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Abstract. In this note we prove a result comparing rationality of algebraic cycles over
the function field of a SL1(A)-torsor for a central simple algebra A and over the base
field.
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1. Introduction

Let A be a central simple algebra over a field F and let Nrd : A× → F× be the
reduced norm homomorphism . We recall that the homomorphism F× → H1(F,SL1(A)),
associating to c ∈ F× the SL1(A)-torsor Xc given by the equation Nrd = c, is surjective
(with kernel Nrd(A×)) – see [7, Proposition 2.7.3] for instance.

The main purpose of this note is to prove the following theorem dealing with rationality
of algebraic cycles over function field of SL1(A)-torsors.

Theorem 1.1. Let A be a central simple algebra of prime degree p over a field F and let

X be a SL1(A)-torsor. Then

(i) for any equidimensional F -variety Y , the change of field homomorphism

CH(Y ) → CH(YF (X)),

where CH is the integral Chow group, is surjective in codimension < p+ 1.
(ii) it is also surjective in codimension p+1 for a given Y provided that the variety XF (ζ)

does not have any closed point of prime to p degree for each generic point ζ ∈ Y .

The method of proof mainly relies on the following statement. This proposition is a
version of the result [3, Lemma 88.5] slightly altered to fit our situation (see also the proof
of [8, Proposition 2.8]).
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Proposition 1.2 (Karpenko, Merkurjev). Let X be a smooth variety, and Y an equidi-

mensional variety. Given an integer m such that for any nonnegative integer i and any

point y ∈ Y of codimension i the change of field homomorphism

CHm−i(X) −→ CHm−i(XF (y))

is surjective, the change of field homomorphism

CHm(Y ) −→ CHm(YF (X))

is also surjective.

The proof of Theorem 1.1 is given in Section 3. In Section 4, we describe how this
theorem can be related to a similar result dealing with rationality of algebraic cycles over
function field of projective homogeneous varieties under some groups of exceptional type.
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2. Preliminaries

2.1. Topological filtration and Chow groups. For any smooth variety X over a field
F (in this paper, an F -variety is a separated scheme of finite type over F ), one can consider
the topological filtration on the Grothendieck ring K0(X), whose term of codimension i
is given by

τ i(X) = 〈[OZ ] |Z →֒ X and codim(Z) ≥ i〉,

where [OZ ] is the class in K0(X) of the structure sheaf of a closed subvariety Z. We write
τ i/i+1(X) for the successive quotients. We denote by pri the canonical surjection

CHi(X) −։ τ i/i+1(X)
[Z] 7−→ [OZ ]

,

where CH is the integral Chow group. By the Riemann-Roch Theorem without denomina-
tors the i-th Chern class induces an homomorphism in the opposite way ci : τ

i/i+1(X) →
CHi(X) such that the composition ci ◦ pr is the multiplication by (−1)i−1(i− 1)!.

Note that for any prime p, one can also consider the topological filtration τp on the
ring K0(X)/pK0(X) by replacing K0(X) by K0(X)/pK0(X) in the previous definition.

In particular, we get that for any 0 ≤ i ≤ p, the map prip : Chi(X) ։ τ
i/i+1
p (X), where

Ch is the Chow group modulo p, is an isomorphism.

Remark 2.1. Assume that X is a SL1(A)-torsor and let p be a prime. One has K0(X) =
Z by the result [14, Theorem A] of I. Panin and consequently, for i ≥ 1, the term τ i(X)
is equal to zero. Therefore, for any 1 ≤ i ≤ p, one has Chi(X) = 0. Moreover, by the
result [17, Theorem 2.7] of A. Suslin, one has CHi(SLp) = 0 for any i ≥ 1. Hence, for
A of degree p (then there exists a splitting field of A of degree p), it follows by transfert
argument that p · CHi(X) = 0 for any i ≥ 1. Therefore, for X a SL1(A)-torsor, with A
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of prime degree p, one has CHi(X) = 0 for any 1 ≤ i ≤ p. Note that, by Proposition 1.2,
this gives Theorem 1.1(i) already.

2.2. Brown-Gersten-Quillen spectral sequence. For any smooth variety X and any
i ≥ 1, the epimorphism pri coincides with the edge homomorphism of the spectral Brown-
Gersten-Quillen structure Ei,−i

2 (X) ⇒ K0(X) (see [16, §7]), that is to say

pri : CHi(X) ≃ Ei,−i
2 (X) ։ · · · ։ Ei,−i

i+1 (X) = τ i/i+1(X).

Assume that X is a SL1(A)-torsor, with A of prime degree p. Then it follows from

Remark 2.1 that Ei,−i
i−1 (X) = 0 for 3 ≤ i ≤ p. Consequently, one has A1(X,K2) =

E1,−2
p (X).

Moreover, by the result [11, Theorem 3.4] of A.Merkurjev, for any smooth variety X,
every prime divisor l of the order of the differential δr ending in Ep+1,−p−1

r (X) is such
that l − 1 divides r − 1. Therefore, for any prime p and 2 ≤ r ≤ p− 1, the differential δr
is of prime to p order. Assume furthermore that X is a SL1(A)-torsor, with A of prime
degree p. Since p · CHp+1(X) = 0 (see Remark 2.1), one deduce that, for 2 ≤ r ≤ p− 1,
the differential δr is trivial. Consequently, one has CHp+1(X) = Ep+1,−p−1

p (X).

Therefore, for X a SL1(A)-torsor, with A of prime degree p, the differential δp in the
BGQ-structure is an homomorphism

δ : A1(X,K2) → CHp+1(X).

Remark 2.2. Let X be a principal homogeneous space for a semisimple group G. By
[6, Part II, Example 4.3.3 and Corollary 5.4], one has E0,−1

2 (X) = A0(X,K1) = F× and
the composition F× = K1(F ) → K1(X) → A0(X,K1) of the pullback of the structural
morphism with the inclusions

K
(0/1)
1 (X) = E0,−1

∞
(X) ⊂ · · · ⊂ E0,−1

3 (X) ⊂ E0,−1
2 (X)

given by the BGQ spectral sequence, is the identity. Therefore, for any i ≥ 2, the
differential starting from E0,−1

i (X) is zero, i.e for any i ≥ 2, one has

Ei,−i
i (X) = τ i/i+1(X).

In particular, for X a SL1(A)-torsor, with A of prime degree p, one has Ep+1,−p−1
p+1 (X) = 0,

i.e the differential δ : A1(X,K2) → CHp+1(X) is surjective.

2.3. On the group A1(X,K2). The proof in the next section will use the work of
A.Merkurjev on the Rost invariant of simply connected algebraic groups (see [6, Part
II]). Let X be a SL1(A)-torsor over F . The group A1(XF (X), K2) is infinite cyclic with
generator q and isomorphic to A1(SLn, K2) under restriction (where n = deg(A)). Fur-
thermore, the restriction map r : A1(X,K2) → A1(XF (X), K2) is injective with finite
cokernel of same order as the element RSL1(A)(X), where

RSL1(A) : H
1(F,SL1(A)) → H3(F,Q/Z(2))

is the Rost invariant of SL1(A) (see [6, Theorem 9.10]). Moreover, the homomorphism
RSL1(A) is of order exp(A) by [6, Theorem 11.5].
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If char(F ) = l is prime then the modulo l component H3(F,Z/lZ(2)) of the Galois
cohomology group H3(F,Q/Z(2)) is the group H3

l (F ) defined by K. Kato in [10] by
means of logarithmic differential forms.

3. Proof of the result

In this section, we prove the result of this note.

Proof of Theorem 1.1. We use notations and materials introduced in the previous section.
One can assume that X does not have any rational point over F (or equivalently X does
not have any closed point of prime to p degree, by the result [1, Theorem 3.3] of J. Black),
if else there is nothing to prove. Note that in this situation, the central simple algebra
A is necessarily a division algebra. We recall that conclusion (i) has already been proved
(see Remark 2.1). According to Proposition 1.2, it suffices to show that CHp+1(XF (ζ)) = 0
for each generic point ζ ∈ Y to get conclusion (ii). Since XF (ζ) does not have any closed

point of prime to p degree, it is enough to prove that CHp+1(X) = 0.
Assume on the contrary that CHp+1(X) 6= 0. Then δ : A1(X,K2) → CHp+1(X)

is nonzero (since δ is surjective by Remark 2.2), i.e E1,−2
p+1 (X) is strictly included in

E1,−2
p (X) = A1(X,K2). We claim that this implies that, by denoting as qX the gen-

erator of A1(X,K2), one has r(qX) = q. Indeed, otherwise one has r(qX) = p · q by §2.3.
Consecutively, by denoting as c the corestriction morphism A1(SLp, K2) → A1(X,K2),

for any i ≥ 2, one has c(E1,−2
i (SLp)) = c(A1(SLp, K2)) = A1(X,K2) (where the first

identity is due to CHi(SLp) = 0 for any i ≥ 2). In particular, one has E1,−2
p (X) =

c(E1,−2
p+1 (SLp)) ⊂ E1,−2

p+1 (X), which is a contradiction.

Therefore, we have shown that under the assumption CHp+1(X) 6= 0, the generator q
of A1(XF (X), K2) is rational. Then it follows that the generator g of CHp+1(XF (X)) is also
rational.

However, since AF (X) is still a division algebra (see [17, Corollary 6.5]), by [9, Theorem
7.2 and Theorem 8.2] the cycle gp−1 in CH0(SL1(AF (X))) is nonzero and the latter group
is cyclic of order p generated by the class of the identity of SL1(AF (X)). Thus, the degree
of the rational cycle gp−1 is prime to p.

It follows that X has a closed point of prime to p degree, which is a contradiction.
The Theorem is proved. �

Remark 3.1. Conclusion (i) of Theorem 1.1 holds for central simple algebras of p-primary
degree (with the same proof). Over a field F of characteristic 6= p, one can extend
conclusion (ii) of Theorem 1.1 to central simple algebras A of p-primary degree and of
index p because the kernel of the Rost invariant RSL1(A) is trivial by the result [12,
Theorem 12.2] of A.Merkurjev and A. Suslin.

Remark 3.2. The end of the above proof shows in particular that for a division algebra
A of prime degree p over a field F of arbitrary charateristic, the kernel of the Rost
invariant RSL1(A) is trivial as well. Indeed, let ξ ∈ H1(F,SL1(A)) and let X be the
associated SL1(A)-torsor. Assume that RSL1(A)(ξ) is trivial. It follows then by §2.3 that
the generator of A1(XF (X), K2) is rational. As we have seen in the above proof, this
implies that X has a rational point over F , i.e the cocycle ξ is trivial.
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Note also that for a division algebra A of prime degree p over a field F , the Rost
invariant RSL1(A) coincides, up to sign, with the normalized invariant given by the cup
product [A] ∪ (c) ∈ H3(F,Z/pZ(2)) for any class cNrd(A×), where [A] is the class of the
algebra A in the Brauer group Br(F ), see [6, §11].

4. Exceptional projective homogeneous varieties

In this section, we describe how Theorem 1.1 implies a similar version of it for projective
homogeneous varieties under a group of type F4 or E8. Namely, we give an alternative
proof of Theorem 4.1 below. The following proof requires the characteristic of the base
field to be different from p, with p = 3 when G is of type F4 and p = 5 when G is of type
E8, although the original result [4, Theorem 1.1] is valid for arbitrary characterisitic.

Let X be a nonsplit SL1(A)-torsor over a field F , with A a division algebra of prime

degree p. There exists a smooth compactification X̃ of X such that the Chow motive
M(X̃,Z/pZ) decomposes as a direct sum Rp ⊕N , where Rp is the indecomposable Rost
motive associated with the symbol [A] ∪ (c) ∈ H3(F,Z/pZ(2)), with c ∈ F×\Nrd(A×)
giving X, see [9, Theorem 1.1]. Note that the projective variety X̃ is a norm variety of s.

Theorem 4.1. Let G be a linear algebraic group of type F4 or E8 over a field F of

characteristic different from p, with p = 3 when G is of type F4 and p = 5 when G is

of type E8, and let X ′ be a projective homogeneous G-variety. For any equidimensional

variety Y , the change of field homomorphism

Ch(Y ) → Ch(YF (X′)),

where Ch is the Chow group modulo p, is surjective in codimension < p + 1.
It is also surjective in codimension p+1 for a given Y provided that 1 /∈ deg Ch0(X

′

F (ζ))
for each generic point ζ ∈ Y .

Proof. Since the F -variety X ′ is A-trivial in the sense of [8, Definition 2.3], one can assume
that G has no splitting field of degree coprime to p. Indeed, otherwise 1 ∈ deg Ch0(X

′)
by corestricition and this implies that Ch(Y ) → Ch(YF (X′)) is an isomorphism in any
codimension by A-triviality, see [8, Lemma 2.9].

Let us now write G = ξG0 for a nontrivial cocycle ξ ∈ H1(F,G0), with G0 a split
group of the same type as G. Then the motive Rp(G) living on the Chow motive (with
coefficients in Z/pZ) of X ′ given in [15, Theorem 5.17] is the Rost motive of the symbol
RG0,p(ξ) = [A]∪ (c) ∈ H3(F,Z/pZ(2)), where RG0,p is the the modulo p component of the
Rost invariant RG0

, A is a division algebra of degree p and c ∈ F×\Nrd(A×) – see [13,
§4] and [5, §14] (here the assumption char(F ) 6= p is needed).

Let us denote as X the nonsplit SL1(A)-torsor over F associated with c and as X̃ its
smooth compactification. We claim that X ′ has a closed point of prime to p degree over
F (X̃) and vice versa.

Indeed, since X̃ is a norm variety for [A]∪ (c), the motive Rp(G) decomposes as a sum

of Tate motives over F (X̃). Therefore, the group GF (X̃) is split by an extension of degree

coprime to p and it follows that X ′ has a closed point of prime to p degree over F (X̃)
(this is more generally true for any extension L/F over which X̃ has a closed point of
prime to p degree). Moreover, the motive Rp(G) decomposes as a sum of Tate motives
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over F (X ′) because G is split by F (X ′). Consequently, X̃ has a closed point of prime to
p degree over F (X ′).

It follows then (note that X̃ is A-trivial by [8, Example 5.7]) that the right and the
bottom homomorphisms in the commutative square

Ch(Y ) //

��

Ch(YF (X′))

��

Ch(YF (X̃))
// Ch(YF (X̃×X′))

are isomorphisms. Since F (X̃) = F (X), Theorem 4.1 is now a direct consequence of
Theorem 1.1. �

The following was pointed out to me by Philippe Gille.

Remark 4.2. Let G0 a split group of type E8 over a 5-special field F (i.e F has no proper
extension of degree coprime to 5) of characteristic 6= 5. The above proof gives rise to a
new argument for the triviality of the kernel of the Rost invariant modulo 5

H1(F,G0) → H3(F,Z/5Z(2)).

This result is originally due to Vladimir Chernousov (under the assumption char(F ) 6= 2,
3, 5, see [2, Theorem]).

Indeed, since F is 5-special, for any nontrivial cocycle ξ ∈ H1(F,G0), the group ξG0

has no splitting field of degree coprime to 5. Then, as we have seen in the proof, there is a
division algebra A of degree 5 such that RG0,5(ξ) is equal to a symbol [A]∪ (c) associated
with a nonsplit SL1(A)-torsor X. The injectivity of RG0,5 follows now from Remark 3.2.
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