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Abstract. For every pair (G, V ) where G is a connected simple
linear algebraic group and V is a simple algebraic G-module with
a free algebra of invariants, the number of irreducible components
of the nullcone of unstable vectors in V is found.

1. We fix as the base field an algebraically closed field k of character-
istic zero. Below the standard notation and terminology of the theory
of algebraic groups and invariant theory [25] are used freely.
Consider a finite dimensional vector space V over the field k and a

connected semisimple algebraic subgroup G of the group GL(V ). Let
πG,V : V → V//G be the categorical quotient for the action of G on V ,
i.e., V//G is the irreducible affine algebraic variety with the coordinate
algebra k[V ]G and the morphism πG,V is determined by the identity

embedding k[V ]G →֒ k[V ]. Denote by NG,V the nullcone of the G-
module V , i.e., the fiber π−1

G,V (πG,V (0)) of the morphism πG,V . A point
of the space V lies in NG,V if and only if its G-orbit is nilpotent, i.e.,
contains in its closure the zero of the space V (see [25, 5.1]).
This article owes its origin to the following A. Joseph’s question [15]:

may it happen that the nullcone NG,V is reducible if the group G is sim-
ple, its natural action on V is irreducible, and the algebra of invariants
k[V ]G is free?
Pairs (G, V ) with a free algebra of invariants k[V ]G have been stu-

died intensively in the 70s of the last century (see [25], [20] and the
literature cited there). Under the assumptions of simplicity of the group
G and irreducibility of its action on V they are completely classified and
constitute a remarkable class which admits a number of other important
characterizations.
In Theorem 3 proved below we find the number of irreducible compo-

nents of the nullcone NG,V for every pair (G, V ) from this class. As a
corollary we obtain the affirmative answer to A. Joseph’s question. The
proof is based on the aforementioned classification and characterizati-
ons that are reproduced below in Theorems 1 and 2.
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2. Up to conjugacy in GL(V ), the group G is uniquely determined

as the image of a representation G̃ → GL(V ) of its universal cover-

ing group G̃. The equivalence class on this representation, if it is irre-
ducible, is uniquely determined by its highest weight λ (with respect to

a fixed maximal torus and a Borel subgroup of the group G̃ containing
this torus). With this in mind, we shall write G = (R, λ), where R is
the type of the root system of the group G. Note that (R, λ) = (R, λ∗),
where λ∗ is the highest weight of the dual representation. We denote

by ̟1, . . . , ̟r the fundamental weights of the group G̃ numbered as in
Bourbaki [3]. If R = Ar,Br,Cr,Dr, then we assume that, respectively,
r > 1, 3, 2, 4.
The following theorem is proved in [16]:

Theorem 1. All connected nontrivial simple algebraic subgroups G of

the group GL(V ) that act on V irreducibly and have a free algebra of

invariants k[V ]G, are exhausted by the following list:

(i) (adjoint groups):

(Ar, ̟1 +̟r); (Br, ̟2); (Dr, ̟2); (Cr, 2̟1);

(E6, ̟2), (E7, ̟1); (E8, ̟8); (F4, ̟1); (G2, ̟2)

(ii) (isotropy groups of symmetric spaces):

(Br, ̟1); (Dr, ̟1); (A3, ̟2); (A1, 2̟1);

(Br, 2̟1); (Dr, 2̟1); (A3, 2̟2); (C2, 2̟1); (A1, 4̟1);

(Cr, ̟2); (A7, ̟4); (B4, ̟4); (C4, ̟4); (D8, ̟8); (F4, ̟4);

(iii) (groups G with k[V ]G = k):

(Ar, ̟1); (Ar, ̟2), r > 4 even ; (Cr, ̟1); (D5, ̟5);

(iv) (groups G with tr degk[V ]G = 1 not included in (i) and (ii)):

(Ar, 2̟1), r > 2; (Ar, ̟2), r > 5 odd ;

(A1, 3̟1); (A5, ̟3); (A6, ̟3); (A7, ̟3);

(B3, ̟3); (B5, ̟5); (C3, ̟3); (D6, ̟6); (D7, ̟7);

(G2, ̟1); (E6, ̟1); (E7, ̟7);

(v) (other groups):

(A2, 3̟1); (A8, ̟3); (B6, ̟6).

Remark 1. There are no repeated groups inside each of these five lists
(i)–(v). The unique group included in two different lists (namely, in (i)
and (ii)) is (A1, 2̟1). The groups G with tr degk[V ]G = 1 included in
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at least one of the lists (i), (ii) are (Br, ̟1), (Dr, ̟1), (A3, ̟2), (C2, ̟2),
(A1, 2̟1), (B4, ̟4) and only these groups.

3. Recall from [25, 3.8, 8.8], [20, Chap. 5, § 1, 11], [21] that an
algebraic subvariety S in V is called a Chevalley section with the Weyl

group W (S) := N(S)/Z(S), where N(S) := {g ∈ G | g · S = S} and
Z(S) := {g ∈ G | g · s = s ∀s ∈ S}, if the homomorphism of k-algebras
k[V ]G → k[S]W (S), f 7→ f |S, is an isomorphism. A linear subvariety in
V that is a Chevalley section with trivial Weyl group (i.e., a linear
subvariety intersecting every fiber of the morphism πG,V at a single
point) is called a Weierstrass section. A linear subspace in V that is a
Chevalley section with a finite Weyl group is called a Cartan subspace.
Recall also (see [25, Thm. 3.3 and Cor. 4 of Thm. 2.3]) that semisimp-

licity of the group G implies the equality

mG,V := max
v∈V

dimG · v = dimV − dimV//G. (1)

Consider the following properties:

(FA) k[V ]G is a free k-algebra;
(FM) k[V ] is a free k[V ]G-module;
(ED) all fibers of the morphism πG,V have the same dimension;
(ED0) dimNG,V = mG,V (see (1));
(FO) every fiber of the morphism πG,V contains only finitely many

G-orbits;
(FO0) NG,V contains only finitely many G-orbits;
(NS) G-stabilizers of points in general position in V are nontrivial;
(CS) there is a Cartan subspace in V ;
(WS) there is a Weierstrass section in V .

The following implications between them hold true:

(FM) ⇔ (FA)&(ED) (see [20, p. 127, Thm. 1]);

(ED0) ⇔ (ED) ⇐ (FO0) (see [20, p. 128, Thm. 3, Cor.]);

(FO0) ⇔ (FO) (see [25, Cor. 3 of Prop. 5.1]);

(CS) ⇒ (FM) ⇐ (WS) (see [20, p. 133, Thm. 7]).

Theorem 2. For the connected simple algebraic subgroups G in GL(V ),
acting on V irreducibly, all nine properties (FA), (FM), (ED), (ED0),
(FO), (FO0), (NS), (CS), and (WS) are equivalent1.

1In [19, p. 207, Thm.], the property (NS) is replaced by the property that the
G-stabilizer of every point of V is nontrivial. It is a mistake: for instance, the SL2-
module of binary forms in x and y of degree 3 has the property (FA), but the
SL2-stabilizer of the form x2y is trivial.
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Proof. The complete list of the groups G having the property (FA) is
obtained in [16]; the one having the property (ED) is obtained in [9],
[20, p. 141, Thm. 8] and, in the same papers, that having the property
(FM); the one having the property (FO) is obtained in [17]. The results
of papers [1], [2], [7], [8] yield the complete list of the groups G having
the property (NS). Matching the obtained lists proves the equivalence
of the properties (FA), (FM), (ED), (FO), and (NS) (see [25, Thm. 8.8]
and [20, p. 127, Thm. 1]). It is proved in [20, p. 142, Thm. 9] that each
of the properties (CS) and (WS) is equivalent to the property (ED). �

Remark 2. The conditions of simplicity of the group G and irreduci-
bility of its action on V in Theorem 2 are essential, see [21].

4. Now we turn to finding the number of irreducible components of
the nullcone NG,V .

Lemma 1. If dimV//G 6 1, then the nullcone NG,V is irreducible. If

dimV//G = 0, then it contains an open dense G-orbit.

Proof. The equality dimV//G = 0 means that dimV//G is a single
point. By the definition of the nullcone, the latter condition is equiva-
lent to the equality NG,V = V . In particular, in this case the nullcone
NG,V is irreducible. On the other hand, in view of (1), the equality
dimV//G = 0 is equivalent to that V contains a G-orbit of dimension
dimV , i.e., an open and dense orbit.
In view of smoothness of V , the algebraic variety V//G is normal

(see. [25, Thm. 3.16]). Let dim V//G = 1. It follows from rationality of
the algebraic variety V , dominance of the morphism πG,V , and Lüroth’s
theorem that the curve V//G is rational. Being normal, it is smooth.
Hence V//G is isomorphic to an open subset of the affine line. Since
every invertible element of the algebra k[V ] is a constant, the algebra
k[V ]G has the same property. Hence the curve V//G is isomorphic to
the affine line, and therefore, there is a polynomial f ∈ k[V ]G such
that f(0) = 0 and k[V ]G = k[f ]. Since the group G is connected and
has no nontrivial characters, the polynomial f is irreducible (see [25,
Thm. 3.17]). SinceNG,V = {v ∈ V | f(v) = 0}, this implies irreducibili-
ty of the nullcone NG,V . �

Theorem 3. The nullcone NG,V of the connected nontrivial simple

algebraic group G ⊆ GL(V ) acting irreducibly on V and having the

equivalent properties listed in Theorem 2 is reducible if and only if G
is contained in the following list:

(Dr, 2̟1), (A3, 2̟2), (A7, ̟4). (2)
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For every group G from list (2), the number of irreducible components

of the nullcone NG,V is equal to 2.

Proof. ¿From Theorem 2 we obtain the following interpretation of the
number of irreducible components of the nullcone NG,V . Using (1)
and the fiber dimension theorem (see [11, Chap. II, §3]), we infer that
dimension of every irreducible component of the nullcone NG,V is at
least mG,V . This and the property (ED0) imply that dimension of every
irreducible component of the nullcone NG,V is equal to mG,V . But in
view of the property (FO0) every irreducible component of the nullcone
NG,V is the closure of some G-orbit. Hence the number of irreducible
components of the nullcone NG,V is equal to the number of mG,V -
dimensional nilpotent G-orbits in V .
Now we shall use Theorem 1 and find, for every group G listed in it,

the number of irreducible components of the nullcone NG,V .

1. If the group G is adjoint, then according to [17, Cor. 5.5], the
nullcone NG,V is irreducible. This conclusion covers all the groups G
from list (i) of Theorem 1.

2. In view of Lemma 1, the nullcone NG,V is irreducible for all the
groups G from lists (iii) and (iv) of Theorem 1 and also for the groups
with trdegkk[V ]G = 1 mentioned in Remark 1.

3. Consider all the groups G from list (v) of Theorem 1.

(3a) The orbits of the group (A2, 3̟1) are the orbits of the natural
action of the group SL3 on the space of cubic forms in three variables.
According to [25, 5.4, Example 2◦], the Hilbert–Mumford criterion imp-
lies the existence of a linear subspace L in V such that NG,V = G · L.
Hence the nullcone NG,V is irreducible.

(3b) The orbits of the group (A8, ̟3) are the orbits of the natural
action of the group SL9 on the space of 3-vectors ∧3k9. The classificati-
on of them is obtained in [4]; it shows (see [4, Table 6, dimS = 0]) that
in this case there is a unique nilpotent orbit of dimension mG,V = 80.
Hence the nullcone NG,V is irreducible.

(3c) The orbits of the group (B6, ̟6) are the orbits of the natural
action of the group Spin13 on the space of spinor representation. The
classification of them is obtained in [14]; it shows (see [14, Thm. 1(3)])
that in this case there is a unique nilpotent orbit of dimension mG,V =
62, and hence the nullcone NG,V is irreducible.

4. Let us now consider all the groups G from the remaining list (ii)
of Theorem 1. By virtue of the Lefschetz principle, we may (and shall)
assume that k = C. All these groups are obtained by means of the
following general construction.
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Consider a semisimple complex Lie algebra h, it adjoint group Ad h,
and an involution θ ∈ Aut h. The decomposition

h = k⊕ p, where k := {x ∈ h | θ(x) = x}, p := {x ∈ h | θ(x) = −x}.

is a Z2-grading of the Lie algebra h, and k is its proper reductive subal-
gebra (see [5]). Let K be the connected algebraic subgroup of Ad h with
the Lie algebra k. The subspace p is invariant with respect to the re-
striction to K of the natural action of the group Ad h on h. The action
of K on p arising this way determines a homomorphism ι : K → GL(p).
For every group from list (ii) of Theorem 1, there is a pair (h, θ) such

that V = p and G = ι(K).
Next, we use the following facts (see [18], [13], [5], [24]).
In h, there is a θ-stable real form r of the Lie algebra h, such that

r = (r∩ k)⊕ (r∩ p) is its Cartan decomposition (thereby r∩ k is a com-
pact real form of the Lie algebra k). The semisimple real Lie algebra
r is noncompact and the juxtaposition r  θ determines a bijections
between the noncompact real forms of the Lie algebra h, considered up
to an isomorphism, and the involutions in Aut h, considered up to con-
jugation. By means of this bijection and described construction, every
group G from list (ii) of Theorem 1 is determined by some noncompact
semisimple real Lie algebra s; we say that G and s correspond each
other.
The nullcone NK,p for the action of K on p contains only finitely

many K-orbits, therefore, every its irreducible component contains an
open dense K-orbit; the latter is called principal nilpotent K-orbit and
its dimension is equal to the maximum of dimensions of K-orbits in p.
Let σ : h → h, x + iy 7→ x − iy, x, y ∈ r. Denote by Nr the set

of nilpotent elements of the Lie algebra r. In every nonzero K-orbit
O ⊂ NK,p, there is an element e such that {e, f := −σ(e), h := [e, f ]}
is an sl2-triple (i.e., [h, e] = 2e and [h, f ] = −2f). Then the element
(i/2)(e+f−h) lies inNr, its Ad r-orbit O

′ does not depend on the choice
of e, the equality 2 dimC O = dimR O

′ holds, and the map O 7→ O
′ is

a bijection between the set of nonzero K-orbits in NK,p and the set of
nonzero Ad r-orbits in Nr.
A nilpotent element of a real semisimple Lie algebra s is called com-

pact if the reductive Levi factor of its centralizer in s is a compact Lie
algebra, [24]. For all simple real Lie algebras s and their compact ele-
ments x, the orbits (Ad s) · x are classified (and their dimensions are
found) in [24]. If, in the above notation, the elements of an Ad r-orbit
O

′ are compact, then the K-orbit O is called (−1)-distinguished, [22].
All principal nilpotent K-orbits are (−1)-distinguished, [23].
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It follows from the aforesaid that the number of irreducible compo-
nents of the nullcone NK,p is equal to the number of (−1)-distinguished
K-orbits of maximal dimension in p, and also to the number of orbits
(Ad r) · x of maximal dimension, where x is a compact element in r.
This reduces the problem to pointing out for every group G from list

(ii) of Theorem 1 the simple real Lie algebra s corresponding to it, and
then to finding the number of orbits (Ad s) · x, where x is a compact
element of s, such that their dimension is maximal.
Now we shall perform this for every group from list (ii) of Theorem 1,

except those from Remark 1 that have already been considered above.

(4a) Let G be one of the groups (Br, 2̟1), (Dr, 2̟1), (A3, 2̟2),
(C2, 2̟1), (A1, 4̟1). Therefore, k = son, where, respectively, n = 2r+1
(with r > 3), 2r (with r > 4), 6, 5, 3. Hence the maximal compact
subalgebra in s is son,0 (see [5], [13], [24, Table 1]). In this case, s is
a real form of the Lie algebra sln (see Summary Table at the end of
[25] and Tables 7, 9 in Reference Chapter of [5]). It follows from this
and Table 8 in Reference Chapter of [5] that s = sln(R). According
to [24, Thm. 8], the number of orbits (Ad s) · x, where x is a nonzero
compact element of s, is equal to 1 if n is add, and to 2 if n is even,
and in the case of even n both of these orbits have the same dimension.
Therefore, the nullcone NG,V is irreducible for odd n and has exactly
two irreducible components for even n.

(4b) Let G = (Cr, ̟2). Therefore, k = sp2r, so the maximal compact
subalgebra in s is spr,0 (see [5], [13], [24, Table 1]). In this case, s is a
real form of the Lie algebra sl2r (see Summary Table at the end of [25]
and Tables 7, 9 in Reference Chapter of [5]). It follows from this and
Table 8 in Reference Chapter of [5] that s = slr(H). According to [24,
Thm. 8], the number of orbits (Ad s) · x, where x is a nonzero compact
element of s, is equal to 1. Therefore, the nullcone NG,V is irreducible.

(4c) Let G = (A7, ̟4). Then k = sl8, so the maximal compact sub-
algebra in s is su8 (see [5], [13], [24, Table 1]). In this case, s is a real
form of the Lie algebra E7 (see Summary Table at the end of [25] and
Tables 7, 9 in Reference Chapter of [5]). It follows from this and [24,
Table 5] that, using E. Cartan’s notation, s = E7(7). According to [24,
Table 12], for this s, the number of (−1)-distinguished K-orbits of max-
imal dimension (= 63) in NK,p is equal to 2. Therefore, the number of
irreducible componenets of the nullcone NG,V is equal to 2 as well.

(4d) Let G = (C4, ̟4). Therefore, k = sp8, and hence the maximal
compact subalgebra in s is sp4,0 (see [5], [13], [24, Table 1]). In this
case, s is a real form of the Lie algebra E6 (see Summary Table at the
end of [25] and Tables 7, 9 in Reference Chapter of [5]). It follows from
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this and [24, Table 5] that s = E6(6). According to [24, Table 7], for this
s, there is a unique (−1)-distinguished K-orbit of maximal dimension
(= 36) in NK,p. Therefore, the nullcone NG,V is irreducible.

(4e) Let G = (D8, ̟8). Therefore, k = so16, so the maximal compact
subalgebra in s is so16,0 (see [5], [13], [24, Table 1]). In this case, s is
a real form of the Lie algebra E8 (see Summary Table at the end of
[25] and Tables 7, 9 in Reference Chapter of [5]). It follows from this
and [24, Table 5] that s = E8(8). According to [24, Table 14], for this
s, there is a unique (−1)-distinguished K-orbit of maximal dimension
(= 129) in NK,p. Hence the nullcone NG,V is irreducible.

(4f) Let G = (F4, ̟4). Therefore, k = f4, so the maximal compact
subalgebra in s is F4(−52) (see [24, Sect. 5]). In this case, s is a real
form of the Lie algebra E8 (see Summary Table at the end of [25] and
Tables 7, 9 in Reference Chapter of [5]). It follows from this and [24,
Table 5] that s = E6(−26). According to [24, Table 9], for this s, there is
a unique (−1)-distinguished K-orbit of maximal dimension (= 24) in
NK,p. Hence in this case the nullcone NG,V is irreducible. �

Remark 3. In [10] is obtained an algorithm that employs only elemen-
tary geometric operations (the orthogonal projection of a finite system
of points onto a linear subspace and taking its convex hull) and, starting
from the system of weights of the G-module V and the system of roots
of the group G, finds a finite set of linear subspaces L in V such that the
irreducible components of maximal dimension of the nullcone NG,V are
the varieties G ·L. In particular, if the property (ED0) holds (see above
the list of properties after formula (1)), this algorithm describes all the
irreducible components of the nullcone NG,V . For instance, this is so
for every pair (G, V ) from Theorem 1. The computer implementation
of this algorithm is obtained in [12].
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[4] È. B. Vinberg, A. G. Èlashvili, Classification of trivectors of a nine-dimen-

sional space, Tr. Semin. Vektorn. Tenzorn. Anal. Prilozh. Geom. Mekh. Fiz.



NUMBER OF COMPONENTS OF THE NULLCONE 9

18 (1976), 197–233 (Russian). Engl. transl.: Sel. Math. Sov. 7 (1988), no. 1,
63–98.

[5] E. B. Vinberg, A. L. Onishchik, Seminar on Lie Groups and Algebraic Groups,
Nauka, Moscow, 1988 (Russian). Engl. transl.: A. L. Onishchik, E. B. Vinberg,
Lie Groups and Algebraic Groups, Springer-Verlag, Berlin, 1990.

[6] V. G. Kac, Concerning the question of description of the orbit space of a linear

algebraic group, Uspekhi Mat. Nauk 30 (1975), no. 6, 173–174 (Russian).
[7] A. M. Popov, Irreducible simple linear Lie groups with finite stationary sub-

groups of general position, Funkts. Anal. Prilozh. 9 (1975), no. 4, 81–82 (Rus-
sian). Engl. transl.: Funct. Anal. Appl. 9 (1975), no. 4, 346–347.

[8] A. M. Popov, Finite isotropy subgroups in general position in simple linear Lie

groups, Tr. Mosk. Mat. Ob. 48 (1985), 7–59 (Russian). Engl. transl.: Trans.
Mosc. Math. Soc. 1986 (1988), 3–63.

[9] V. L. Popov, Representations with a free module of covariants, Funkts. Anal.
Prilozh. 10 (1976), no. 3, 91–92. (Russian). Engl. transl.: Funct. Anal. Appl.
10 (1977), 242–244.

[10] V. L. Popov, The cone of Hilbert nullforms, Trudy Mat. Inst. Steklova 241

(2003), 192–209 (Russian). Engl. transl.: Proc. Steklov Inst. of Math. 241
(2003), 177–194.

[11] R. Hartshorne, Algebraic Geometry, Graduate Text in Mathematics, Vol. 52,
Springer-Verlag, New York, 1977.

[12] N. A’Campo, V. L. Popov, The computer algebra package HNC (Hilbert Null
Cone), http://www.geometrie.ch, Math. Institut Universität Basel, 2004.

[13] D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Al-

gebras, Van Nostrand Reinhold, New York, 1992.
[14] V. Gatti, E. Viniberghi, Spinors of 13-dimensional space, Adv. Math. 30

(1978), no. 2, 137–155.
[15] A. Joseph, Private communication, March 2013.
[16] V. G. Kac, V. L. Popov, E. B. Vinberg, Sur les groupes linéaires algébriques
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