UNRAMIFIED DEGREE THREE INVARIANTS OF REDUCTIVE GROUPS

A. MERKURJEV

Abstract. We prove that if G is a reductive group over an algebraically closed field F, then for a prime integer $p \neq \text{char}(F)$, the group of unramified Galois cohomology $H^3_{nr}(F(BG), \mathbb{Q}_p/\mathbb{Z}_p(2))$ is trivial for the classifying space BG of G if p is odd or the commutator subgroup of G is simple.

1. Introduction

The notion of a cohomological invariant of an algebraic group was introduced by J-P. Serre in [6]. Let G be an algebraic group over a field F and M a Galois module over F. A degree d invariant of G assigns to every G-torsor over a field extension K over F an element in the Galois cohomology group $H^d(K, M)$, functorially in K. In this paper we consider the cohomology groups $H^d(K) = H^d(K, \mathbb{Q}/\mathbb{Z}(d-1))$, where $\mathbb{Q}/\mathbb{Z}(d-1)$ is defined as the Galois module of $(d-1)$-twisted roots of unity. The p-part of this module requires special care if $p = \text{char}(F) > 0$. All degree d invariants of G form an abelian group $\text{Inv}^d(G)$. An invariant is normalized if it takes a trivial torsor to the trivial cohomology class. The group $\text{Inv}^d(G)$ is the direct sum of the subgroup $\text{Inv}^d(G)_{\text{norm}}$ of normalized invariants and the subgroup of constant invariants isomorphic to $H^d(F)$.

The group $\text{Inv}^d(G)_{\text{norm}}$ for small values of d is well understood. The group $\text{Inv}^1(G)_{\text{norm}}$ is trivial if G is connected. There is a canonical isomorphism $\text{Inv}^2(G)_{\text{norm}} \simeq \text{Pic}(G)$ for every reductive group G (see [2, Theorem 2.4]). M. Rost proved (see [6, Part 2]) that if G is simple simply connected then the group $\text{Inv}^3(G)_{\text{norm}}$ is cyclic of finite order with a canonical generator called the Rost invariant. The group $\text{Inv}^3(G)_{\text{norm}}$ for an arbitrary semisimple group G was studied in [10].

For a prime integer p, write $H^d(K, p)$ and $\text{Inv}^d(G, p)$ for the p-primary components of $H^d(K)$ and $\text{Inv}^d(G)$ respectively. If v is a discrete valuation of a field extension K/F trivial on F with residue field $F(v)$, then there is defined the residue homomorphism $\partial_v : H^d(K, p) \rightarrow H^{d-1}(F(v), p)$ for every $p \neq \text{char}(F)$. An element $a \in H^d(K, p)$ is unramified with respect to v if $\partial_v(a) = 0$. We write $H^d_{\text{nr}}(K, p)$ for the subgroup of all elements unramified

Date: November, 2014.

Key words and phrases. Reductive algebraic group; classifying space; unramified cohomology.

The work has been supported by the NSF grant DMS #1160206 and the Guggenheim Fellowship.
with respect to every discrete valuation of K over F. An invariant in $\text{Inv}^d(G, p)$ is called unramified if all values of the invariant over every K/F belongs to $H^d_{nr}(K, p)$. We write $\text{Inv}^d_{nr}(G, p)$ for the group of all unramified invariants.

Let V be a generically free representation of G. There is a nonempty G-invariant open subscheme $U \subset V$ and a versal G-torsor $U \to X$ for a variety X over F. We think of X as an approximation of the classifying space BG of G. The larger the codimension of $V \setminus U$ in V the better X approximates BG. Abusing notation, we will write BG for X. Note that the stable birational type of BG is well defined.

The generic fiber of the versal G-torsor is the generic G-torsor over the function field $F(BG)$ of the classifying space. A theorem of Rost and Totaro asserts that the evaluation at the generic G-torsor yields an isomorphism between $\text{Inv}^d(G, p)$ and the subgroup of $H^d_{nr}(F(BG), p)$ of all elements unramified with respect to the discrete valuations associated with all irreducible divisors of BG. This isomorphism restricts to an isomorphism

$$\text{Inv}^d_{nr}(G, p) \xrightarrow{\sim} H^d_{nr}(F(BG), p).$$

A classical question is whether the classifying space BG of an algebraic group G is stably rational. To disprove stable rationality of BG it suffices to show that the map $H^d(F, p) \to H^d_{nr}(F(BG), p)$ is not surjective for some d and p or, equivalently, to find a non-constant unramified invariant of G. For example, D. Saltman disproved in [14] the Noether Conjecture (that V/G is stably rational for a faithful representation V of a finite group G over an algebraically closed field) by proving that $H^2_{nr}(F(BG), p) \neq H^2(F, p)$ for some G and p, i.e., by establishing a non-constant degree 2 invariant of G. E. Peyre found new examples of finite groups with non-constant unramified degree 3 invariants in [12]. Degree 3 unramified invariants of simply connected groups (over arbitrary fields) were studied in [11] (classical groups) and [7] (exceptional groups).

It is still a wide open problem whether there exists a connected algebraic group G over an algebraically closed field F with the classifying space BG that is not stably rational. Connected groups have no non-trivial degree 1 invariants. F. Bogomolov proved in [3, Lemma 5.7] (see also [2, Theorem 5.10]) that connected groups have no non-trivial degree 2 unramified invariants. In [15] and [16], D. Saltman proved that the projective linear group PGL_n has no non-trivial degree 3 unramified invariants.

In the present paper, we study unramified degree 3 invariants of an arbitrary (connected) reductive group G over an algebraically closed field, or equivalently, the unramified elements in $H^3(F(BG))$. The language of invariants seems easier to work with. The main result is the following theorem (see Theorems 8.4 and 11.3):

Theorem. Let G be a split reductive group over an algebraically closed field F and p a prime integer different from char(F). Then

$$\text{Inv}^3_{nr}(G, p) = H^3_{nr}(F(BG), p) = 0$$
if p is odd or the commutator subgroup of G is (almost) simple.

Let H be the commutator subgroup of a split reductive group G. We have $\text{Inv}_{\text{nr}}^3(G, p) = \text{Inv}_{\text{nr}}^3(H, p)$ (see Proposition 6.1). If H is a simple group, we compare the group $\text{Inv}^3(H)$ with the group $\text{Inv}^3(\tilde{H}^{\text{gen}})$, where \tilde{H}^{gen} is the simply connected cover of H twisted by a generic H-torsor, and use our knowledge of the unramified degree 3 invariants in the simply connected case. The key statement is the injectivity of the homomorphism $\text{Inv}^3(H) \rightarrow \text{Inv}^3(\tilde{H}^{\text{gen}})$ (see Section 8).

In general, when H is semisimple but not necessarily simple, we consider an embedding of H into a reductive group G' as the commutator subgroup. Then $\text{Inv}^3(G')$ is identified with a subgroup of $\text{Inv}^3(H)$. If G' is strict, i.e., the center of G' is a torus, this subgroup is the smallest possible and is independent of the choice of G'. We write $\text{Inv}^3_{\text{red}}(H)$ for this subgroup. It satisfies

$$\text{Inv}^3_{\text{nr}}(H, p) \subset \text{Inv}^3_{\text{red}}(H, p) \subset \text{Inv}^3(H, p)$$

for every prime $p \neq \text{char}(F)$. The group $\text{Inv}^3_{\text{red}}(H, p)$ is easier to control than $\text{Inv}^3_{\text{nr}}(H, p)$. We show that $\text{Inv}^3_{\text{red}}(H, p) = 0$ which implies that $\text{Inv}^3_{\text{nr}}(H, p)$ is also trivial.

Acknowledgements. The author thanks J-P. Tignol for valuable remarks and the Max Planck Institute (Bonn) for hospitality.

2. Basic definitions and facts

Let F be a field. If $d \geq 1$, we write $H^d(F)$ for the Galois cohomology group $H^d(F, \mathbb{Q}/\mathbb{Z}(d-1))$, with $\mathbb{Q}/\mathbb{Z}(d-1)$ the direct sum of colim $\mu_n^{\otimes (d-1)}$, where μ_n is the group of roots of unity of degree n, and the p-component if $p = \text{char}(F) > 0$ (see [6, Part 2, Appendix A]). In particular, $H^1(F)$ is the group of (continuous) characters of the absolute Galois group $\text{Gal}(F_{\text{sep}}/F)$ of F and $H^2(F)$ is the Brauer group $\text{Br}(F)$. We view H^d as a functor from the category Fields_F of field extensions of F to the category of abelian groups (or the category Sets of sets).

Let G be a (linear) algebraic group over a field F. The notion of an **invariant** of G was defined in [6] as follows. Consider the functor

$$\text{Tors}_G : \text{Fields}_F \rightarrow \text{Sets}$$

taking a field K to the set $\text{Tors}_G(K) := H^1(K, G)$ of isomorphism classes of (right) G-torsors over $\text{Spec} K$. A **degree d cohomological invariant** of G is then a morphism of functors

$$\text{Tors}_G \rightarrow H^d,$$

i.e., a functorial in K collection of maps of sets $\text{Tors}_G(K) \rightarrow H^d(K)$ for all field extensions K/F. We denote the group of such invariants by $\text{Inv}^d(G)$.

An invariant $I \in \text{Inv}^d(G)$ is called **normalized** if $I(E) = 0$ for a trivial G-torsor E. The normalized invariants form a subgroup $\text{Inv}^d(G)_{\text{norm}}$ of $\text{Inv}^d(G)$.
and there is a natural isomorphism
\[\text{Inv}^d(G) \simeq H^d(F) \oplus \text{Inv}^d(G)_{\text{norm}}. \]

Example 2.1. Let \(G \) be a (connected) reductive group over \(F \). It is shown in [2, Theorem 2.4] that there is an isomorphism
\[\beta_G : \text{Pic}(G) \simrightarrow \text{Inv}^2(G)_{\text{norm}}. \]

Let \(G \) be a split reductive group and \(H \) the commutator subgroup of \(G \). Let \(\pi : \tilde{H} \rightarrow H \) be a simply connected cover with kernel \(\tilde{C} \). There are canonical isomorphisms (see [17, §6])
\[(2.2) \quad \text{Pic}(G) \simrightarrow \text{Pic}(H) \simeq \tilde{C}^* := \text{Hom}(\tilde{C}, \mathbb{G}_m). \]

Take any character \(\chi \in \tilde{C}^* \) and consider the push-out diagram
\[
\begin{array}{cccccc}
1 & \longrightarrow & \tilde{C} & \longrightarrow & \tilde{H} & \longrightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow \pi & & \\
1 & \longrightarrow & \mathbb{G}_m & & H' & \longrightarrow & H & \longrightarrow & 1.
\end{array}
\]

The isomorphism \(\tilde{C}^* \simeq \text{Pic}(H) \) takes a character \(\chi \) to the class the line bundle \(L_\chi \) on \(H \) given by the \(\mathbb{G}_m \)-torsor \(H' \rightarrow H \) in the bottom row of the diagram. For a field extension \(K/F \) and an \(H \)-torsor \(E \) over \(K \), the value of the invariant \(\beta_H(L_\chi) \) is equal to \(\delta([E]) \in H^2(K, \mathbb{G}_m) = \text{Br}(K) \), where \([E]\) is the class of \(E \) in \(H^1(K, H) \) and \(\delta : H^1(K, H) \longrightarrow H^2(K, \mathbb{G}_m) \) is the connecting map for the bottom exact sequence in the diagram.

If \(f : G_1 \longrightarrow G_2 \) is a homomorphism of algebraic groups over \(F \) and \(E_1 \) is a \(G_1 \)-torsor over a field extension \(K/F \), then \(E_2 := (E_1 \times G_2)/G_1 \) is the \(G_2 \)-torsor over \(K \) which we denote by \(f_*(E_1) \). If \(I \) is a degree \(d \) invariant of \(G_2 \), we define an invariant \(f^*(I) \) of \(G_1 \) by \(f^*(I)(E_1) := I(f_*(E_1)) \). Thus, we have a group homomorphism
\[(2.3) \quad f^* : \text{Inv}^d(G_2) \longrightarrow \text{Inv}^d(G_1) \]
taking normalized invariants to the normalized ones.

Let \(G \) be an algebraic group over a field \(F \) and let \(V \) be a generically free representation of \(G \). There is a nonempty \(G \)-invariant open subscheme \(U \subseteq V \) such that \(U \) is a \(G \)-torsor over a variety which we denote by \(U/G \) (see [18, Remark 1.4]). We think of \(U/G \) as an approximation of the “classifying space” \(BG \) of \(G \) and abusing notation write \(U/G = BG \). The space \(BG \) is better approximated by \(U/G \) if the codimension of \(V \setminus U \) in \(V \) is large. For our purposes it suffices to assume that this codimension is at least 3 (see [2]).

Note that by the No-name Lemma, the stable rationality type of \(BG \) is uniquely determined by \(G \).

The generic fiber \(E^\text{gen} \longrightarrow \text{Spec}(F(BG)) \) of the projection \(U \longrightarrow U/G \) is called the generic \(G \)-torsor. The value of an invariant of \(G \) at the generic
torsor E^gen yields a homomorphism

$$\text{Inv}^d(G) \rightarrow H^d(F(BG)).$$

Rost proved (see [6, Part 2, Th. 3.3] or [2, Theorem 2.2]) that this map is injective, i.e., every invariant is determined by its value at the generic torsor.

We decompose the group of invariants into a direct sum of primary components:

$$\text{Inv}^d(G) = \bigoplus_{p \text{ prime}} \text{Inv}^d(G, p).$$

Let K be a field extension of F. For a prime integer p, write $H^d(K, p)$ for the p-primary component of $H^d(K)$. Let v be a discrete valuation of K over F with residue field $F(v)$. If $\text{char}(F) \neq p$, there is the residue map (see [6, Chapter 2])

$$\partial_v : H^d(K, p) \rightarrow H^{d-1}(F(v), p).$$

An element $a \in H^d(K, p)$ is unramified with respect to v if $\partial_v(a) = 0$.

A point x of codimension 1 in BG for an algebraic group G yields a discrete valuation v_x on the function field $F(BG)$ over F. Write $A^0(BG, H^d, p)$ for the group of all elements in $H^d(F(BG), p)$ that are unramified with respect to v_x for all points x of codimension 1 in BG. It is proved in [6, Part 1, Theorem 11.7] that the value of every invariant from $\text{Inv}^d(G, p)$ at the generic G-torsor E^gen belongs to $A^0(BG, H^d, p)$. Moreover, we have the following theorem (see [6, Part 1, Appendix C]):

Theorem 2.4. Let G be an algebraic group over F and p a prime different from $\text{char}(F)$. Then the evaluation of an invariant at the generic G-torsor yields an isomorphism

$$\text{Inv}^d(G, p) \sim \rightarrow A^0(BG, H^d, p).$$

The inverse isomorphism is defined as follows. Let E be a G-torsor over a field extension K/F and $BG = U/G$. We have the following canonical morphisms:

$$\text{Spec } K = E/G \xleftarrow{f} (E \times U)/G \xrightarrow{h} U/G = BG.$$

Note that the groups $H^d(K, p)$ for all d and all field extensions K/F form a cycle module in the sense of Rost (see [13]). In particular, we have flat pull-back homomorphisms

$$H^d(K, p) = A^0(\text{Spec } K, H^d, p) \xrightarrow{f^*} A^0((E \times U)/G, H^d, p) \xleftarrow{h^*} A^0(BG, H^d, p).$$

The variety $(E \times U)/G$ is an open subscheme of the vector bundle $(E \times V)/G$ over $\text{Spec } K$. By the homotopy invariance property, the pull-back homomorphism

$$H^d(K, p) = A^0(\text{Spec } K, H^d, p) \rightarrow A^0((E \times V)/G, H^d, p)$$
is an isomorphism. Since the inclusion of \((E \times U)/G\) into \((E \times V)/G\) is a bijection on points of codimension 1 (by our assumption on the codimension of \(V \setminus U\) in \(V\)), the restriction homomorphism
\[
A^0((E \times V)/G, H^d, p) \longrightarrow A^0((E \times U)/G, H^d, p)
\]
is an isomorphism. It follows that \(f^*\) is an isomorphism.

Let \(a \in A^0(BG, H^d, p)\). The invariant \(I \in \text{Inv}^d(G, p)\) defined by \(I(E) = (f^*)^{-1}h^*(a)\) is the inverse image of \(a\) under the isomorphism in Theorem 2.4.

3. Decomposable invariants

The group of decomposable degree 3 invariants of a semisimple group was defined in [10, §1]. We extend this definition to the class of split reductive groups.

Let \(G\) be a split reductive group over \(F\). The \(\cup\)-product \(H^2(K) \otimes K^\times \longrightarrow H^3(K)\) for any field extension \(K/F\) yields a pairing
\[
\text{Inv}^2(G)_{\text{norm}} \otimes F^\times \longrightarrow \text{Inv}^3(G)_{\text{norm}}.
\]
The subgroup of decomposable invariants \(\text{Inv}^3(G)_{\text{dec}}\) is the image of the pairing.

Proposition 3.1. Let \(G\) be a split reductive group over \(F\). Then the composition
\[
\text{Pic}(G) \otimes F^\times \longrightarrow \text{Inv}^2(G)_{\text{norm}} \otimes F^\times \longrightarrow \text{Inv}^3(G)_{\text{dec}}
\]
is an isomorphism.

Proof. The surjectivity of the composition follows from the definition. Let \(H\) be the commutator subgroup of \(G\). By [10, Theorem 4.2]), the composition is an isomorphism when \(G\) is replaced by \(H\). The injectivity of the composition for \(G\) follows then from the fact that the map \(\text{Pic}(G) \longrightarrow \text{Pic}(H)\) in (2.2) is an isomorphism.

It follows from the proposition that \(\text{Inv}^3(G)_{\text{dec}} = 0\) if \(\text{Pic}(G) = 0\) (for example, \(G\) is semisimple simply connected) or \(F\) is algebraically closed.

We write
\[
\text{Inv}^3(G)_{\text{ind}} := \text{Inv}^3(G)_{\text{norm}}/\text{Inv}^3(G)_{\text{dec}}.
\]

4. Unramified invariants

Let \(K/F\) be a field extension and \(p\) a prime integer different from \(\text{char}(F)\). We write \(H^d_{\text{nr}}(K/F, p)\) for the subgroup of all elements in \(H^d(K, p)\) that are unramified with respect to all discrete valuations of \(K\) over \(F\). A field extension \(L/K\) yields a natural homomorphism \(H^d(K) \longrightarrow H^d(L)\) that takes \(H^d_{\text{nr}}(K/F, p)\) into \(H^d_{\text{nr}}(L/F, p)\) by [6, Part 1, Proposition 8.2].

Let \(G\) be an algebraic group over \(F\). An invariant \(I \in \text{Inv}^d(G, p)\) is called unramified if for every field extension \(K/F\) and every \(E \in \text{Tors}_G(K)\), we have \(I(E) \in H^d_{\text{nr}}(K/F, p)\). Note that the constant invariants are always unramified. We will write \(\text{Inv}^d_{\text{nr}}(G, p)\) for the subgroup of all unramified invariants in \(\text{Inv}^d(G, p)\).
If \(f : G_1 \to G_2 \) is a group homomorphism, then the map \(f^* \) in (2.3) takes \(\text{Inv}^d_{\text{nr}}(G_2, p) \) into \(\text{Inv}^d_{\text{nr}}(G_1, p) \).

Proposition 4.1. Let \(G \) be an algebraic group over \(F \). An invariant \(I \in \text{Inv}^d(G, p) \) is unramified if and only if the value of \(I \) at the generic \(G \)-torsor in \(H^d(FBG, p) \) is unramified. In particular, \(\text{Inv}^d_{\text{nr}}(G, p) \cong H^d_{\text{nr}}(FBG, p) \).

Proof. It suffices to show that the inverse of the isomorphism in Theorem 2.4 takes unramified elements to unramified invariants. Let \(a \in H^d_{\text{nr}}(FBG, p) \subset A^0(BG, H^d, p) \). The corresponding invariant \(I \in \text{Inv}^d(G, p) \) is defined by \(I(E) = (f^* h)^{-1} h(a) \) (see Section 2). Note that \(h^* \) takes unramified elements to unramified ones and \(f^* \) yields an isomorphism on the unramified elements as the function field of \((E \times U)/G \) is a purely transcendental extension of \(K \). It follows that \(I(E) \) is unramified for all \(E \), hence the invariant \(I \) is unramified. \(\square \)

Unramified invariants are constant along rational families of torsors. Precisely, if \(K/F \) is a purely transcendental field extension and \(E \) is a \(G \)-torsor over \(K \), then for every invariant \(I \in \text{Inv}^d_{\text{nr}}(G, p) \) we have

\[
I(E) \in \text{Im}\left(H^d(F, p) \to H^d(K, p) \right).
\]

Indeed, \(I(E) \in H^d_{\text{nr}}(K, p) \) which is the image of \(H^d(F, p) \) in \(H^d(K, p) \).

5. Abstract Chern classes

Let \(A \) be a lattice (written additively). Consider the symmetric ring \(S^*(A) \) over \(\mathbb{Z} \) and the group ring \(\mathbb{Z}[A] \) of \(A \). We use the exponential notation for \(\mathbb{Z}[A] \): every element can be written as a finite sum \(\sum_{a \in A} n_a e^a \) with \(n_a \in \mathbb{Z} \). There are the abstract Chern classes (see [10, 3c])

\[
c_i : \mathbb{Z}[A] \to S^i(A), \quad i \geq 0
\]

satisfying in particular,

\[
c_1 \left(\sum_i e^{a_i} \right) = \sum_i a_i \in A \quad \text{and} \quad c_2 \left(\sum_i e^{a_i} \right) = \sum_{i<j} a_i a_j \in S^2(A).
\]

The map \(c_1 \) is a homomorphism and

\[
c_2(x + y) = c_2(x) + c_2(y) + c_1(x) c_1(y)
\]

for all \(x, y \in \mathbb{Z}[A] \).

If \(A \) is a \(W \)-lattice for a group \(W \) acting on \(A \), then all the \(c_i \)'s are \(W \)-equivariant. It follows that \(c_2 \) yields a map (not a homomorphism in general) of groups of \(W \)-invariant elements:

\[
c_2^W : \mathbb{Z}[A]^W \to S^2(A)^W.
\]

The group \(\mathbb{Z}[A]^W \) is generated by the elements \(\sum e^{a_i} \), where the \(a_i \)'s form a \(W \)-orbit in \(A \). It follows that the subgroup of \(S^2(A)^W \) generated by the image of \(c_2^W \) is generated by \(\sum_{i<j} a_i a_j \) with the \(a_i \)'s forming a \(W \)-orbit in \(A \) and \(a a' \).
for $a, a' \in A^W$. The elements of these two types can be viewed as “obvious” elements in $S^2(A)^W$ which we call decomposable.

Write $S^2(A)_{\text{dec}}^W$ for the subgroup of $S^2(A)^W$ generated by the decomposable elements, or equivalently, by the image of c_2^W. Set

$$S^2(A)_{\text{ind}}^W := S^2(A)^W / S^2(A)_{\text{dec}}^W.$$

Note that if $A^W = 0$, the map c_2^W is a homomorphism and $S^2(A)_{\text{ind}}^W$ is the cokernel of c_2^W.

Lemma 5.1. Let A_1 and A_2 be W_1- and W_2-lattices respectively. Then there is a canonical isomorphism

$$S^2(A_1 \oplus A_2)_{\text{ind}}^{W_1 \times W_2} \simeq S^2(A_1)_{\text{ind}}^{W_1} \oplus S^2(A_2)_{\text{ind}}^{W_2}.$$

Proof. We have

$$S^2(A_1 \oplus A_2)^{W_1 \times W_2} \simeq S^2(A_1)^{W_1} \oplus S^2(A_2)^{W_2} \oplus (A_1^{W_1} \otimes A_2^{W_2})$$

and

$$Z[A_1 \oplus A_2]^{W_1 \times W_2} \simeq Z[A_1]^{W_1} \otimes Z[A_2]^{W_2}.$$

The standard formulas on the Chern classes show that $c_1(Z[A_1]^{W_i}) = A_i^{W_i}$ and

$$S^2(A_1 \oplus A_2)^{W_1 \times W_2}_{\text{dec}} \simeq S^2(A_1)^{W_1}_{\text{dec}} \oplus S^2(A_2)^{W_2}_{\text{dec}} \oplus (A_1^{W_1} \otimes A_2^{W_2}),$$

whence the result. \hfill \Box

Lemma 5.2. Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be an exact sequence of W-lattices. Suppose that W acts trivially on A and $C^W = 0$. Then

1. The sequence

$$0 \rightarrow S^2(A) \rightarrow S^2(B)^W \rightarrow S^2(C)^W$$

is exact.

2. The natural homomorphism $S^2(B)^W_{\text{ind}} \rightarrow S^2(C)^W_{\text{ind}}$ is injective.

Proof. The first statement is proved in [5, Lemma 4.9]. Since W acts trivially on A, for every subgroup $W' \subset W$, we have $H^1(W', A) = 0$, hence the map $B^{W'} \rightarrow C^{W'}$ is surjective. The group $Z[C]^W$ is generated by elements of the form $\sum_i e^{c_i}$, where the c_i's form a W-orbit in C. By the surjectivity above, applied to the stabilizer $W' \subset W$, this orbit can be lifted to a W-orbit in B. Therefore, the map $Z[B]^W \rightarrow Z[C]^W$ is surjective. The second statement follows from this, the first statement of the lemma and the fact that $S^2(A) = S^2(A)^{W}_{\text{dec}} \subset S^2(B)^{W}_{\text{dec}}$. \hfill \Box

6. **Degree 3 invariants of split reductive groups**

Let G be a split reductive group over F and let H be the commutator subgroup of G. Thus, H is a split semisimple group and the factor group $Q := G/H$ is a split torus.
Proposition 6.1. 1. The restriction maps $\text{Inv}^d(G) \to \text{Inv}^d(H)$ and $\text{Inv}^d(G)_{\text{ind}} \to \text{Inv}^d(H)_{\text{ind}}$ are injective.

2. For every prime $p \neq \text{char}(F)$, the restriction map $\text{Inv}^d_{\text{nr}}(G, p) \to \text{Inv}^d_{\text{nr}}(H, p)$ is an isomorphism.

Proof. For a field extension K/F, the map $j : H^1(K, H) \to H^1(K, G)$ is surjective as $H^1(K, Q) = 1$ and the group $Q(K)$ acts transitively on the fibers of j. It follows that the restriction map $\text{Inv}^d(G) \to \text{Inv}^d(H)$ is injective. The injectivity of $\text{Inv}^d(G)_{\text{ind}} \to \text{Inv}^d(H)_{\text{ind}}$ follows then from Proposition 3.1.

As Q is a rational variety, the fibers of j are rational families of H-torsors. Since an unramified invariant of H must be constant on the fibers, it defines an invariant of G. This proves the second statement. □

Let G be a split reductive group, $T \subset G$ a split maximal torus. By [10, 3d], there is a commutative diagram

\[
\begin{array}{cccccc}
0 & \to & \text{CH}^2(BG) & \to & \overline{H}_{\text{ét}}^{1,2}(BG) & \to & \text{Inv}^3(G)_{\text{norm}} & \to & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \text{CH}^2(BT) & \to & \overline{H}_{\text{ét}}^{1,2}(BT) & \to & \text{Inv}^3(T)_{\text{norm}} & \to & 0
\end{array}
\]

with the exact rows, where $\overline{H}_{\text{ét}}^{1,2}(BH) = \overline{H}^1(BH, \mathbb{Z}(2))$ for an algebraic group H is the reduced weight two étale motivic cohomology group (see [9, §5]). The group $\text{Inv}^3(T)_{\text{norm}}$ is trivial as T has no nontrivial torsors and $\text{CH}^2(BT) = S^2(T^*)$ by [2, Example A.5], hence the middle term in the bottom row is isomorphic to $S^2(T^*)$.

Let N be the normalizer of T in G and $W = N/T$ the Weyl group. The group W acts naturally on BT. Moreover, if $w \in W$, the composition

\[BT \to_{w} BT \to_{s} BG,\]

where s is the natural morphism, coincides with s. Therefore, the image of the middle vertical homomorphism in the diagram

\[\overline{H}_{\text{ét}}^{1,2}(BG) \to \overline{H}_{\text{ét}}^{1,2}(BT) = S^2(T^*)\]

is contained in the subgroup $S^2(T^*)^W$ of W-invariant elements. By [10, Lemma 3.8], the image of $\text{CH}^2(BG)$ under this homomorphism is equal to $S^2(T^*)_{\text{dec}}$. Therefore, by diagram chase, we have a homomorphism $\text{Inv}^3(G)_{\text{norm}} \to S^2(T^*)_{\text{ind}}$. The group of decomposable invariants $\text{Inv}^3(G)_{\text{dec}}$ is in the kernel of this map since $\text{Inv}^3(G)_{\text{dec}}$ vanishes over an algebraic closure of F and the group $S^2(T^*)_{\text{ind}}$ does not change. Therefore, we have a well-defined homomorphism

\[\alpha_G : \text{Inv}^3(G)_{\text{ind}} \to S^2(T^*)_{\text{ind}}.\]

Theorem 6.2. Let G be a split reductive group over F. Then the map α_G is injective. If G is semisimple, then α_G is an isomorphism.
Proof. The second statement is proved in [10, Theorem 3.9]. The first statement follows from Proposition 6.1(1), the commutativity of the diagram

\[
\begin{array}{c}
\text{Inv}^3(G)_{\text{ind}} \xrightarrow{\alpha_G} S^2(T^*)^W_{\text{ind}} \\
\downarrow \quad \downarrow \\
\text{Inv}^3(H)_{\text{ind}} \xrightarrow{\alpha_H} S^2(S^*)^W_{\text{ind}},
\end{array}
\]

where \(H \) is the commutator subgroup of \(G \) and \(S \) is a maximal torus of \(H \), and the second statement applied to \(H \). □

Proposition 3.1 and Lemma 5.1 yield the following additivity property.

Corollary 6.3. Let \(H_1 \) and \(H_2 \) be two split semisimple groups. Then there is a canonical isomorphism

\[
\text{Inv}^3(H_1 \times H_2) \simeq \text{Inv}^3(H_1) \oplus \text{Inv}^3(H_2).
\]

Let \(H \) be a split semisimple group over a field \(F \), \(\pi : \tilde{H} \to H \) a simply connected cover, \(\tilde{S} \) the pre-image of a split maximal torus \(S \) of \(H \), so \(\tilde{S} \) is a split maximal torus of \(\tilde{H} \). Then \(S^2(S^*) \) can be viewed with respect to \(\pi \) as a sublattice of \(S^2(\tilde{S}^*) \) of finite index and we have the following commutative diagram

\[
\begin{array}{c}
\text{Inv}^3(H)_{\text{ind}} \xrightarrow{\alpha_H} S^2(S^*)^W_{\text{ind}} \\
\downarrow \quad \downarrow \\
\text{Inv}^3(\tilde{H})_{\text{norm}} \xrightarrow{\alpha_{\tilde{H}}} S^2(\tilde{S}^*)^W_{\text{ind}}.
\end{array}
\]

If \(H \) is simple, the group \(S^2(\tilde{S}^*)^W \) is infinite cyclic with a canonical generator \(q \) (see [6, Part 2, §7]). It follows that \(S^2(S^*)^W \) is also infinite cyclic with \(kq \) a generator for a unique integer \(k > 0 \). The invariant \(R \in \text{Inv}^3(\tilde{H})_{\text{norm}} \) corresponding to the generator \(q \) is called the **Rost invariant** of \(\tilde{H} \). It is a generator of the cyclic group \(\text{Inv}^3(\tilde{H}) \).

7. **Change of groups**

In this section we prove the following useful property.

Proposition 7.1. Let \(p \) be a prime integer different from \(\text{char}(F) \), \(G \) an algebraic group over \(F \), \(C \subset G \) a finite central diagonalizable subgroup of order not divisible by \(p \), \(H = G/C \). Then the natural maps \(\text{Inv}^d(H,p) \to \text{Inv}^d(G,p) \) and \(\text{Inv}^d_{\text{nr}}(H,p) \to \text{Inv}^d_{\text{nr}}(G,p) \) are isomorphisms.

Proof. Both functors in the definition of an invariant can be naturally extended to the category \(C \) of \(F \)-algebras that are finite product of fields, and every invariant extends uniquely to a morphism of extended functors. If \(K \to L \) is a morphism in \(C \) and \(M \) is an étale \(K \)-algebra, then \(L \otimes_K M \) is also an object of the category \(C \).
For any K in \mathcal{C} we have an exact sequence

$$H^1_{\text{et}}(K, G) \rightarrow H^1_{\text{et}}(K, H) \xrightarrow{\delta_K} H^2_{\text{et}}(K, C)$$

and the group $H^1_{\text{et}}(K, C)$ acts transitively on the fibers of the first map in the sequence.

Proof of injectivity. Let $I \in \text{Inv}^d(H, p)$ be such that $f^*(I) = 0$, where $f : G \rightarrow H$ is the canonical homomorphism. We prove that $I = 0$. Take any K in \mathcal{C} and $E \in \text{Tors}_H(K)$. As an element of the group $H^2_{\text{et}}(K, C)$ is a tuple of elements in $\text{Br}(K)$ of order prime to p, there is an étale K-algebra L of (constant) finite rank $[L : K]$ prime to p such that $\delta_L(E_L) = 0$. It follows that $E_L = f_*(E')$ for some $E' \in \text{Tors}_G(L)$. We have

$$I(E)_L = I(E) = I(f_*(E')) = f^*(I)(E') = 0.$$

Since $[L : K]$ is prime to p, we have $I(E) = 0$, i.e., $I = 0$.

Proof of surjectivity. Let $J \in \text{Inv}^d(G, p)$. We construct an invariant $I \in \text{Inv}^d(H, p)$ such that $J = f^*(I)$. Take any K in \mathcal{C} and $E \in \text{Tors}_H(K)$. As above, choose an étale K-algebra L of finite rank prime to p such that $\delta_L(E_L) = 0$ and an element $E' \in \text{Tors}_G(L)$ with $E_L = f_*(E')$. We set

$$I(E) = \frac{1}{[L : K]} \text{cor}_{L/F}(J(E')).$$

This is independent of the choice of E'. Indeed, if $E_L = f_*(E'')$ for $E'' \in \text{Tors}_G(L)$, then there exists $\nu \in H^1_{\text{et}}(L, C)$ with $E'' = \nu(E')$. Choose an L-algebra P of constant rank $[P : L]$ prime to p such that $\nu_P = 1$. It follows that $E''_P = E'_P$ and therefore,

$$[P : L] \text{cor}_{L/F}(J(E'')) = \text{cor}_{P/F}(J(E''_P)) = \text{cor}_{P/F}(J(E'_P)) = [P : L] \text{cor}_{L/F}(J(E')).$$

Since $[P : L]$ is prime to p, we have $\text{cor}_{L/F}(J(E'')) = \text{cor}_{L/F}(J(E'))$.

In order to show that the value $I(E)$ is independent of the choice of L, for the two choices L and L', it suffices to compare the formulas for L and $LL' := L \otimes_F L'$:

$$\frac{1}{[L : K]} \text{cor}_{L/F}(J(E')) = \frac{[L' : K]}{[LL' : K]} \text{cor}_{L/F}(J(E')) = \frac{1}{[LL' : K]} \text{cor}_{LL'/F}(J(E'_{LL'})).$$

We have constructed the invariant $I \in \text{Inv}^d(H, p)$. For any K in \mathcal{C} and $E' \in \text{Tors}_G(K)$, by the definition of I, we have $f^*(I)(E') = I(f_*(E)) = J(E')$, hence $f^*(J) = J$. Note that if J is an unramified invariant, I is also unramified since the corestriction map preserves unramified elements by [6, Part 1, Proposition 8.6].

8. Degree 3 unramified invariants of simple groups

The following statement was proved in [11] (classical groups) and [7] (exceptional groups).
Proposition 8.1. Let H be an absolutely simple simply connected group over F and p a prime different from $\text{char}(F)$.

1. If the Dynkin diagram of H is different from $2A_n$, n odd, and $3D_4$, then $\text{Inv}_m^3(H,p)_{\text{norm}} = 0$.

2. If H is split, then $\text{Inv}_m^3(H,p)_{\text{norm}} = 0$.

Let H be a semisimple group over F, E an H-torsor over $\text{Spec}(K)$ for a field extension K/F. The twist $H^E := \text{Aut}_H(E)$ of H by E is a semisimple group over K. The twisting argument shows that $BH^E = BH_K$ and there is a canonical isomorphism $\text{Inv}^d(H^E) \simeq \text{Inv}^d(H_K)$. If E_{gen} is a generic H-torsor, we write H^gen for $H^{E_{\text{gen}}}$. Let $H^\text{gen} \to H^\text{gen}$ be a simply connected cover.

Proposition 8.2. Let H be a split simple group. Then the composition

$$\text{Inv}^3(H)_{\text{ind}} \to \text{Inv}^3(H^\text{gen})_{\text{ind}} \to \text{Inv}^3(\tilde{H}^\text{gen})_{\text{ind}} = \text{Inv}^3(\tilde{H}^\text{gen})$$

is injective.

Proof. The statement is clear if H is a simply connected group. The case of an adjoint group H was considered in [10, Theorem 4.10]. Consider the other split semisimple groups type-by-type. It suffices to restrict to the p-component of $\text{Inv}^3(H)$ for a prime p.

Type A_{n-1}, $n \geq 2$. We have $H = S_{\mu_m}$ for an integer m dividing n. By Proposition 7.1, we may assume that $m = p^r$ for some r. It is shown in [1, Theorem 4.1] and Theorem 6.2 that

$$\text{Inv}^3(H)_{\text{ind}} \xrightarrow{\sim} S^2(S^*)^W_{\text{ind}} \hookrightarrow (\mathbb{Z}/m\mathbb{Z})q.$$

On the other hand, an H-torsor yields a central simple algebra of degree n and exponent dividing m. A generic torsor gives an algebra with the exponent exactly m, hence $\text{Inv}^3(\tilde{H}^\text{gen}) = (\mathbb{Z}/m\mathbb{Z})R$ by [6, Part 2, Theorem 11.5].

Type D_n, $n \geq 4$. We have $H = O^{\pm}_{2n}$, the special orthogonal group or $H = \text{HSpin}_{2n}$, the half-spin group if n is even. It is shown in [6, Part 1, Chapter VI] in the case $\text{char}(F) \neq 2$ that $\text{Inv}^3(O^+_{2n})_{\text{ind}} = 0$. In general, recall that the character group of a maximal split torus S is a free group of rank n. Let x_1, x_2, \ldots, x_n be a basis for S^* such that the Weyl group W acts on the x_i’s by permutations and change of signs. The generator of $S^2(S^*)^W$ is the quadratic form $q = x_1^2 + x_2^2 + \cdots + x_n^2$. It is in $S^2(S^*)_{\text{dec}}^W$ since $c_2(\sum_i e^{x_i} + e^{-x_i}) = -q$. By [10, Theorem 3.9], $\text{Inv}^3(O^+_{2n})_{\text{ind}} = 0$.

Finally, assume that n is even and $H = \text{HSpin}_{2n}$, the half-spin group. It follows from [1, Theorem 5.1] and Theorem 6.2 that

$$\text{Inv}^3(H)_{\text{ind}} \xrightarrow{\sim} S^2(S^*)^W_{\text{ind}} \hookrightarrow (\mathbb{Z}/4\mathbb{Z})q$$

and $\text{Inv}^3(H)_{\text{ind}} = 0$ if $n = 4$. On the other hand, an H-torsor yields a central simple algebra of degree $2n$. A generic torsor gives a nonsplit algebra. By [6, Part 2, Theorem 15.4], $\text{Inv}^3(\tilde{H}^\text{gen}) = (\mathbb{Z}/4\mathbb{Z})R$ if $n > 4$. □

Remark 8.3. The statement fails for semisimple groups that are not simple, see Example 11.2.
Theorem 8.4. Let H be a split simple group over an algebraically closed field F and p a prime integer different from $\text{char}(F)$. Then $\text{Inv}^3_{nr}(H, p) = 0$.

Proof. Let $I \in \text{Inv}^3_{nr}(H, p)$. Note that since F is algebraically closed, every decomposable invariant is trivial.

The pull-back \tilde{I} of I under the composition in Proposition 8.2 is an unramified invariant. As $\tilde{H} \text{gen}$ is an inner form of \tilde{H}, by Proposition 8.1, $\tilde{I} = 0$ and hence $I = 0$ by Proposition 8.2 unless the Dynkin diagram of H is D_4.

If H is a simply connected group of type D_4, then $I = 0$ by [1, Theorem 5.1]. Finally assume that H is an adjoint group of type D_4. By [10, Theorem 4.7], the group $\text{Inv}^3(H)$ is cyclic of order 2.

Assume that $I \neq 0$. The group $\tilde{H} \text{gen}$ is the spinor group of a central simple algebra A of degree 8 with orthogonal involution σ of trivial discriminant. Consider the corresponding special orthogonal group $\hat{H} \text{gen} := O^+(A, \sigma)$ of (A, σ). An $\hat{H} \text{gen}$-torsor over a field K is given by a pair (a, x), where a is an invertible σ-symmetric element in A and $x \in K^\times$ such that $\text{Nrd}(a) = x^2$ and Nrd is the reduced norm map (see [8, 29.27]).

The canonical homomorphism $\text{Inv}^3(H \text{gen}) \rightarrow \text{Inv}^3(\hat{H} \text{gen})$ factors through $\text{Inv}^3(\tilde{H} \text{gen})$. By [10, §4, type D_n], the pull-back of I in $\text{Inv}^3(\hat{H} \text{gen})$ is the class of the invariant taking a pair (a, x) to the cup-product $(x) \cup [A] \in H^3(K)$. This invariant is ramified as it is non-constant when a runs over a subfield of A of dimension n fixed by σ element-wise, a contradiction. □

9. Structure of reductive groups

Let H be a split semisimple group over a field F, $S \subset H$ a split maximal torus. Write $\Lambda_r \subset S^*$ for the root lattice of H. Let $\tilde{H} \rightarrow H$ be a simply connected cover and let \tilde{S} for the inverse image of S, a maximal torus in \tilde{H}. Write Λ_w for the character group of \tilde{S}. This is the weight lattice freely generated by the fundamental weights. We have

$$\Lambda_r \subset S^* \subset \Lambda_w.$$

The center C of H is a finite diagonalizable group with $C^* = S^*/\Lambda_r$.

Let G be a split reductive group over a field F with the commutator subgroup H. Choose a split maximal $T \subset G$ such that $T \cap H = S$. The roots of H can be uniquely lifted to T^* (to the roots of G), so the inclusion of Λ_r into S^* is lifted to the inclusion of Λ_r into T^*. The composition $\tilde{S} \rightarrow S \rightarrow T$ yields a homomorphism $T^* \rightarrow \Lambda_w$ of lattices. Thus, we have the two homomorphisms

\begin{equation} (9.1) \Lambda_r \rightarrow T^* \rightarrow \Lambda_w \end{equation}

with the composition the canonical embedding of Λ_r into Λ_w. The image of f in (9.1) is equal to S^*. The center Z of G is a diagonalizable group with $Z^* = T^*/\Lambda_r$. The factor group $G/H = T/S$ is a torus Q with the character lattice $Q^* = \text{Ker}(f)$.

UNRAMIFIED DEGREE THREE INVARIANTS OF REDUCTIVE GROUPS 13
We would like to study all split reductive groups with the fixed commutator subgroup \(H \).

Let \(H \) be a split semisimple group over \(F \). Fix a split maximal torus \(S \subset H \) and consider the root system of \(H \) relative to \(S \) with the root and weight lattices \(\Lambda_r \subset \Lambda_w \) respectively.

Consider a category \(\text{Red}(H) \) with objects split reductive groups \(G \) over \(F \) with the commutator subgroup \(H \). A morphism between \(G_1 \) and \(G_2 \) in this category is a group homomorphism \(G_1 \to G_2 \) over \(F \) that is the identity on \(H \).

Consider another category \(\text{Lat}(H) \) with objects the diagrams of the form

\[
\begin{align*}
\Lambda_r & \to A \\
A & \to \Lambda_w,
\end{align*}
\]

where \(A \) is a lattice, \(\text{Im}(f) = S^* \) and the composition is the embedding of \(\Lambda_r \) into \(\Lambda_w \). A morphism in \(\text{Lat}(R) \) is a morphism between the diagrams which is identity on \(\Lambda_r \) and \(\Lambda_w \).

Let \(G \) be an object in \(\text{Red}(H) \). Write \(Z \) for the center of \(G \). Then \(T := S \cdot Z \) is a split maximal torus of \(G \). The diagram (9.1) yields then a contravariant functor

\[
\rho : \text{Red}(H) \to \text{Lat}(H).
\]

Proposition 9.3. For every split semisimple group \(H \), the functor \(\rho \) is an equivalence of categories \(\text{Red}(H) \) and \(\text{Lat}(H)^{op} \).

Proof. We construct a functor \(\varepsilon : \text{Lat}(H) \to \text{Red}(H) \) as follows. Given the diagram (9.2), let \(T \) be a split torus with \(T^* = A \) and \(Z \) a diagonalizable subgroup of \(T \) with \(Z^* = A/\Lambda_r \). We view the torus \(S \) as a subgroup of \(T \) via the dual surjective homomorphism \(A \to \text{Im}(f) = S^* \).

We embed the center \(C \) of \(H \) into \(Z \) via a homomorphism dual to the surjective composition

\[
Z^* = A/\Lambda_r \to \text{Im}(f)/\Lambda_r = S^*/\Lambda_r = C^*.
\]

The sequence

\[
0 \to A \xrightarrow{g} S^* \oplus (A/\Lambda_r) \xrightarrow{h} S^*/\Lambda_r \to 0,
\]

where \(g(a) = (f(a), a + \Lambda_r) \) and \(h(x, a + \Lambda_r) = (x - f(a)) + \Lambda_r \) is exact. It follows that the product homomorphism \(S \times Z \to T \) is surjective with the kernel \(C \) embedded into \(S \times Z \) via \(c \mapsto (c, c^{-1}) \), i.e., \(T \simeq (S \times Z)/C \).

We set \(G = (H \times Z)/C \). The group \(Z \) is naturally a subgroup of \(G \) which coincides with the center of \(G \). The torus \(T \) is a subgroup of \(G \) generated by \(S \) and \(Z \), hence \(T \) is a split maximal torus of \(G \). The natural sequence

\[
0 \to \ker(f) \to A/\Lambda_r \to \text{Im}(f)/\Lambda_r \to 0
\]

is exact. It follows that \(Z/C \) is a torus dual to \(\ker(f) \). Since \(G/H \simeq Z/C \), \(G \) is a (smooth connected) reductive group with \(H \) the commutator subgroup. The functor \(\varepsilon \), by definition, takes the diagram (9.2) to the group \(G \). By construction, both compositions of \(\rho \) and \(\varepsilon \) are isomorphic to the identity functors. \(\square \)
Let H be a split semisimple group as above. We consider another category $\text{Mor}(H)$ with objects homomorphisms $h : B \rightarrow \Lambda_w/\Lambda_r$ with B a finitely generated abelian group, $\text{Im}(h) = S^*/\Lambda_r$, and torsion free $\text{Ker}(h)$. Morphisms are defined in the obvious way. Consider a contravariant functor $\nu : \text{Red}(H) \rightarrow \text{Mor}(H)$ taking a reductive group G to the composition $Z^* \rightarrow C^* \hookrightarrow \Lambda_w/\Lambda_r$, where Z is the center of G. The kernel of this homomorphism is the character lattice of the torus $Z/C = G/H$ and hence has no torsion.

Proposition 9.4. For every split semisimple group H, the functor ν is an equivalence of categories $\text{Red}(H)$ and $\text{Mor}(H)^{\text{op}}$.

Proof. We construct a functor $\lambda : \text{Mor}(H) \rightarrow \text{Red}(H)$ as follows. Let $h : B \rightarrow \Lambda_w/\Lambda_r$ be an object in $\text{Mor}(H)$ and Z a diagonalizable group with $Z^* = B$. The map h yields an embedding of C into Z and the factor group Z/C is a torus. Set $G = (H \times Z)/C$ as in the proof of Proposition 9.3. The factor group G/H is isomorphic to the torus Z/C, hence G is a reductive group with the commutator subgroup H, i.e., G is an object of $\text{Red}(H)$. Then Z is the center of G as the group $G/Z \cong H/C$ is adjoint. We set $\lambda(h) = G$. By construction, both compositions of ρ and λ are isomorphic to the identity functors. □

Remark 9.5. It follows from Propositions 9.3 and 9.4 that the categories $\text{Lat}(H)$ and $\text{Mor}(H)$ are equivalent. An equivalence between the categories can be described directly as follows. If $\Lambda_r \rightarrow A \xrightarrow{f} \Lambda_w$ is an object in $\text{Lat}(H)$, then the induced morphism $A/\Lambda_r \rightarrow \Lambda_w/\Lambda_r$ is the corresponding object in $\text{Mor}(H)$. Conversely, let $\mu : B \rightarrow \Lambda_w/\Lambda_r$ be an object in $\text{Mor}(H)$. Write A for the kernel of the homomorphism

$$h : S^* \oplus B \rightarrow S^*/\Lambda_r$$

defined by $h(x, b) = (x + \Lambda_r) - \mu(b)$. The corresponding object

$$\Lambda_r \rightarrow A \xrightarrow{f} \Lambda_w$$

in $\text{Lat}(H)$ is defined as follows. The map f is given by the first projection followed by the inclusion of S^* into Λ_w and the inclusion $\Lambda_r \rightarrow A$ takes x to $(x, 0)$. Note that W acts on S^* naturally on S^* and trivially on B.

A split reductive group G is called *strict* if the center Z of G is a torus, i.e., Z^* is a lattice. An object G of $\text{Red}(H)$ is *strict* if G is strict. If $B \rightarrow \Lambda_w/\Lambda_r$ is the object $\nu(G)$ of $\text{Mor}(H)$, then G is strict if and only if B is torsion-free.

A semisimple group is strict if and only if it is adjoint. A *strict envelope* of a split semisimple group H is a strict object in $\text{Red}(H)$.

Example 9.6. The group GL_n is a strict envelope of SL_n.

Example 9.7. The object G in $\text{Red}(H)$ corresponding to the composition $S^* \rightarrow S^*/\Lambda_r \hookrightarrow \Lambda_w/\Lambda_r$, viewed as an object of the category $\text{Mor}(H)$, is
strict. We call such G the *standard* strict envelope of H. By Remark 9.5, the lattice T^* is the subgroup in $S^* \oplus S^*$ consisting of all pairs (x, y) such that $x - y \in \Lambda_r$. Note that the Weyl group acts naturally on the first component of $S^* \oplus S^*$ and trivially on the second.

A strict envelope of H behaves like an “injective resolution” of H.

Lemma 9.8. Let G_1 and G_2 be two objects in $\text{Red}(H)$. If G_2 is strict, then there is a morphism $G_1 \to G_2$ in $\text{Red}(H)$.

Proof. Let $h_i : B_i \to \Lambda_w/\Lambda_r$ be the object $\nu(G_i)$ in $\text{Mor}(H)$ for $i = 1, 2$. By assumption, B_2 is a free \mathbb{Z}-module. Therefore, there is a group homomorphism $g : B_2 \to B_1$ such that $g \circ h_1 = h_2$, i.e., g is a morphism in $\text{Mor}(H)$. By Proposition 9.4, there is a morphism $G_1 \to G_2$ in $\text{Red}(H)$ corresponding to g. □

10. Reductive invariants

Let H be a split semisimple group and G is a reductive group with the commutator subgroup H, i.e., G is an object in $\text{Red}(H)$. By Proposition 6.1, the map $\text{Inv}^d(G) \to \text{Inv}^d(H)$ is injective. We view $\text{Inv}^d(G)$ as a subgroup of $\text{Inv}^d(H)$. If G' is a strict envelope of H, then it follows from Lemma 9.8 that $\text{Inv}^d(G') \subset \text{Inv}^d(G)$. Therefore, the subgroup $\text{Inv}^d(G')$ is independent of the choice of the strict resolution G' of G. We write $\text{Inv}^d_{\text{red}}(H)$ for this subgroup and call the invariants in this group the reductive invariants. By Proposition 6.1, for any prime $p \neq \text{char}(F)$ we have

$$\text{Inv}^d_{\text{red}}(H, p) \subset \text{Inv}^d_{\text{red}}(H, p) \subset \text{Inv}^d(H, p).$$

Let A be a lattice and $q \in S^2(A)$. We can view q as an integral quadratic form on the lattice \hat{A} dual to A. The polar bilinear form h of q is the image of q under the polar map $\text{pol} : S^2(A) \to A \otimes A$, $aa' \mapsto a \otimes a' + a' \otimes a$. The polar form h is symmetric and *even*, i.e., $h(x, x) \in 2\mathbb{Z}$ for all $x \in \hat{A}$. Conversely, if $h \in A \otimes A$ is a symmetric even bilinear form, then $q(x) = \frac{1}{2}h(x, x)$ is an integral quadratic form with the polar form h.

Let $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ be a set of simple roots of an irreducible root system, $\{w_1, w_2, \ldots, w_n\}$ the corresponding fundamental weights generating the weight lattice Λ_w and W the Weyl group. Let d_i be the square of the length of the co-root α_i^\vee (we assume that the length of the shortest co-root is 1). Consider the bilinear form

$$h = \sum_{i=1}^{n} w_i \otimes d_i \alpha_i = \sum_{i,j} w_i \otimes d_i c_{ij} w_j \in \Lambda_w \otimes \Lambda_w,$$

where (c_{ij}) is the Cartan matrix (see [4, Chapitre VI]). The matrix $(d_i c_{ij})$ is symmetric with even diagonal terms, hence h is a symmetric even bilinear form.
form. The corresponding quadratic form
\[q = \frac{1}{2} \sum_{i=1}^{n} d_i w_i \alpha_i \in S^2(\Lambda_w) \]
is \(W\)-invariant by [10, Lemma 3.2]. It follows that the polar form \(h\) of \(q\) is also \(W\)-invariant.

Consider the three embeddings \(i_1, i_2, j = i_1 + i_2 : \Lambda_w \to \Lambda_w^2 := \Lambda_w \oplus \Lambda_w\) given by \(x \mapsto (x, 0), (0, x), (x, x)\) respectively, and the two quadratic forms \(q^{(1)}, q^{(2)}\) that are the images of \(q\) under the maps \(S^2(i_1), S^2(i_2) : S^2(\Lambda_w) \to S^2(\Lambda_w^2)\) respectively. We let \(W\) act on \(\Lambda_w^2\) naturally on the first summand and trivially on the second.

Let \(A\) be the sublattice of \(\Lambda_w^2\) of all pairs \((x, y)\) such that \(x - y \in \Lambda_r\). Note that \(\text{Im}(j) \subseteq A\). In particular, \(S^2(j)(q) \in S^2(A)\). Moreover, since \(h \in (\Lambda_r \otimes \Lambda_w) \cap (\Lambda_w \otimes \Lambda_r)\) by [9, Lemma 2.1], we have \((i_k \otimes j)(h) \in A \otimes A\) and \((j \otimes i_k)(h) \in A \otimes A\) for \(k = 1, 2\).

Write \(m : \Lambda_w^2 \otimes \Lambda_w^2 \to S^2(\Lambda_w^2)\) for the canonical homomorphism. We have \(m(i_k \otimes j)(h) \in S^2(A)\) and \(m(j \otimes i_k)(h) \in S^2(A)\) for \(k = 1, 2\).

Proposition 10.2. We have \(q^{(1)} - q^{(2)} \in S^2(A)^W\) with the polar form \(h^{(1)} - h^{(2)} = (j \otimes i_1)(h) - (i_2 \otimes j)(h) \in A \otimes A\).

Proof. By construction, \(q^{(1)} - q^{(2)}\) is \(W\)-invariant. We have
\[
q^{(1)} - q^{(2)} = (q^{(1)} + q^{(2)}) - 2q^{(2)} = q^{(1)} + q^{(2)} - m(i_2 \otimes i_2)(h) = q^{(1)} + q^{(2)} + m(i_1 \otimes i_2)(h) - m(j \otimes i_2)(h)
= S^2(j)(q) - m(j \otimes i_2)(h) \in S^2(A).
\]
The second statement follows from the equality \(j = i_1 + i_2\).

Corollary 10.3. The image of \(h^{(1)} - h^{(2)}\) under the map
\[
A \otimes A \overset{p_1 \otimes 1}{\longrightarrow} \Lambda_w \otimes A,
\]
where \(p_1\) is the first projection, coincides with the image of \(h\) under the natural map
\[
\Lambda_w \otimes \Lambda_r \overset{1 \otimes i_1}{\longrightarrow} \Lambda_w \otimes A.
\]

Proof. The statement follows from Proposition 10.2 and the equalities \(p_1 \circ j = p_1 \circ i_1 = 1\) and \(p_1 \circ i_2 = 0\).

Let \(\tilde{H}\) be a split simply connected cover of \(H\) with a split maximal torus \(\tilde{S}\), thus \(\tilde{S}^* = \Lambda_w\). Consider the standard strict envelope \(\tilde{G}\) of \(\tilde{H}\) (see Example 9.7). The character group \(\tilde{T}^*\) of the maximal torus \(\tilde{T}\) of \(\tilde{G}\) coincides with the group \(A\) as above. If \(\tilde{H}\) is simple, by Proposition 9.7, \(\tilde{q} := q^{(1)} - q^{(2)} \in S^2(\tilde{T}^*)^W\). The form \(\tilde{q}\) maps to \(q\) under the natural map \(S^2(\tilde{T}^*)^W \to S^2(\tilde{S}^*)^W = S^2(\Lambda_w^*)^W\).
In the general case,

\[\tilde{H} = \tilde{H}_1 \times \tilde{H}_2 \times \cdots \times \tilde{H}_s, \]

with \(\tilde{H}_j \) the simple simply connected components of \(\tilde{H} \). The components define a basis \(q_1, q_2, \ldots, q_s \) of \(S^2(H^*)^W \). Every \(q_j \) has a lift \(\tilde{q}_j \in S^2(\tilde{T}^*)^W \) as above. Lemma 5.2 then yields the following statement.

Corollary 10.4. The map \(S^2(\tilde{T}^*)^W \to S^2(\tilde{S}^*)^W \) is surjective and \(S^2(\tilde{T}^*)_{\text{ind}}^W \to S^2(\tilde{S}^*)_{\text{ind}}^W \) is an isomorphism. In particular, \(S^2(\tilde{T}^*)_{\text{ind}}^W \) is generated by the classes of the forms \(\tilde{q}_j \).

We will write \(\alpha_{ij} \) for the simple roots of the \(j \)-th component and \(w_{ij} \) for the corresponding fundamental weights, etc.

Let \(\tilde{C} \subset \tilde{H} \) be a central subgroup and set \(G := \tilde{H}/\tilde{C} \) and \(T := \tilde{T}/\tilde{C} \). The character group \(\tilde{C}^* \) is a factor group of \(\Lambda_w/\Lambda_r \). Consider the composition

\[S^2(\tilde{T}^*) \xrightarrow{\text{pol}} \tilde{T}^* \otimes \tilde{T}^* \xrightarrow{p_1} \Lambda_w \otimes \tilde{T}^* \to \tilde{C}^* \otimes \tilde{T}^*. \]

where \(\text{pol} \) denotes the image of an \(x \in \tilde{T}^* \) in \(\tilde{C}^* \).

Let \(\tilde{T}_j \subset \tilde{T} \) be a maximal torus of of the \(j \)-th simple component of \(\tilde{G} \), so that \(\tilde{T} = \tilde{T}_1 \times \cdots \times \tilde{T}_s \). Let \(\tilde{C}_j \) be the image of the projection \(\tilde{C} \to \tilde{T}_j \). Then \(\tilde{C}_j^* \) can be viewed as a subgroup of \(\tilde{C}^* \) and \(\overline{w}_{ij} \in \tilde{C}_j^* \).

Proposition 10.6. Let \(q := \sum_{j=1}^s k_j \tilde{q}_j \in S^2(\tilde{T}) \) be a linear combination with integer coefficients \(k_j \). If \(q \) has trivial image under the composition (10.5) (for example, if \(q \in S^2(T^*) \)), then the order of \(\overline{w}_{ij} \) in \(\tilde{C}_j^* \) divides \(k_j d_{ij} \) for all \(i \) and \(j \).

Proof. We have \(\sum_{i,j} k_j d_{ij} \overline{w}_{ij} \otimes (\alpha_{ij}, 0) = 0 \) in \(\tilde{C}_j^* \otimes \tilde{T}^* \). Note that the elements \((\alpha_{ij}, 0) \) form part of a basis of \(\tilde{T}^* \) (with the complement \((w_{ij}, w_{ij}) \)). It follows that \(k_j d_{ij} \overline{w}_{ij} = 0 \) in \(\tilde{C}_j^* \) for all \(i \) and \(j \), whence the result. \(\square \)

11. **Degree 3 unramified invariants of reductive groups**

We assume that the base field \(F \) is algebraically closed.

Proposition 11.1. Let \(H \) be a (split) semisimple group over \(F \) with the components of the Dynkin diagram of types \(A_m \) for some \(m \) or \(E_6 \). Suppose that \(E_6^{\text{sc}} \) does not split off \(H \) as a direct factor. Then \(\text{Inv}_{\text{red}}^3(H, p) = \text{Inv}_{\text{nr}}^3(H, p) = 0 \) for all odd primes \(p \neq \text{char}(F) \).
Proof. Let \(\tilde{H} \rightarrow H \) be a simply connected cover with kernel \(\tilde{C} \) and \(\tilde{G} \) be the standard strict envelope of \(\tilde{H} \). By Proposition 7.1, replacing \(\tilde{C} \) if necessary, we may assume that \(\tilde{C}^* \) is a \(p \)-group. Set \(G := \tilde{G}/\tilde{C} \). We choose split maximal tori \(S \subset H, \tilde{S} \subset \tilde{H}, T \subset G, \tilde{T} \subset \tilde{G} \) as in Section 10. The group \(Q := G/H = \tilde{G}/\tilde{H} \) is a torus.

By Proposition 6.1, it suffices to prove that \(\text{Inv}^3(G, p) = 0 \). By Theorem 6.2, we are reduced to proving that \(S^2(T^*)^W_{\text{ind}}(p) = 0 \).

By Lemma 5.2(1) and Corollary 10.4, the rows of the diagram

\[
\begin{array}{cccc}
0 & \longrightarrow & S^2(Q^*) & \longrightarrow & S^2(T^*)^W & \longrightarrow & S^2(S^*)^W \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & S^2(Q^*) & \longrightarrow & S^2(\tilde{T}^*)^W & \longrightarrow & S^2(\tilde{S}^*)^W & \longrightarrow & 0
\end{array}
\]

are exact.

Let \(\alpha \in S^2(T^*)^W_{\text{ind}}(p) \). Since \(p \) is odd, it sufficient to show that \(2\alpha = 0 \). The element \(\alpha \) lifts to a form \(q \in S^2(T^*)^W \). Recall that \(S^2(\tilde{S}^*)^W \) is a free abelian group with basis \(\{ \tilde{q}_j \} \). Hence the image of \(q \) in \(S^2(\tilde{S}^*)^W \) is equal to \(\sum_{j=1}^{s} k_j \tilde{q}_j \) for some \(k_j \in \mathbb{Z} \). Write \(\tilde{q} \) for \(\sum_{j=1}^{s} k_j \tilde{q}_j \in S^2(\tilde{T}^*)^W \). Therefore, in \(S^2(T^*)^W \) we have \(q = \tilde{q} + t \) for some \(t \in S^2(Q^*) \).

Note that since the Dynkin diagram of \(H \) is simply laced all the integer \(d_{ij} \) are equal to 1 for all \(i \) and \(j \). The images of \(q \) and \(t \) are trivial under (10.5), hence so is \(\tilde{q} \). By Proposition 10.6, the order of \(\overline{w}_{ij} \) in \(\tilde{C}^*_j \) divides \(k_j \) for all \(i \) and \(j \).

We claim that the class of \(2k_jq_j \) is contained in \(S^2(S^*)^W_{\text{dec}} \) for all \(j \).

Case 1: The \(j \)-th simple component \(\tilde{G}_j \) is of type \(A_m \) for some \(m \), i.e., \(\tilde{H}_j = \text{SL}_{m+1} \). The center of \(\tilde{H}_j \) is \(\mu_{m+1} \), hence \(\tilde{C}_j = \mu_{p^r} \) for some \(r \). The element \(\overline{w}_{ij} \) is a generator of \(\tilde{C}^* = \mathbb{Z}/p^r\mathbb{Z} \), hence the order of \(\overline{w}_{ij} \) is equal to \(p^r \). Therefore, \(k_j \) is divisible by \(p^r \). As \(p \) is odd, by [1, 4.2], the form \(p^r k_\tilde{q}_j \) and hence \(k_j q_j \) belongs to \(S^2(S^*)^W_{\text{dec}} \). Taking the image of \(k_j q_j \) under the homomorphism \(S^*_j \rightarrow S^* \), we see that \(k_j q_j \in S^2(S^*)^W_{\text{dec}} \).

Case 2: The \(j \)-th simple component \(\tilde{H}_j \) is of type \(E_6^{sc} \). The center of \(\tilde{H}_j \) is \(\mu_3 \), hence \(\tilde{C}_j \) is a subgroup of \(\mu_3 \). If \(\tilde{C}_j = 1 \), then \(\tilde{H}_j \) is a direct factor of \(H \) and hence \(\tilde{E}_6^{sc} \) is a direct factor of \(H \). This is impossible by the assumption. Therefore, \(\tilde{C}_j = \mu_3 \) (and hence \(p = 3 \)). The element \(\overline{w}_{ij} \) is a generator of \(\tilde{C}^* = \mathbb{Z}/3\mathbb{Z} \), hence \(k_j \) is divisible by 3. By [10, §4, type \(E_6 \)], the form \(6q_j \) and hence \(2k_j q_j \) belongs to \(S^2(S^*)^W_{\text{dec}} \). Taking the image of \(2k_j q_j \) under the homomorphism \(S^*_j \rightarrow S^* \), we see that \(2k_j q_j \in S^2(S^*)^W_{\text{dec}} \). The claim is proved.

It follows from the claim that \(2\alpha \) belongs to the kernel of the map \(S^2(T^*)^W_{\text{ind}} \rightarrow S^2(S^*)^W_{\text{ind}} \). By Lemma 5.2, this map is injective, hence \(2\alpha = 0 \). \qed
Example 11.2. The statement of the proposition is wrong if \(p = 2 \). Consider the group \(H := (\text{SL}_2)^n/\tilde{C} \), where \(\tilde{C} \subset (\mu_2)^n \) consists of all \(n \)-tuples with trivial product. Then the group \(G := (\text{GL}_2)^n/\tilde{C} \) is a strict envelope of \(H \). A \(G \)-torsor over a field \(K \) is a tuple \((Q_1, Q_2, \ldots, Q_n)\) of quaternion algebras over \(K \) such that \([Q_1]+[Q_2]+\cdots+[Q_n] = 0 \) in \(\text{Br}(K) \). Let \(\varphi_i \) be the reduced norm quadratic form of \(Q_i \). The sum \(\varphi \) of the forms \(\varphi_i \) in the Witt ring \(W(K) \) of \(K \) belongs to the cube of the fundamental ideal of \(W(K) \). The Arason invariant of \(\varphi \) in \(H^3(K) \) yields a degree 3 invariant \(I \) of \(G \) (see \cite[page 431]{bogomolov}). The restriction \(J \) of \(I \) to \(H \) belongs to \(\text{Inv}^3_{\text{red}}(H) = \text{Im}(\text{Inv}^3(G) \rightarrow \text{Inv}^3(H)) \), and \(I \) and \(J \) are nontrivial if \(n \geq 3 \). Note that the invariants \(I \) and \(J \) are ramified. Moreover, the map \(\text{Inv}^3(G) \rightarrow \text{Inv}^3(\tilde{H}^\text{gen}) \) factors through \(\text{Inv}^3(\tilde{G}^\text{gen}) \), where \(\tilde{G}^\text{gen} \) is the product of \(\text{GL}_1(Q_i^\text{gen}) \). The group \(\text{Inv}^3(\tilde{G}^\text{gen}) \) is trivial since \(\text{GL}_1(Q_i^\text{gen}) \) have only trivial torsors. It follows that \(J \) belong to the kernel of

\[
\text{Inv}^3(H) \rightarrow \text{Inv}^3(\tilde{H}^\text{gen}),
\]

hence the map in Proposition 8.2 is not injective.

Theorem 11.3. Let \(G \) be a (split) reductive group over an algebraically closed field \(F \). Then \(\text{Inv}^3_{\text{nr}}(G, p) = 0 \) for every odd prime \(p \neq \text{char}(F) \).

Proof. Let \(H \) be the commutator subgroup of \(G \). By Proposition 6.1(2), it suffices to prove that \(\text{Inv}^3_{\text{nr}}(H, p) = 0 \). Let \(\tilde{H} \rightarrow H \) be a simply connected cover with kernel \(\tilde{C} \). Let \(\tilde{C}' \subset \tilde{C} \) be a subgroup such that \((\tilde{C}/\tilde{C'})^* \) is the 2-component of \(\tilde{C}^* \). Since \(p \) is odd, by Proposition 7.1, \(\text{Inv}^3_{\text{nr}}(H, p) = \text{Inv}^3_{\text{nr}}(\tilde{H}/\tilde{C}', p) \). Replacing \(H \) by \(\tilde{H}/\tilde{C}' \), we may assume that \(\tilde{C}^* \) has odd order.

Write \(\tilde{H} \) as a product of simply connected groups \(\tilde{H}_j \) and let \(\tilde{C}_j \) be the center of \(\tilde{H}_j \). If the order of \(\tilde{C}_j^* \) is a power of 2, the projection \(\tilde{C} \rightarrow \tilde{C}_j \) is trivial and therefore, the simply connected group \(\tilde{H}_j \) splits off \(H \) as a direct factor. Thus, the simply connected simple groups of types \(B_n, C_n, D_n, E_7, E_8, F_4 \) and \(G_2 \) split off \(H \), i.e., \(H = H_1 \times H_2 \), where \(H_1 \) is simply connected and \(H_2 \) satisfies the conditions of Proposition 11.1. By the additivity property Corollary 6.3, Propositions 8.1(2) and 11.1, we have \(\text{Inv}^3_{\text{nr}}(H, p) = 0 \). \(\square \)

References

Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA

E-mail address: merkurev@math.ucla.edu