
BIRATIONAL SPLITTING AND

ALGEBRAIC GROUP ACTIONS

VLADIMIR L. POPOV∗

Abstract. According to the classical theorem, every algebraic variety
endowed with a nontrivial rational action of a connected linear algebraic
group is birationally isomorphic to a product of another algebraic variety
and P

s with positive s. We show that the classical proof of this theorem
actually works only in characteristic 0 and we give a characteristic free
proof of it. To this end we prove and use a characterization of connected
linear algebraic groups G with the property that every rational action
of G on an irreducible algebraic variety is birationally equivalent to a
regular action of G on an affine algebraic variety.

1. Throughout this note k stands for an algebraically closed field of arbi-
trary characteristic which serves as domain of definition for each of the al-
gebraic varieties considered below. Each algebraic variety is identified with
its set of k-rational points. We use freely the standard notation and con-
ventions of [PV 94], [Sp 98] and refer to [Ro 56], [Ro 61], [Ro 63], [PV 94],
[Po 13] regarding the definitions and basic properties of rational and regular
(morphic) actions of algebraic groups on algebraic varieties. Given a rational
action of such a group G on an irreducible algebraic variety X, we denote

by πG,X : X 99K X --
-G a rational quotient of this action; the latter means

that X --
-G and πG,X are respectively an irreducible variety and a dominant

rational map such that π∗G,X(k(X --
-G)) = k(X)G.

2. Up to a change of notation and terminology, the following statement
appeared in classical paper [Ma 63, Thm. 1]:

Theorem 1. Assume that a connected linear algebraic group G acts ratio-

nally and nontrivially on an irreducible algebraic variety X, and let B be a

Borel subgroup of G. Then X is birationally isomorphic to Ps×X --
-B, where

πB,X : X 99K X --
-B is a rational quotient of the natural rational action of B

on X and 0 < s 6 dimB.

In [Ma 63] no restriction on char k is imposed, but actually the brief ar-
gument given there in support of Theorem 1 works only if char k = 0. We
reproduce it below in order to pinpoint where the restriction char k = 0 is
implicitly used.

Argument from [Ma 63] supporting Theorem 1. Since G is generated by its
Borel subgroups and since all Borel subgroups are conjugate to each other,
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B acts on X nontrivially. Since B is a connected solvable linear algebraic
group, there is a chain of connected subgroups

B = B0 ⊃ B1 ⊃ · · · ⊃ Bn = {e}

such that all Bi are normal in B and dimBi = dimB− i. If d is the largest
index i such that the action of Bi on X is not trivial, then let

πBd,X
: X 99K X --

-Bd =: Xd (1)

be a rational quotient of X with respect to Bd. By the cross-section theorem
([Ro 56]) we find that X is birationally equivalent to P1 × Xd. The factor
group B/Bd acts on Xd and we can repeat the same argument. �

3. The assumption char k = 0 is actually implicitly used in the penul-
timate phrase of this argument. Indeed, it purports the following. Let be a
section of πBd,X

, i.e., a rational map such that πBd,X
◦ σ = id. Since Bd+1

lies in the kernel of the action of Bd on X, this action is reduced to that of
the one-dimensional connected linear algebraic group Bd/Bd+1. This action
is nontrivial, hence the Bd/Bd+1-stabilizers of points of a dense open subset
of X are finite; in particular, the kernel K of this action is finite. The action
of Cd := (Bd/Bd+1)/K on X is faithful, and (1) is its rational quotient.

Being a connected one-dimensional linear algebraic group, Cd is isomor-
phic to either k× (the multiplicative group of k) or k+ (the additive group
of k; see, e.g., [Sp 98, Thm. 3.4.9].

If it is isomorphic to k×, then faithfulness of its action on X implies that
this action is locally free (i.e., Cd-stabilizers of points of a dense open subset
of X are trivial); see [Po 13, Lemma 2.4]. Therefore, the dominant rational
map γ : Cd×Xd 99K X, (c, b) 7→ c ·σ(b), is bijective over a dense open subset
of X. If char k = 0, the latter implies that γ is a birational isomorphism and
hence X is birationally isomorphic to P1 ×Xd because the group variety of
Cd is rational. But if char k > 0, one can only say that γ is either a birational
isomorphism or purely inseparable. The following example shows that the
latter indeed may occur.

Example 1. Let char k = p > 0. Consider the locally free action of G =
B = k× on X = k \ {0}, given by b · x := bpx. We have n = 1, d = 0,
C0 = G, and X0 is a point. Therefore, C0 ×X0 is naturally identified with
G. Let σ mapsX0 to 1. Then γ

∗(k(X)) = k(tp)  k(t) = k(G), where t is the
standard coordinate function on G. Thus γ is not a birational isomorphism.

If Cd is isomorphic to k+, the same argument works if we know that
the action of Cd on X is locally free. If char k = 0, then local freeness
indeed holds because in this case there are no nontrivial finite subgroups
in k+. However, if char k > 0, it may happen that the action of Cd on X
is not locally free; therefore, γ is not bijective over a dense open subset
of X, a fortiori is not a birational isomorphism. The example below is a
generalization of the one I first learned from G. Kemper, whom I thank
for it. It is based on the idea going back to [PV 94, 7.1, Example 1◦] and
Corollary of Proposition 1 below.
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Example 2. Let char k = p > 0 and let G = B = k+. Let x ∈ k[G] be
the standard coordinate function on G. Every homomorphism of algebraic
groups f : G→ G defines a regular action of G on X := k2 by the formula

u · (a, b) := (a+ ub+ f(u), b), where u ∈ G, (a, b) ∈ X. (2)

¿From (2) we infer that an element u ∈ G lies in the G-stabilizer of a point
(a, b) ∈ X if and only if u is a root of the polynomial f + bx. By [Sp 98,
Lemma 3.3.5] there are nonzero elements α1, . . . , αs ∈ k and an increasing
sequence of nonnegative integers n1, . . . , ns such that

f = α1x
pn1

+ · · ·+ αsx
pns

; (3)

any αi and nj may occur in the right-hand side (3) for an appropriate
f . One of the roots of f is 0. Now take f with ns > 1. By (3) the polyno-
mial (f + bx)/x has degree pns − 1 > 1 and does not vanish at 0 if b 6= 0
and b 6= −α1. Whence if these inequalities hold, the G-stabilizer of (a, b) is
nontrivial. Therefore, the action is not locally free.

Moreover, if even the action of Cd on X is locally free, and hence γ is
bijective over a dense open subset of X, it may happen that γ is purely
inseparable. The corresponding example is similar to Example 1.

Example 3. Let char k = p > 0. Consider the locally free action of G =
B = k+ on X = k, given by b · x := bp + x. Then n = 1, d = 0, C0 = G,
X0 is a point, C0 ×X0 is naturally identified with G, and if σ maps X0 to
0, then γ∗(k(X)) = k(tp)  k(t) = k(G), where t is the standard coordinate
function on G. Thus γ is not a birational isomorphism.

4. Below we shall give a characteristic free proof of Theorem 1. For this,
we need the following characterization of connected linear algebraic groups
G with the property that every rational action of G on an irreducible alge-
braic variety is birationally equivalent to a regular action of G on an affine
algebraic variety.

Definition. We say that a linear algebraic group G has property (A) if for
every rational action of G on an irreducible algebraic variety X, there exist
an irreducible affine algebraic variety Y and a birational isomorphism

ϕ : X 99K Y (4)

such that the rational action of G on Y induced by ϕ is regular.

Theorem 2. Let G be a linear algebraic group and let G0 be the connected

component of the identity in G.

(i) If G0 is solvable, then G has property (A).
(ii) If G is connected and has property (A), then G is solvable.

Proof. (i)⇒(ii): Let G0 be solvable. Consider a rational action of G on an ir-
reducible algebraic variety X. By [Ro 56, Thm. 1], there exists an irreducible
algebraic variety X1 and a birational isomorphism

α1 : X 99K X1

such that the rational action of G on X1 induced by α1 is regular.
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Let ν : X2 → X1 be the normalization of X1. Then the rational action of
G on X2 induced by the birational isomorphism

α2 := ν−1 : X1 99K X2

is regular, see [Ii 82, Thm. 2.25].
By [Su 74, Lemma 8], since X2 is a normal algebraic variety, it contains

a nonempty G0-stable quasi-projective open subset U . Hence, by [Su 74,
Thm. 1], for some positive integer n, there exist a regular action of G0 on
the projective space Pn and a G0-equivariant embedding of the algebraic
variety U into Pn ,

ι : U →֒ Pn.

We may (and shall) assume that n is minimal possible with this property.
Since AutPn = PGLn, this action of G0 on Pn induces an action of G0

on the dual projective space P̌n. By the Borel fixed-point theorem [Sp 98,
Thm. 6.2.6], the assumption that G0 is a connected solvable linear algebraic
group implies that in P̌n there is a fixed point of this action. This means
that Pn contains a G0-stable hyperplane H. Hence Pn \ H is a G0-stable
affine open subset of Pn. Therefore, the minimality assumption on n implies
that ι(U) ∩ (Pn \ H) is a nonempty G0-stable open quasiaffine subset of
ι(U). This proves that X2 contains a nonempty G0-stable open quasiaffine
subset V . Normality of G0 in G then implies that g · V for every element
g ∈ G is a nonempty G0-stable open quasiaffine subset of X2.

By [BS 64, Lemma 5.11 and the footnote to its proof], there exists a finite
subgroup F of G that intersects every connected component of G. Put

X3 :=
⋂

g∈F g · V.

Then X3 is G0- and F -stable and, therefore, G-stable. Let

α3 : X2 99K X3

be the birational isomorphism inverse to the identity embedding X3 →֒
X2. Thus we have proved that X3 is a quiasiaffine algebraic variety such
that the rational action of G on X3 induced by α3 is regular.

Finally, by [Ro 61, Lemma 2] (see also [PV 94, Thm. 1.6]) quasiaffiness of
X3 implies that there exist an irreducible affine algebraic variety X4 endowed
with a regular action of G and a G-equivariant birational embedding

α4 : X3 →֒ X4.

This shows that we may take Y := X4 and ϕ := α4 ◦ α3 ◦ α2 ◦ α1.

(ii)⇒(i): Let the group G be connected and has property (A). Assume
that it is non-solvable. Then it contains a proper parabolic subgroup P ; see
[Sp 98, Prop. 6.2.5]. LetX beG/P endowed with the natural action ofG. We
have dimX > 0. Let Y and ϕ be respectively an irreducible affine algebraic
variety endowed with a regular action of G and a birational isomorphism (4),
whose existence is ensured by property (A). Since ϕ is G-equivariant and the
action of G on X is transitive, ϕ is a morphism. Therefore, completeness
and irreducibility of X implies that ϕ(X) is a complete G-stable closed
irreducible subset in Y ; see [Sp 98, Prop. 6.1.2(iii)]. Since Y is affine, this
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yields that ϕ(X) is a point; see [Sp 98, Prop. 6.1.2(vi)]. But dim ϕ(X) =
dim X > 0 because ϕ is a birational isomorphism—a contradiction. �

5. We also need the following

Proposition 1. Let G = k+ and let X be an irreducible affine algebraic

variety endowed with a nontrivial regular action of G. Then there exists an

irreducible affine variety Y with the following properties:

(a) there is an isomorphism φ of G× Y onto an open subvariety of X;

(b) there is an morphism ψ : G× Y such that for all a, b ∈ k, y ∈ Y ,

ψ(a+ b, y) = ψ(a, y) + ψ(b, y), a · φ(b, y) = φ(ψ(a, y) + b, y).

Proof. See [Sp 98, Prop. 14.2.2] and an earlier result [Mi 78, Lemma 1.5]. �

Corollary. Maintain the notation of Proposition 1. Then the formula

a · (b, y) := (ψ(a, y) + b, y), a, b ∈ G, y ∈ Y

defines a regular action of G on G× Y such that

— the natural projection pr2 : G× Y → Y is its rational quotient;

— the isomorphism φ is G-equivariant.

In particular, Y and X --
-G are birationally isomorphic.

6. We now turn to a characteristic free proof of Theorem 1.

Characteristic free proof of Theorem 1. We retain the argument in [Ma 63],
except its part referring to the cross-section theorem of [Ro 56] that works, as
we have explained, only if char k = 0. This part is replaced by the following
characteristic free argument.

By Theorem 2, we may assume that X is affine and the action of the
one-dimensional connected linear algebraic group H := Bd/Bd+1 on X is
nontrivial and regular. There are two possibilities: H is isomorphic to either
k+ or k×.

Let H be isomorphic to k+. Then by Corollary of Proposition 1 the variety
X is H-equivariantly birationally isomorphic to the variety P1 × Xd, on
which H acts rationally via the first factor so that the second projection
pr2 : P

1 ×Xd → Xd is a rational quotient of this action.
It remains to show that the same is true if H is isomorphic to k×. The

group X (H) of characters of H (i.e., algebraic homomorphisms H → k×) is
isomorphic to Z. Let χ be its generator. For every s ∈ Z, put

k(X)s := {f ∈ k(X) | h · f = χs(h)f for every h ∈ H}; (5)

in particular, k(X)0 = k(X)H . Since H is a torus, the H-module k[X] is
semisimple and its isotypic decomposition has the form

k[X] =
⊕

s∈Z k[X]s, where k[X]s := k(X)s ∩ k[X] (6)

(see, e.g., [Sp 98, 3.2.13]); in particular, k[X]0 = k[X]H . Given (6), every
element f ∈ k[X] can be uniquely written as the following sum of the nonzero
summands:

f = fi1 + · · ·+ fis , where fj ∈ k[X]j for all j. (7)
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We call (7) the canonical decomposition of f . Nontriviality of the action of
H on X implies that k[X]H 6= k[X]. Therefore, the subgroup

Γ := {s ∈ Z | k(X)s 6= 0} (8)

of Z is nonzero, i.e., Γ = nZ for some positive integer n.
It follows from (8) that there are a1, . . . , am ∈ Z such that in canonical

decomposition (7) we have

i1 = na1, . . . , is = nas. (9)

Fix a nonzero element t ∈ k(X)n. From (5), (7), and (9) we deduce that

fir/t
ar ∈ k(X)G for every r. (10)

In turn, (7) and (10) yield that f =
∑s

r=1 t
ar (fir/t

ar ) is an element of the

subfield k(X)H(t) of X. Hence k[X] lies in this subfield. But k(X) is the field
of fractions of k[X] because X is affine. This proves that

k(X) = k(X)H(t). (11)

The element t is transcendental over k(X)H . Indeed, if not, there is a
relation

∑m
i=0 ait

ri = 0 for some integers 0 6 r0 < r1 < · · · < rm and

nonzero elements ai ∈ k(X)H . From (5) we then deduce that
∑m

i=0 χ
nri(h)ait

ri = 0 for every element h ∈ H.

This contradicts Artin’s theorem on independence of characters, because k×

is the subgroup of the multiplicative group k(X)× of k(X), and therefore,
we may consider the elements of X (H) as the homomorphisms H → k(X)×.

Given that t is transcendental over k(X)H , we conclude from (11) that

X is H-equivariantly birationally isomorphic to the variety P1 ×X --
-H, on

which H acts rationally via the first factor so that the second projection

pr2 : P
1×X --

-H → X --
-H is a rational quotient of this action. This completes

the proof. �

7. Combining the given proof of Theorem 1 with Rosenlicht’s theorem
[Ro 63, Thm.] on the existence of generic geometric quotient, we obtain the
following generalization of the result of [GP 93, Sect. 1] on “trivial quotient”
(my attention was drawn to this result by G. Kemper, whom I thank).

Theorem 3. Let X be an irreducible algebraic variety endowed with a re-

gular action of a solvable connected linear algebraic group G. Then for the

restriction of this action on a certain G-stable dense open subset U of X
there exist

— the geometric quotient πG,U : U → U/G;

— an isomorphism ϕ : U → Ar,s × (U/G), where

Ar,s := {(α1, . . . , αr+s) ∈ Ar+s | αi 6= 0 for every i 6 r}, r > 0, s > 0,

such that the natural projection Ar,s × (U/G) → U/G is the geometric quo-

tient of the regular action of G on Ar,s × (U/G) induced by ϕ.

As a corollary we obtain Rosenlicht’s cross-section theorem:
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Corollary 1 ([Ro 56, Thm. 10]). Let X be an irreducible algebraic variety

endowed with a regular action of a solvable connected linear algebraic group

G. Let πG,X : X 99K X --
-G be a rational quotient of this action. Then there

is a rational map σ : X --
-G 99K X such that πG,X ◦ σ = id

X --
-

G
.
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487–489.
[Sp 98] T. A. Springer, Linear Algebraic Groups, 2nd edition, Progress in Mathematics,
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