of an arbitrary characteristic. By [Se,
Théoreme 11], there is a canonical one-to-one correspondence between
H'(F,Gy) and the set of isometry classes of 3-fold Pfister forms defined
over F' where G5 denotes a split group of type G over F'. Clearly, any 3-
fold Pfister form depends on at most 3 parameters implying ed(G5) < 3.
Conversely, a generic 3-fold Pfister form is a canonical monomial form
of rank 2, hence incompressible. It follows ed(G3y) > 3.

Type Fy. Let F be a field of an arbitrary characteristic. It is known that
there is a canonical one-two-one correspondence between H'(F, Fy) and
the set of isomorphism classes of 27-dimensional exceptional Jordan
algebras over F' where F) denotes a split group of type Fj over F.
To each such reduced Jordan algebra J one associates a unique (up
to isometry) 5-fold Pfister form f5(.J) [Pe, 4.1]. Moreover, it is known
that any 5-fold Pfister form over F' corresponds to some Jordan algebra
J over F. Since a generic 5-Pfister form is incompressible we conclude

that ed(Fy) > 5.
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